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On the convergence of the modified Kähler–Ricci flow
and solitons

D. H. Phong, Jian Song, Jacob Sturm, and BenWeinkove

Abstract. We investigate the Kähler–Ricci flow modified by a holomorphic vector field. We
find equivalent analytic criteria for the convergence of the flow to a Kähler–Ricci soliton. In
addition, we relate the asymptotic behavior of the scalar curvature along the flow to the lower
boundedness of the modified Mabuchi energy.
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1. Introduction

Let M be a compact Kähler manifold of complex dimension n with c1.M/ > 0. A
Kähler–Ricci solitononM isa Kählermetric! D

i
2gkNj dzj ^d Szk in the cohomology

class c1.M/ together with a holomorphic vector field X such that

Ric.!/ D LX!; 1.1)

or RkNj gkNj D rjXkN in coordinate notation with XkN D gkN`X`. Let ˆt be
the 1-parameter group of automorphisms of M generated by ReX. The family
of metrics gkNj t / ˆ t gkNj / provides then a solution of the Kähler–Ricci flow,

gPkNj t/ D RkNj C gkNj where the evolution in time is just by reparametrization.
If X is the zero vector field then 1.1) reduces to the Kähler–Einstein equation.

Kähler–Ricci solitons are in many ways similar to extremal metrics, which generalize
constant scalar curvature Kähler metrics and are characterized by the condition that
the vector field r iR is holomorphic. A classic conjecture of Yau [Y2] asserts that

the existence of constant scalar curvature metrics in a given integral Kähler class

should be equivalent to the stability of the polarization in the sense of geometric
invariant theory. Notions of K-stability for constant scalar curvature metrics have
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been proposed by Tian [T] and Donaldson [D2], and extended to the case of extremal
metrics by Szekelyhidi [Sz1] see also [M]). Similarly, the existence of Kähler–Ricci
solitons is expected to be equivalent to a suitable notion of stability.

Kähler–Ricci solitons are the stationary points of the modified Kähler–Ricci flow

gPkNj D RkNj C gkNj CrjXkN 1.2)

which is the Kähler–Ricci flowreparametrized by theautomorphismsˆ t generated by
ReX. Similar reparametrizationsof Hamilton’soriginal flow[H] had been introduced
by DeTurck [DeT] to simplify the proof of the short-time existence of the flow.

The modified Kähler–Ricci flow appears in the work of Tian–Zhu [TZ2] as part
of their study of the Kähler–Ricci flow assuming a priori the presence of a Kähler–
Ricci soliton. They make use of a Moser–Trudinger type inequality from [CTZ] to
deduce the Cheeger–Gromov convergence of the flow. When there are no nontrivial
holomorphic vector fields, it is known by the work of Perelman, [TZ2], [PSSW1],
that the existence of a Kähler–Einstein metric implies the exponential convergence
of the Kähler–Ricci flow to that metric.)

In this paper, we study the long-time behavior of the modified Kähler–Ricci flow
without assuming the existence of a Kähler–Ricci soliton. We giveanalyticconditions
which are both necessary and sufficient for the convergence of the flow to a Kähler–
Ricci soliton. These conditions are analogous to the ones given in [PSSW1] for the
convergence of the Kähler–Ricci flow. As explained in [PS1] and [PSSW1] they can

be interpreted as stability conditions in an infinite-dimensional geometric invariant
theory, where the orbits are those of the diffeomorphism group acting on the space of
almost-complex structures.1 The arguments and viewpoint in this paper are parallel
to the case X D 0 treated in [PSSW1]. In the proofs, we emphasize only the main
changes due to non-vanishing X.

More precisely, let M be a compact Kähler manifold with c1.M/ > 0 and X a

holomorphic vector field whose imaginary part Im X induces an S1 action on M.
WriteKX for the space of Kähler metrics in c1.M/ which are invariant under Im X.
Given D

i
2 gkNj dzj ^ dzkN

2 KX, define the Hamiltonian X;! as the real-valued
function satisfying

XjgkNj D @
kN X;!; Z

M
e X;!!n

D
Z

M

n
DW V:

The Ricci potential f D f.!/ is given by gkNj RkNj D @
kN

@j f RM e f n
D V we

note that in the Kähler geometry literature, f often has the opposite sign). Define
the modified Ricci potential uX;! by

uX;! D f C X;!:
1In [D1], Donaldson also considers an infinite-dimensional geometric invariant theory, with the group of

symplectomorphisms acting on the space of almost complex structures.



Vol. 86 2011) On the convergence of the modified Kähler–Ricci flow and solitons 93

If M admits a Kähler–Ricci soliton 2 c1.M/ with respect to X, then is
necessarily in KX and uX;! D 0. Let gkNj t/ evolve by the modified Kähler–Ricci
flow and set

YX.t/ D
Z

M jruX;!j
2 e X;! n: 1.3)

The modified Kähler–Ricci flow preserves the Kähler class, and can be expressed as

a flow of Kähler potentials. Identify modulo constants) KX with

2
@ N@' > 0; Im X.'/ D 0g:PX.M; 0/ D f' 2 C1.M/ j D 0 C

i

Let ' D '.t/ 2 PX.M; 0/ be the solution of the equation

'P D log
n

n
0

C ' C X;! C f 0/; '.0/ D c0: 1.4)

2
@ N@' evolve by the modified Kähler–Ricci flowThen the Kähler metrics D 0 C

i

1.2). The initial constant c0 can affect the growth of ' for large time, and has to
be chosen with some care. We choose it to be given by the value 2.5) described in
Section §2 below.

Our first theorem is a characterization of the convergence of the modified Kähler–
Ricci flow, which shows in particular that if convergence occurs, it is always
exponential:

Theorem 1. Let 0 2 KX, 0 WD
i
2 g0Nkj

dzj ^ d Nzk, and consider the modified

Kähler–Ricci flow 1.2) with initial metric 0. Then the following conditions are
equivalent:

i) The modified Kähler–Ricci flow gkNj t/ converges in C1 to a Kähler–Ricci
soliton gkNj .1/ with respect to X.

ii) The function kR n rjXjkC0 is integrable, i.e.,

Z 1
0

kR n rjXjkC0 dt < 1:

iii) Let '.t/ evolve by 1.4), with initial value c0 as specified in 2.5) below. Then

sup t 0k'.t/kC0 < 1:
iv) Let YX.t/ be defined by 1.3). Then there exist constants ;C > 0 so that

YX.t/ C e
t:

v) The modified Kähler–Ricci flow gkNj t/ converges exponentially fast in C1 to
a Kähler–Ricci soliton gkNj.1/ with respect to X.
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We remark that our method does not obviously extend to the case where condition

i) is weakened to sequential convergence of the flow.
A criterion for the convergence of the Kähler–Ricci flow in terms of a uniform

bound for volume forms has been given by Pali [Pa]. Indeed, such a bound implies
immediately that k'kC0 is uniformly bounded, in view of the defining equation

log.!.t/n=!n
0/ D f 0/ 'C P'

for theKähler–Ricci flowand Perelman’suniform
bound for k P'kC0 A similar observation is used in the proof of ii) implies iii) below.

Theorem 1 relates the convergence of the flow rather to the growth of YX.t/ or

kR n rjXj kC0 t /. Our next result addresses the behavior of these quantities
under a stability assumption. Following [TZ1], we define the modified Mabuchi
K-energy X W PX.M; 0/ R by

i X.'/ D
1

V
Z

M i' R n rjXj XuX;! e X;!!n; X.0/ D 0:

Since R n rjXj Xu D CRe X/uX;!, the integrand is real and X does

map into R. For a proof that X.'/ is independent of choice of path in PX.M; 0/,
see [TZ1].

We consider the following condition:

AX) X is bounded from below on PX.M; 0/.

In [TZ1] it is shown that AX) is a necessary condition for the existence of a

Kähler–Ricci soliton with respect to X. Here we shall establish the following
theorem:

Theorem 2. Assume that Condition AX/ holds, and let 0 2 KX. Then we have,
along the modified Kähler–Ricci flow 1.2) starting at 0,

YX.t/ 0 and kR n rjXj kC0 0; as t 1:
Furthermore, for anyp > 2, we have

Z 1
0

kR n rjXjk
p
C0dt < 1:

Note that a metric! 2 KX satisfiesR n rjXj D 0 if and only if! is a Kähler–
Ricci soliton with respect toX. However, the convergencekR n rjXj kC0 0 is
of course weaker than the convergence of the metrics gkNj t/ themselves to a Kähler–
Ricci soliton. This is to be expected, since the condition AX/ is only a semi-stability
condition.

Itwasshown in [CTZ]using the continuity method that the‘properness’of X in a

certain sense is equivalent to the existence of a Kähler–Ricci soliton. The properness
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condition can be thought of as a strong Moser–Trudinger inequality, while Condition
AX/ corresponds to a weaker form of the Moser–Trudinger inequality.

Associated to the modified K-energy is the modified Futaki invariant FX see

[TZ1]),

FX.Z/ D
Z

M
ZuX;!/e X;!!n ;

defined for holomorphic vector fields Z. The modified Futaki invariant FX is
independent of the choice of 2 KX. It follows immediately that FX 0 is a necessary

condition for the existence of a Kähler–Ricci soliton in KX.
In the unmodified case, corresponding to X D 0, the condition AX/ reduces to

the condition A/ from [PS1] of lower boundedness of the Mabuchi K-energy. It is
then easy to show that A/ implies that the unmodified Futaki invariant FXD0.Z/
vanishes for all holomorphic vector fields Z 2 H0.M; T 1;0/, by differentiating the
functional along the integral paths of Z. We show how to rework this argument to
prove the analogous statement when X ¤ 0 to our knowledge, this result is not in
the literature).

Proposition 1. If AX/ holds then FX.Z/ D 0 for all holomorphic vector fields Z.

Our third theorem shows that AX/ togetherwith aneigenvaluecondition give
necessary and sufficient conditions for the convergence of the metrics gkNj t/ themselves.
Set

t/ D infV H0.M;T1;0/
kN@V k

2

kV k
2 ;

whereH0.M; T 1;0/ is the space of holomorphic vector fields onM and we are using
the natural L2 inner product induced by gkNj t /. This quantity was first introduced in
the context of the Kähler–Ricci flow in [PS1]. Recall the following condition from
[PSSW1]:

S/ inft 0 t/ > 0:

Theorem 3. The modified Kähler–Ricci flow 1.2), starting at an arbitrary metric

0 2 KX, converges exponentially fast in C1 to a Kähler–Ricci soliton with respect
to the holomorphic vector field X if and only if the conditions AX/ and S/ are
satisfied.

Since condition S/ is invariant under automorphisms, a consequence of
Theorem 3 is that convergence modulo automorphisms implies full convergence, i.e.,

if gkNj t/ is a solution of the modified Kähler–Ricci flow starting at 0 2 KX and

‰ t gkNj / converges to a Kähler–Ricci soliton with respect toX for some family of
automorphisms f‰ tgt2OE0;1/ then gkNj t/converges exponentially fast to aKähler–Ricci
soliton with respect to X.
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It would be interesting to determine whether condition S/ by itself is sufficient.
Finally we discuss in more detail thebehavior of YX.t/which, as can be seen from

Theorem 1, is key to the convergence of the Kähler–Ricci flow. It is convenient to
introduce a quantity X which is uniformly equivalent to the eigenvalue described
above see Lemma 4 below). Equip the spaces T 1;0 and T 1;0 T /0;1 with the
Hilbert space norms

D
Z

kV k
2

M
D

Z
gkNjV j V k e X;!!n; kW k

2

M
gkNj W j

Nq
gqpN e X;!!n :

pN
W k

Define the eigenvalue X.t/ by X.t/ D infV H0.M;T1;0/kN@V k
2

kV k
2 where the

notion of perpendicularity is taken with respect to the norm k k Then we have:

Theorem 4. Consider the modified Kähler–Ricci flow 1.2) with initial metric 0 2
KX. Then there existC > 0 depending only on 0, and N, ij 0, 0 j N,
depending only on n and satisfyingP

N
jD0 ij > 2, so that for all t 2N,

YPX.t/ 2 X.t/YX.t/ 2 X.t/ FX. rx.uX;!///

C C
N

Y
jD0

YX.t 2j / ij2 :
1.5)

Here rxuX;! D
gjkN@

kNuX;!, and is the orthogonal projection, with respect to the
norm k k of the space of T 1;0 vector fields onto the subspace of holomorphic vector
fields.

The main point of the estimate 1.5) is to relate the convergence of the modified
Kähler–Ricci flow to three issues, namely the vanishing of the modified Futaki
invariant FX; the convergence of YX.t/ to 0 as t 1; and the existence of a strictly
positive uniform lower bound for X.t/ or equivalently, to t/, cf. Lemma 4).

As mentioned above, our results extend those of the paper [PSSW1] which
considered the case X D 0. Accordingly, some of our proofs are brief, and we focus on
those changes due to non-vanishing X.

2. Preliminaries

In this section, we give a proof of Proposition 1, and determine an initial value c0 for
the modified Kähler–Ricci flow so that 'P is bounded.

2.1. Proof of Proposition 1. We first show that FX.Z/ D 0 for all holomorphic
vector fields Z satisfying LImXZ D 0. Fix a Kähler metric 0 2 KX. Write ‰ t for
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the 1-parameter family of automorphisms of M induced by ReZ. Define t and t

by

‰ t 0 D t D 0 C
i
2

@ N@ t:

Note that t 2 PX.M; 0/ is defined only up to the addition of a constant. Also,
i
2

@@N P D LReZ!, where we are now dropping the t subscript. On the other hand,
there exists a complex-valued function Z;!, invariant under Im X, such that Z! D
i
2

N@ Z;!: Indeed, all manifolds M with c1.M/ > 0 are simply connected so the N@-

closed .0; 1/-form Zj gkNj dzk must be @N-exact. Since @@N P D @@NRe Z;! we can

assume that P D Re Z;!.
Compute

d

dt
X. / D Re

n
V

Z

M

i
2

@uX;! ^ @N P ^ e X;!!n 1

D
n
V

Z

M
uX;!e X;! i

2
@@N P C Re i

2
@ X;! ^ @N P ^

n 1

D
1

V
Z

M
uX;!e X;! P

n
C nRe i

2
@ X;! ^ N@ Z;! ^

n 1

D
1

V
Z

M
uX;!LReZ.e X;!!n/ D

1

V
Z

M
ReZ/.uX;!/e X;!!n

D
1

V
Re.FX.Z//:

2.1)

To go from the 2nd to the 3rd line, we have used the fact that P D Z;! i Im Z;!
and n Re 1

2
@ X;! ^ N@Im Z;! ^ n 1

D n Re 1
2

@Im Z;! ^ N@ X;! ^ n 1
D

Im X/.Im Z;!/!n
D 0, since Im Z;! is invariant under Im X.

Condition AX/ implies from 2.1) that Re.FX.Z// D 0. Replacing Z by iZ
shows that FX.Z/ D 0 for all holomorphic vector fields Z invariant under Im X. If
Z is now an arbitrary holomorphic vector field and yZ its average over the S1 orbit
we obtain FX.Z/ D FX. yZ/ D 0 as required.

2.2. Choice of initial value c0. We show how to choose c0 so that sup t 0k P'kC0 <
1. Thisboundwasproved in [TZ2] assuming theexistence of a Kähler–Ricci soliton.
Here we only require the invariance of the initial metric 0 under Im X.

Fix 0 D
i
2g0Nkj

dzj ^ dzk 2 KX. The Kähler–Ricci and modified Kähler–Ricci

flows are

@

@t gQkNj t/ D RzkNj CgQkNj ; gQkNj .0/ D g0Nkj
2.2)

@

@t gkNj t/ D RkNj C gkNj CrjXkN; gkNj .0/ D g 0Nkj ;
2.3)



98 D. H. Phong, J. Song, J. Sturm, and B. Weinkove CMH

respectively. Note that if fˆtgt2OE0;1/, ˆ0 D id, is the subgroup of automorphisms

ofM generated by ReX, then the solutions to 2.2) and 2.3) are related by gkNj t/ D
ˆ t gQkNj /. The Kähler–Ricci flow preserves the S1 action induced by Im X and so the
Kähler forms Q.t/ and t/ lie in KX. In the sequel, we will often drop the t Also,
we will denote by fQ, rz and z the Ricci potential, covariant derivative and Laplacian
with respect to gQkNj

Next, recall Perelman’s estimates see [ST]) for the Kähler–Ricci flow: with all
norms taken with respect to gQkNj t /, there exists a constant C depending only on 0

so that

kfQkC0 CkrzfQkC0 CkzfQkC0 C:

Furthermore, the diameters diam
Qg.t/M are uniformly bounded by a constant depending

only on 0, and for any > 0, there existsc > 0depending only on 0 and such
that for all x 2 M and all r with 0 < r we have RBr x/ Qn.t/ c r2n, where

Br.x/ is the geodesic ball centered at x of radius r with respect to
gQkNj t/ (“

noncollapsing”). Uniform bounds for the Sobolev constant have now been established
by Zhang [Zha] andYe [Ye].

These statements make no reference to the vector fieldX and indeed do not require
the initial metric 0 to be invariant under Im X. Moreover, theyare all invariant under
automorphisms and hence the analogous statements hold also for the metrics gkNj

We nowdescribe 2.2), 2.3) in terms ofpotentials. Define'Q D 'Q.t/ and ' D '.t/
by

@'Q
@ t D log Qn

n
0

C'Q C f 0/; 'Q.0/ D cQ0;

@'
@t D log

n

n
0

C ' C X;! C f 0/; '.0/ D c0;

The constant
Qc0

is chosen to be the value 2.10) in [PSS] see also [CT]), so that

k@t'QkC0 C, and the constant c0 will be defined shortly. One can check that

Q D C
i @@N'Q and D C i

0 0 @N@' satisfy 2.2) and 2.3) respectively. We need2 2
the following well-known properties of the Hamiltonian X;!:

Lemma 1. a) See e.g. [FM] or [Zhu1].) For all 0 2 KX, we have X;!0

C0 D
X;!0 C0

b) ([TZ1], p. 301) For 0 2 KX with 0 D 0 C i
2

@ N@' 0, we have X;!0 D
X;!0 C X.'0/.

For example, to see a), we can apply Moser’s theorem and obtain a
diffeomorphism ‰ W M M with ‰ 0/ D 0 and ‰ Im X/ D Im X. But then
d‰ X;! 0 D d X;!0 and ‰ X;! 0 D X;!0 C c, for a constant c which must vanish
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by the normalization conditions. Thus X;!0; X;! have the same image in R, and a)
is proved.

We can show now that along the modified Kähler–Ricci flow,

Z

M
jXj

2e X;!!n C: 2.4)

Indeed, from the definition of the modified Futaki invariant and of X;!,

Z
M jXj

2e X;!!n
D

Z

M
Xf /e X;!!n FX.X/:

Hence, since FX.X/ is independent of choice of metric, we have

Z

M
jXj

2 e X;!!n Z

M jXjjrf je X;!!n
C C

1

2
Z

M
jXj

2e X;!!n
C

1
2

Z

M jrf j
2e X;!!n C C;

and the claim follows from Perelman’s estimates and Lemma 1. Define now c0 by

c0 WD
1

V
Z 1

0
e t Z

M
jruX;!j

2 e X;!!n dt
1

V
Z

M
uX;!0

e X;!0!n0 : 2.5)

To see that c0 is finite, observe that jruX;! j
2 2.jrf j

2
CjXj2/ C C2jXj2, and

hence by Lemma 1 and 2.4), RM jruX;! j2e X;!!n C. We can now prove

Lemma 2. There exists a uniform constant C such that along the flow,

k P'kC0 C:

Proof. Define t/ D
1

V RM 'Pe X;!!n. From Lemma 1 and the fact that 'P and uX;!
differ only bya time-dependentconstant, wehave d

dt D
1
V RM jruX;! j2e X;!!n.

Integrating this ODE cf. the argument in [PSS]) shows that

0 t/ D
1
V

Z 1
t

e s t/ Z
M jruX;!j

2 s/e X;!.s/!n s/ ds C: 2.6)

From 2.2) and 2.3) we obtain @t' D ˆt @t'QC X;!Cm.t/, for some constant m.t/.
The lemma follows from the boundedness of k@ t'QkC0, 2.6), and Lemma 1.



100 D. H. Phong, J. Song, J. Sturm, and B. Weinkove CMH

3. Estimates for the modified Kähler–Ricci flow

In this section, we establish some key estimates for the modified Kähler–Ricci flow,
namely the analogue of Perelman’s estimates for the Ricci potential, the estimates for
the Laplacian of the Hamiltonian function X;!, an L2=C0 Poincaré inequality, and
a smoothing lemma.

Proposition 2. Along the flow, the quantities

kruX;!kC0 ; k uX;!kC0; kXkC0 ; and k X;!kC0

are uniformly bounded by a constant depending only on the initial data. Here, all
norms, covariant derivatives and Laplacians are taken with respect to the evolving
metric gkNj t /.

Proof. It is convenient to work with v WD 'P, which differs from uX;! D f C
X;!/ only by a time-dependent constant, so that jrvj D jruX;!j, j vj D j uX;! j.

First, we need the evolution of v, which can be obtained by a straightforward calculation

cf. [CTZ]),

@v
@t D C X/v C v;

@

@t jrvj
2

D C X/jrvj
2

jrrvj2 jrxrvj2 C jrvj
2:

@

@t C X/v D C X/. C X/v C C X/v C jrxrvj
2: 3.1)

Boundedness of krvkC0: This is a straightforward modification of Perelman’s
maximum principle argument for the bound of the gradient of the Ricci potential see

[ST], Proposition 6). Since v is uniformly bounded along the flow by Lemma 2, we

may choose a constant B such that v C B 0. Define H D jrvj2
vC2B

and compute,
using 3.1),

C X @t/H D
H.H 2B/

v C 2B

2Re gjkN@jH@kN
v

v C 2B C jrrvj2
C jrxrvj2

v C 2B
:

3.2)

FixT > 0. At a maximum point of H.x; t/ for x; t/ 2 M .0; T the middle term
on the right side of 3.2) vanishes and the left-hand side of 3.2) is nonpositive. It
follows that H is uniformly bounded from above and hence so is krvkC0
Boundedness of kXkC0 : Since uX;! D f C X;!, the uniform bound on jXj D
jr X;!j follows from the bound on jruX;!j D jrvj and Perelman’s bound on jrf j.
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Boundedness of k vkC0 and k X;!kC0 : First note that jXvj jXjjrvj C by
the preceding bounds. From 3.1) we have

C X @ t/.. C X/v/ D v Xv jrxrvj
2

v/ 1 C
v

n C C;
3.3)

where we have used the elementary inequality j vj
2

njr xrvj2. Fix an arbitrary
T > 0. At a minimum point of CX/v onM .0; T the left-hand side of 3.3) is
nonnegative and hence v is bounded uniformly from below at this point. This gives
the lower bound of C X/v along the flow, depending only on the initial data.

To estimate k vkC0 it suffices to prove a uniform upper bound for CX/v. As

in Perelman’s estimate of the scalar curvature see [ST]), defineG D CX/vC2jrvj2
vC2B

where B is chosen as in the proof of the boundedness of krvkC0 Compute

C X @t /G D 2Re rG xrv

v C 2B C jr xrvj2 C 2jrrvj2
v C 2B

2BG

v C 2B/
:

Since 1=.v C 2B/, jXvj and jrvj are uniformly bounded, we have

C X @ t/ G 2Re rG xrv

v C 2B C C1jr xrvj
2

C2j vj C3;

for uniform constants C1, C2, C3 > 0 with C1 uniformly bounded from below away
from 0. By the maximum principle and a similar argument to the one above, we have

CX/v C for some uniform constant C. This gives the estimate for v. Notice
that v C X;!/ D f which is uniformly bounded by Perelman’s estimates. It
follows that X;! is uniformly bounded.

Proposition 3. Define b D b.t/ D
1
V RM uX;!e f n. Then there exists a uniform

constant C so that

kuX;! bknC1
C0 C kruX;!kL2 kruX;!k

n
C0:

Proof. As in the proof of Lemma 2 of [PSSW1], this follows from a Poincaré-type
inequality on Kähler manifolds M; !/ with in c1.M/ see Theorem 2.4.3 of
[F], Lemma 3.1 of [TZ2] or Lemma 2 of [PSSW1]) together with Perelman’s
noncollapsing result.

The following is an analogue of the smoothing lemma from [PSSW1] an
adaptation of Bando’s smoothing lemma [B] – see also [T] and [CTZ] for related results).
It follows from 3.1) and the arguments of [PSSW1].
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Proposition 4. There exist i, K depending only on n andCX D sup
t2OE0;1/ kXkC0 t/

so that, for any " with 0 < " i and any t0 0, if

k.uX;! b/.t0/kC0 ";
then

kruX;!.t0 C 2/kC0 Ck. C X/uX;!.t0 C 2/kC0 K":

4. Proof of Theorem 4

We begin by deriving the following analogue for the modified flow of an identity in
[PS1],

C
Z

YPX D 2krxrxuk
2

M
Xu/jruj

2 e n

Z

M
RkNj gkNj rjXkN/rj urkN ue n

Z

M
R n rjX j /jruj

2e n:

4.1)

Here uX;! and X;! have been denoted by just u and for simplicity. To establish
the above identity, we use 3.1) to obtain

D
Z

@tkruk
2

M
krxruk2

C X/jruj
2

e n
krruk

2

C
Z

jruj
2e n

C
Z

jruj
2 Xu/e n

M M
Z

M jruj
2 R n rjX j /e n:

4.2)

The first term on the right-hand side of 4.2) actually vanishes since by integration by
parts RM e n C X/ D 0 for any smooth function Next, we have a formula
of Bochner–Kodaira type, if Xj is a holomorphic vector field and u is a function
invariant under Im X,

kr xruk
2

C
Z

D kxr xruk
2

M
RkNjr

j urkNue n Z

M rjXkNrj urkNue n : 4.3)

To establish this, we note that by integration by parts,

kr xruk
2

C
Z

D kxr xruk
2

M
RkNjrj urkNue n

C
Z

M
XjrpNrkNurqugjpNg qkN

e n

Z

M
XpNrjrkNurqugjpNgqkN e n:
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Rewrite the integrandsof the last two terms in the last line asXjrpNrkNurqugjpNgqkN D
rkN

XpN rpNu/rqugqkN rkN
XpN/rpNurqugqkN and as XpNrjrkNurqugjpNgqkN D

rkN Xj rju/rqugqkN. But XpN rpNu Xj rj u D XNu Xu D 0, and thus we are left
with the desired formula 4.3). Putting all these identities together gives 4.1).

Once the identity 4.1 is available, the arguments of [PSSW1] apply to give
the proof of Theorem 4, with suitable modifications. Write for the orthogonal
projection with respect to the norm k k of T 1;0 onto holomorphic vector fields.
Then

X.t/kxru xru/k
2

kxr xruk
2

D X.t/ kxruk
2

k xru/k
2 ;

where X.t/ is the eigenvalue introduced in §1. Making use of the relations

k xru/k
2

D RM xru/j @jue n
D FX. xru/ we obtain the inequality

YPX.t/ 2 X.t/ YX.t/ 2 X.t/ FX. rxu/ C
Z

M
jruj

2 Xu/e n

Z

M
RkNj gkNj rjXkN/r j uru

k e n

Z

M
R n rjXj/jruj

2e n:

4.4)

We return to the proof of Theorem 4. First, observe thatkRkNj gkNj rjXkNkL2 D
kR n rjXjkL2 This is because one side equals kr xrukL2 and the other side
equals k ukL2 which are readily seen to agree by an integration by parts. Next, we
claim that the last three terms on the right-hand side of 4.4) can all be bounded by

C krukL2 k.u b/.t 2/k
2
C0 :

Indeed, since is bounded, we can write

Z
M

RkNj gkNj rjXkN/rjur
kue n

CkrukC0krukL2kRkNj gkNj rjXkNkL2

C krukL2 k.u b/.t 2/k
2 ;C0

where the last line follows from Proposition 4. Note that if k.u b/.t 2/kC0 > ",
for " as in Proposition 4, then we can still obtain the bound

krukC0kR n rjXj
kL2 C k.u b/.t 2/k

2
C0;

using the uniform estimates of krukC0 and k ukC0 Similarly,

Z

M
R n rjXj /jruj

2 e n C krukL2 k.u b/.t 2/k
2
C0 ;
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while the estimate for the remaining term, RM jruj2.Xu/e n is even easier, since

jXuj jXj jruj C k.u b/.t 2/kC0
Let 0 < WD 1=.n C 1/ < 1. By Propositions 3 and 4,

C0 C YX.t 2/ k.u b/.t 4/k
2.1 /

k.u b/.t 2/k
2

C0 :

Note that the sum of the exponents on either side always match. Iterating,

k.u b/.t 2/k
2
C0 C YX.t 2/ YX.t 4/2.1 / k.u b/.t 6/k

2.1 /2
C0

C YX.t 2/
i1
2 YX.t 4/

i2
2

: : : YX.t 2N/ iN2
k.u b/.t 2.N C 1//k

2.1 /N
C0 ;

withP
N
jD1 ij C 2.1 /N D 2. Fix N with 2.1 /N < 1 and set i0 D 1. Since

the quantity k.u b/.t 2.N C 1//kC0 is bounded by Lemma 2, the statement of
Theorem 4 follows.

5. Proof of Theorem 2

The variation of the modified Mabuchi energy along the modified Kähler–Ricci flow
is

PX D
1

V
Z

M
jruX;! j

2 e X;!!n
D

1
V

YX.t/:

Integrating in t we see that condition AX) implies: R10 YX.t/dt < 1. On the
other hand, from 4.2) and the uniform bounds of XuX;!, R and rjXj we obtain

YPX CYX. These inequalities imply as in Section §2 of [PS1]) that YX.t/ 0
as t 1. Next, by the uniform bound of kruX;!kC0 and Proposition 3 we have

kuX;! bkC0 0 as t 1. Then from Proposition 4 we see that k uX;!kC0 0
as t 1. Since uX;! D R n rjXj the first part of Theorem 2 is established.
The Lp integrability of kR n rjXj kC0 on OE0; 1/ is established in the same way
as part ii) of Theorem 1 in [PSSW1].

6. Proof of Theorem 1

It is convenient to introduce the following fifth condition:
o) For each k D 0; 1; 2;: : : there exists a finite constant Ak so that

sup t 0 k'kCk Ak:

We shall prove o),(iii), o))(iv))(ii))(iii) and iv))(v))(i))(iii).
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Proof of o),(iii)
This is the extension to the modified Kähler–Ricci flow of the fact that a C0

estimate for the complex Monge–Ampère equation implies Ck estimates to allorders.
We note that in [TZ2], a different method is used to obtain higher order estimates,
involving a modification of the potential ' along the flow. We give here a direct proof
of the higher order estimates, emphasizing only new complications due to X 6D 0.

The first step is to show that C0 estimates for ' imply second order estimates
for '. For ease of notation, we use

gOkNj
to denote the original metric

g0Nkj
and y for

the Laplacian with respect to this metric. As in the approach ofYau [Y1] and Aubin
[A], we apply the maximum principle to log.n C y '/ A', where A is a large
constant to be chosen later, but with the operator @t replaced by the operator

t CX @ t We use the formulas obtained in [PSS] for general flows and introduce
the endomorphism

h D Og
Ng

N
:

ThennC y ' D Tr h, and we have see e.g. [PSS], eq. 2.27)and subsequentbounds)

C X @t / log Tr h
1

Tr h
y log

n

n
0

P'/ C XTr h C1 Tr h 1
:

0
P'/ D Tr h C n yFor the modified Kähler–Ricci flow, we have y

n
log n

y f.!0/. The new term compared to the Kähler–Ricci flow is y which is not yet
known to be bounded. This is the reason why the term XTr h was introduced, since

X Tr h D X.y'/ D y y O C ryjXm/ hj m rymXm, where O D X;!0 Thus

the term y cancels out, and we obtain

C X @t/ log Tr h C2 C3 Tr h 1:

Set A D C3 C 1. Since ' D n Tr h 1, and 'P; X' D O are bounded, we
have

C X @t/.log Tr h A'/ C4 C Tr h 1:
The maximum principle applies now as usual to show that Tr h is uniformly bounded.

We now give the third order estimates. As in [Y1], set 'jkNm D rym@kN
@j' and

S gj rNgskNgmtN'
jkNm' Nrs Nt

Again, it isconvenient towork insteadwith the connection

rhh 1,

S D gm N g
N

g` N

rmhh
1/ ` r hh 1/ D jrhh

1
j
2:

Applying [PSS] eq. 2.48), to the modified Kähler–Ricci flow gives

@t/S D jxr.rhh
1/j

2
C jr.rhh

1/j
2

C jrhh
1
j
2

C gm Nr Nq yRNqm ` r hh 1/ N

Ǹ

C gm N rmhh
1/ N

N r Nq yRNq

C I) C II) C III) C IV) C V);
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where the terms I)–(V) are due to the modifications arising from the holomorphic
vector field X, and given explicitly by

I) D r N Xmg
N

g` N

rmhh
1/ ` r hh 1/ ;

II) D gm N g N g` N

rmr`X r hh 1/ ;

III) D gmN g
N r N X`.rmhh

1/ ` r hh 1/ ;

IV) D gm N g
N

g` N

rmhh
1 / `r r X ;

V) D gm Nr X
N
g`N rmhh

1/ ` r hh 1/ :

Since the first covariant derivatives of X are of order O.S
1
2 /, we have

j(I)j C j(III)j C j(V)j C5 S jrXj:
The terms II), IV) involve the second covariant derivatives of Xm and thus

j(II)j C j(IV)j C6 S C
1

2jr.rhh
1/j

2
C S jrXjC C7:

Putting this all together, we obtain the following estimate for the flow of S,

@t/S
1
2jr.rhh

1/j
2

C jxr.rhh
1/j

2 C8 S jrXj C9.1 C S/: 6.1)

By the method of [Y1], we can control terms of order O.S/ using the evolution
equation for Tr h. However, we will need an additional argument to deal with the
quantity SjrXj which is of the order O.S3=2/. Since jXj is uniformly bounded
along the flow, we have

@t /jXj
2
D jrXj2 jXj

2
@i@

jN X iXj 1
2jrXj

2 C10: 6.2)

We define a constant K D 65supM OE0;1/.jXj2 C 1/ and compute the evolution

of the quantity S=.K jXj2/. Combining 6.1) and 6.2) we have

@t/
S

K jXj2
jr.rh h 1/j

2 jxr.rh h 1/j
2

2.K jXj2/ C SjrXj
2

2.K jXj2/2

C
2Re.gijN@iS @jNjXj2/

K jXj2/2 C 2SjrjXj
2
j
2

K jXj2/3

C8SjrXj
K jXj2

C11.1 C S/:
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We will use the good first and second terms on the right-hand side of this inequality
to deal with the bad third and fifth terms. We estimate the third term as follows:

j2gijN@iS @jNjXj
2
j

K jXj2/2
SjrXj

2

4.K jXj2/2 C jr.rh h 1/j2 C jxr.rh h 1/j
2

2.K jXj2/
:

For the fifth term, observe that

C8SjrXj
K jXj

2
SjrXj

2

4.K jXj2/2 C C 2
8 S:

Combining all of the above, we obtain

@t /
S

K jXj
2 C12.1 C S/:

But from the computation for the second order estimate, we have

@ t /Tr h
1

2
S C13;

and so applying the maximum principle to the quantity S=.K jXj
2/ C 3C12 Tr h

it follows that S=.K jXj2/ and hence S is bounded. An alternative proof is to
show that @ 2

t /jT j B1S B2, where Tk
D rjhh 1/kXl and B1, B2 arej l

constants. Combining this with the evolution of Tr h gives an upper bound of jT j
and hence jrXj. Thus SjrXj is of order O.S/ and one can combine it with 6.1) to
bound S.)

In order to apply the standard parabolic estimates to obtain the higher order
estimates, we require a derivative bound of gkNj in the t-direction cf. §5.5 of [Ch], for
example). Given the estimates proved so far, it is sufficient to bound jRic.g/j. We

compute

@ t C X/jRic.g/j D
1

jRic.g/j
°jrRic.g/j

2
jrjRicj j

2
C jRic.g/j

2

R r Ns

kNj RNsrR
jkN CrkNXpgj Nq

RkNj RqNp RkN`rjX`RjkN

C14.jRmj
2
C 1/:

But from above, there exist constants C15, C16 with C15 > 0 such that

@ t C X/S C15jRmj
2 C16:

We then apply the maximum principle to jRic.g/jC
1

C15 C14C1/S to bound jRic.g/j.
We have now established uniform parabolic C1 estimates for gkNj The higher

order estimates can be obtained in the usual way see e.g. [L]).
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Proof of o) iv) The remaining implications are all straightforward adaptations
of arguments in [PSSW1]. In particular Lemma 3 follows from §5 of [PSSW1], and
Lemma 4 from the uniform boundedness of X;! and the argument for Lemma 1 of
[PSSW2]:

Lemma 3. Let W.t/ be a non-negative C1 function of t 2 OE0; 1/ with W.t/ K0
satisfying the difference-differential inequality

WP t/ 2 W.t/ C
N

Y
jD0

W.t 2j / j
2 for t K1 2N;

2 PNwhere is a strictly positive constant, and j 0 satisfy 1
jD0 j D 1. Then

there exist constants C; with > 0 depending only on K0, K1, N, j so that
W.t/ C e t

Lemma 4. There exist constants c1; c2 > 0depending only on the complex manifold
M and the holomorphic vector field X such that for all 2 KX,

c1 !/ X.!/ c2 !/:
Lemma 5. Let YX.t/ be given as in 1.3) for the modified Kähler–Ricci flow. Assume
that a) FX 0; b) YX.t/ 0 as t 1; and c) inf t 0 t/ > 0. Then there
exists constants C; with > 0 so that YX.t/ Ce t

Proof of Lemma 5. Theorem 4 and conditions a)–(c), together with Lemma 4, imply
that YX.t/ satisfies a difference-differential inequality exactly of the type formulated
in Lemma 3. The desired inequality follows then from Lemma 3.

Returning to the proof of o) iv), assume that o) holds. Then there exists a

sequence tm!1such that '.tm/ '.1/ in C1, for some '.1/ 2 PX.M; 0/.
Since X is decreasing along the modified flow, it follows that for any t X.'.t//
X.'.1//, and hence X is bounded below along the flow. This implies that the

limit metric gkNj .1/ must be aKähler–Riccisoliton with respect toX cf. the proof of
Theorem 2). By [TZ1], the condition AX/ is established. Next, we claim that
Condition S/ is also satisfied. Otherwise, let '.tm/ be a subsequence with tm/ 0.
It contains a subsequence '.t`/ such that the corresponding metrics gkNj t`/ converge

in C1 to a Kähler–Ricci soliton gkNj.1/ with respect to X. In [PS1] see p.162),
it was shown that t`/ .1/ if gkNj t`/ gkNj t1/ and the dimensions of the
holomorphic vector fields of the complex structures for gkNj t`/ and gkNj.1/ are the
same. In the present case, the complex structures of gkNj t`/ and gkNj.1/ are the
same, so we do have t`/ 1/. Since 1/ > 0 by definition, we obtain a

contradiction. Condition S/ is established.
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The existence of a Kähler–Ricci soliton with respect to X implies that a) in
Lemma 5 holds and condition AX/ gives b) by Theorem 2. Since c) in this Lemma
is the same as S/, Lemma 5 applies, and iv) is established.

Proof of iv))(ii) Assume that iv) is satisfied, and thus YX.t/ is rapidly decreasing.
1

ThenProposition 3 implies kuX;! bkC0 C e t2.nC1/ But Proposition 4 implies

then that kR n rjXj kC0 C0 e
1

2.nC1/ t which gives ii).

0/ D
gjkN

gPkNj D R nProof of ii) iii) Assume ii). Since @ t log.!n=!n

rjXj /, we obtain immediately

sup
t2OE0;1/ j log.

n

n
0
/j

Z 1
0

kR n rjXjkC0 dt < C:

Next, from the modified Kähler–Ricci flow and the uniform bound for k P'kC0 Lemma

2), it follows that k'kC0 D kP' log.!n
n
0
/ C f 0/kC0 C.

Proof of iv))(v) Assume iv). We have already seen that iv) implies ii), which
implies iii), which is equivalent to o). Thus all metrics gkNj t/ are uniformly equivalent.

The same argumentsas in [PS1], showthatkuX;!k.s/ 0 exponentially fast for
any Sobolev norm s. It follows easily from there that gkNj t / converges exponentially
fast to a Kähler–Ricci soliton gkNj.1/.

All the remaining implications in Theorem 1 are trivial, and the proof is complete.

7. Proof of Theorem 3

If the flow converges to a Kähler–Ricci soliton with respect to X then, by [TZ1],
Condition AX/ is satisfied. Furthermore, as part of the proof of o) iv), the
uniform boundedness of k'.t/kCk for each k implies that Condition S/ is satisfied.
Thus it remains only to establish the sufficiency of AX/ and S/ for the exponential
convergence of the flow. By Proposition 1 and Theorem 2, AX/ implies a) and b)
of Lemma 5. In addition, S/ gives condition c). Thus we obtain the exponential
decay of YX.t /, that is, Condition iv) of Theorem 1 is satisfied. But Theorem 1

implies then the exponential convergence of the modified Kähler–Ricci flow to a

Kähler–Ricci soliton.
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