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Height pairings, exceptional zeros and Rubin's formula:
the multiplicative group

Kâzim Büyükboduk

Abstract In this paper we prove a formula, much in the spirit of one due to Rubin, which

expresses the leading coefficients ofvarious />-adic L-functions in the presence ofan exceptional
zero in terms of Nekovar's /?-adic height pairings on his extended Selmer groups. In a particular
case, the Rubin-style formula we prove recovers a />-adic Kronecker limit formula. In a disjoint
case, we observe that our computations with Nekovar's heights agree with the Ferrero-Greenberg
formula (more generally, Gross' conjectural formula) for the leading coefficient of the Kubota-
Leopoldt /?-adic L-function (resp., the Deligne-Ribet />-adic L-function) at s 0.
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1. Introduction

The celebrated formula of Gross and Zagier [GZ86] expresses the first derivative at
s 1 of a Rankin L-series of a modular form / of weight 2 on To(N) in terms of the

Néron-Tate height of a Heegner point on the /-quotient A/ of the Jacobian Jo(N)
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of the modular curve Xq(N). A /?-adic variant of this formula has been proved by
Perrin-Riou [PR87], relating the /?-adic height of a Heegner point on Af to a first
derivative (taken in the cyclotomic direction) of a two-variable />~adic L-function
associated to /. (See also [How05] for a generalization of this formula with more
Iwasawa theoretical flavor). Later, Nekovâr [Nek95] extended the results of [PR87]
to higher weight modular forms, where he utilized his /?-adic heights defined earlier
in [Nek93].

When E is an elliptic curve defined over Q with CM and p is an odd prime
at which E has good, ordinary reduction, Perrin-Riou [PR83] gives a purely
algebraic construction of the canonical /?-adic height pairing on the /?-adic Selmer group
Sp(E/Q). If further L(E/Q, 1) 0, Rubin [Rub92] obtains a formula for the

special values of the associated Katz two-variable /?-adic L-function in terms of the

/?-adic height of an element xp <G Sp(E) (which is constructed from elliptic units).
When E does not have CM, but still good, ordinary at p, results along this line
have been obtained by Perrin-Riou [PR93] utilizing Nekovar's definition of /?-adic
heights [Nek93] and Kato's zeta-elements [Kat04]. Perrin-Riou's formula in [PR93]

goes hand-in-hand with Rubin's result [Rub94], Theorem 1 (which follows from
Theorem 3.2 of loc.cit; this is the version of Rubin's formula we refer to in the
abstract). Rubin uses in [Rub94] the definition of [PR92] for p-adic height pairings.
We finally note that Rubin's formula [Rub94]. Theorem 3.2, has been generalized by
Howard [How04], Theorem 3.4, for abelian varieties (resp., by Nekovâr in §11.5.10
of [Nek06] for general motives) whose L-functions vanish to higher order. We
provide an overview of Rubin's formula since it is one of the main motivations for the

results of the current paper.

Suppose E/Q is an elliptic curve which has good, ordinary reduction at p. Let Qoo
be the unique 7Lp -extension of Q, and for every n, let Q„ be the unique sub-extension

of Q of degree pn. Put *„ Q„ <g> Qp and $oo U*„. Let TP(E) denote the p-
adic Tate module of E, and suppose we are given a sequence of cohomology classes

z {zn} <E lim H1(<Qn, Tp(E)). Using local Tate cup-product pairing, one obtains

an element fz <G Hom(iì(<I>oo)>Zp); see equation (5) of [Rub94]. The following is

Theorem 3.2 (i) of loc.cit.:

Theorem (Rubin). Let SP(E/Q) denote the p-adic Selmer group of Eq over Q.
Then z0 e SP(E/Q) ifand only if fz(E(%)) 0.

When fz(E(Qp)) 0, Rubin constructs in §3 of [Rub94] a derivative Derp(fz)
of fz along p, where p is any nonzero homomorphism Gal(Q00/Q) —> 7Lp. See

also the remarks preceding Theorem 3.2 and Proposition 7.1 of [Rub94]. Rubin's
formula can be stated as follows:

Theorem (Rubin). Suppose z0 e SP(E/Q) C Hl (Q, TP(E)). Then for every
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x e E(Q) <g> 1P,

(z0,x)p Derp(fz)(x),

where {, )p is the p-adic height pairing.

This formula should be compared to our formula stated in Theorem 5.1. Having
spelled out the first link between our work and results mentioned above, let us describe

our results in greater detail.

In [Nek06], Nekovâr defines extended Selmer groups associated to (ordinary)
Galois representations, which are strictly larger than the classical Selmer groups in
the presence of an exceptional zero (in the sense of [Gre94]). He also defines p-aàic
height pairings on his extended Selmer groups. One natural question is what portion
of the results above may be transferred to this new setting when an exceptional zero is

present. We tackle this problem in the simplest and the most classical setting: Fixing a

number field K, the Galois representation in consideration is T 0(\)®x~l ¦ Here,
Ö is the ring of integers of a finite extension ^ of Q^, and 0(1) 0 ®ip 7Lp{X),
where Z^,(l) Tp(Gm) is as usual the p-aàic Tate module of the multiplicative
group, and x '¦ Ga\(K/K) —> 0 x is a non-trivial Dirichlet character with the property
that x(p) 1 f°r a prime p of K lying above p. The Rubin-style formula we prove
here (Corollary 5.7) is akin to Theorem 1 in [Rub94]. Before we state it, we introduce
the necessary notation.

Suppose in this introduction that K Q and x is an even Dirichlet character.
See §6.3 below for the case when K is a general totally real number field but x is

totally odd, and §6.4 when the base field K is totally imaginary. Let L be the field
cut by the Dirichlet character /, i.e., the fixed field of ker(/). Let c\ e Hl(Q, T)
be tame cyclotomic unit inside of L defined as in §6.1 of [MR04], see also §3 below
for a recap. Here (and below) Hi (K,T) stands for the extended Selmer groups of
Nekovâr; for an overview (and explicit calculations specific to our case of interest,

including a description of how we view the cyclotomic units as elements of the
extended Selmer groups) see §2.1 and §3 below. Set T* Hom(71, 0(\)) 0(x).
Let {, )Nek denote Nekovar's p-aàic height pairing, see [Nek06], §11, for a general

definition, and also §2 below for the portion of the theory that concerns us. Attached
to an arbitrary element a G Hl (Q, T*) and the collection ofcyclotomic units £ along
the cyclotomic 7LP-tower, we construct a 'p-aàic L-function' L|)(j> in §5 below. The

Rubin-style formula we prove reads as follows:

Theorem A (Corollary 5.7 below). (c\, a)Nek Li ^(1).

Here, 1 is the trivial character and Li ^ is the derivative of L|)(j> along the
cyclotomic character, see §5 for details. Using Coleman's map, one may choose a

particular $ and a, and apply TheoremA above to prove:
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Theorem B (Theorem 6.7 below), [c*, coIq )Nek L' (1, x)-

Here, coIq <g Hl(<Q>, T*) is the element we obtain from Coleman's homomorphism

and Lp(s, x) is an imprimitive Kubota-Leopoldt p-aàic L-function. See §6.2
for details. See also §6.4 for the version of this result when the base field is a quadratic
imaginary number field. We remark that our formula above recovers a p-aàic variant
of Kronecker's limit formula with a new perspective offered by Nekovar's theor}'.

In §6.3, we present similar results for totali}' odd characters x (when the base field
K is totally real). We remark for now that when K is an arbitrary totally real number
field and x is totally odd, our calculations provide a new interpretation for Gross'

conjecture (and for the Ferrero-Greenberg theorem when k Q). See Theorem 6.9
and Remark 6.12 below.

See also Remark 6.14 for a related observation when the Galois representation
in question is the p-aàic Tate-module of an elliptic curve E/q which has split-
multiplicative reduction at p.

The layout of the paper is as follows: In Section 2 we give an overview of
Nekovar's theory of Selmer complexes and p-aàic height pairings. We explicitly
describe these objects in §2.2 in the cases of interest. In sections 3-5 we restrict our
attention to the case K Q and x even, and to the case when the base field K is

totali}' imaginary. In Section 3, we define three types of cyclotomic (p-) units which
our calculations rely on. In Section 4, we calculate the p-aàic height pairing on these

different types of cyclotomic "units", and use our computations in Section 5 to prove
a Rubin-style formula. In §6, we use this formula to compute the leading coefficients
of certain p-aàic L-functions in terms of Nekovar's heights.

We remark that the results of this paper are not covered bj' Nekovar's [Nek06]
general treatment (e.g., by his variant of Rubin's formula in §11.3.15 and §11.5.10;

nor by his calculations in §11.4.8). In particular, Remark 11.4.10 in [Nek06] is

erroneous. It would be of interest to extend the formalism developed in [Nek06],
§11.4, to cover our setting.

A line of apology: We gave a very detailed and long outline of prior results of
'Gross-Zagier type', although the conclusions of the current paper only concern a

very particular (and simple) Galois representation. This is mainly because of the

author's desire to translate/transform the results in other settings into the context
of [Nek06].
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1.1. Notation and hypotheses. Fix once and for all a rational prime p > 2. For a
number field K, write Gg for the absolute Galois group Gal(K/K). Let O be the

ring of integers of a finite extension ^ of Q^,, and let x denote a non-trivial Dirichlet
character

X: GK^0*,
which has prime-to-/? order and which satisfies x(p) 1 for a prime p C K lying
above p. In this paper, we will only1 deal with the case K Q or K k, where k
is a quadratic imaginär}' number field such that the prime p splits in k/<Q.

Define T 0(1) <g) x~l and T* 0(x), rank one (9-modules with a G&-action.
Here O (1) is the Tate twist.

LetL will be the fixed field of ker (x) and let À Gal(L/K). Our assumption that

X(p) 1 is equivalent to saying that p splits completely in L/K. Let Sp {v \p}
denote the collection of places of L above p (the letter "v" is reserved to stand for
these places of L), and let Lv denote the completion of L at v. Although Lv Kp
for each v, we will distinguish the completions of L at different places (as different
embeddings L °^ <Q>P) and set Gv Ga\(<Q>p/Lv) for a fixed algebraic closure <Q_P

Fix once and for all embeddings loo : Q °^ C, and ip : Q °^ <Q>P. The choice of
Lp fixes a prime Vq <g Sp.

Let Qoo/Q denote the cyclotomic 7Lp-extension of Q and let T Gal(Q00/Q).
We write pcyc for the cyclotomic character pcyc : T -^ 1 + p7Lp. Let Q„ denote the

unique sub-extension of Qoo/Q °f degree pn over Q, i.e., the fixed field of Tp Let
<É>B be the completion ofQ„ at the unique prime of QR above p, and set <Ê>oo U$„,
the cyclotomic 7LP -extension of <Q>P. By slight abuse of notation Gal($oo/Q^) will be

denoted by T as well. We fix a topological generator y of T. We also set A <9[[r]]
as the cyclotomic Iwasawa algebra.

When the base field K is the quadratic imaginär}' number field k which satisfies
the assumption that p splits in k/Q, we write p pp* with p ^ p*. Also in this

case, we assume that p does not divide the class number h^ ofk. For an O^-ideal 3",

let k(3) be the ray class field of conductor 3". For each n > 0 we write

Ga\(k(pn+l)/k) Ga\(k(pn+l)/k(p)) x H,

1Except in Remark 6.12, where we say how the arguments of §6.3 apply for a general totally real number
field.
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where H is isomorphic to Ga\(k(p)/k) by restriction. We set

Kn kyp Kqq \^J kn.
«>0

Then koo/k is a Z^-extension and we write T := Ga\(koo/k) also when there is

no danger of confusion. The extension koo/k is the unique 7LP-extension which is

unramified outside p. The prime p is totally ramified in koo/k. Let f/, C Ok denote

the conductor of L (which is prime to p by our assumptions on x) and let f be a

multiple offi which is prime to p and which also satisfies the condition that the map
0? -> (#£/f)x is injective. Attached to a Grössencharacter (p of k of infinity type
(1,0) and of conductor f, there is an elliptic curve E defined over F k(f with the

properties that

• E has complex multiplication by 0^
• F(Et(x) is an abelian extension ofk,

where we write F(Et<x) for the extension of K which is generated by the coordinates

of the torsion-submodule £tor C E(k). For such E, we have F(E[pn+1])
k(1fpn+1) for all n > 0, and using this fact one obtains a canonical identification
Ga\(F(E[poc])/F(E[p])) -^ T and the following isomorphisms:

(i) pe : Ga\(F(E[p°°])/F) -^Aut(E[p°°]) O^ -^>Z*,

(ii) pr := Pe\t- r -=^\ + p1p.

The character pr will play the role of cyclotomic character when our base field K is

the quadratic imaginary number field k.

For any finitely generated abelian group M endowed with a G% action, M will
denote its p-aàic completion Hom(Hom(M, Qp/1p), Qp/1p), and Mx will denote

the /-isotypic part of M ®%p 0. Also, let log^, : 1 -I- pZp -> Zp denote the p-aàic
logarithm.

For a field K (with fixed separable closure K j'K) and a 0 [[Gal(AT/AT)]]-module
X which is finitely generated over 0, we will denote the i-th cohomology (with
continuous cochains) of the group Gal(K/ K) with coefficients in X by Hl (K, X).

For every positive integer n, we define fin C Q to be the set of nth roots of unity.

2. Height pairings on extended Selmer groups

2.1. Generalities. In this section we very briefly review Nekovar's theory ofSelmer
complexes and his definition of extended Selmer groups. The treatment in this section
is far more general than what is needed for the purposes of this paper, and it is much
less general than what is covered in [Nek06]. For example, we focus on coefficient
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rings such as the ring of integers 0 of a finite extension of Q^,, or the one variable
Iwasawa algebra 0 [[r J ; and we restrict our attention to a complex of (9-modules M
of finite type, endowed with a continuous action of the absolute Galois group G% of
a fixed base field K, concentrated in degree zero. From §2.2on, K will be Q (except
in §6.4 where K k, a quadratic imaginary number field and Remark 6.12 where

K is an arbitrary totally real field), and M will be one of 0(1) ® /-1, O(x), 0(1)
or 0 (in degree zero).

Let G be a pro finite group (given the profinite topology) and let 0 be as above.

Let M be a free 0-module of finite type on which G acts continuously. Then M is

admissible in the sense of [Nek06] (see §3.2), and we can talk about the complex
of continuous cochains C*(G,M) as in §3.4 of loc.cit. Let K be a number field
with a fixed algebraic closure K and let S denote a finite set of primes of K which
contains all primes above p, all primes at which the representation M is ramified and

all infinite places of K, let Sf denote the subset of finite places of S. Let Ks the
maximal sub-extension of K/K which is unramified outside S, and let Gk,s denote
the Galois group Ga\(Ks/ K). For all w € Sf, we write Kw for the completion of
K at w, and Gw for its absolute Galois group. Whenever it is convenient, we will
identify Gw with a decomposition subgroup inside Gg := G&\(K/ K). We will be

interested in the cases G Gk,s or G Gw.

2.1.1. Selmer complexes. Classical Selmer groups are defined as elements of the

global cohomology group Hl (Gjc^, M) satisfying certain local conditions; see §2.1
of [MR04] for the most general definition. The main idea of [Nek06] is to impose
local conditions on the level of complexes. We go over basics of Nekovar's theory,
for details see [Nek06].

Definition 2.1. Local conditions for M are given by a collection

A(M) {Aw(M)}weSf,

where AW(M) stands for a morphism of complexes of (9-modules

i + (M):U+ -^C-(GW,M)

for each w G Sf.

Also set

and

ZJ-(M) Cone(U+(M) -^ C\GV,M))

VH**)= 0 U±(M); i+(M) (i+(M))weSf
weS/
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We also define

res5/: C'(GK>S,M) —? 0 C'(GW,M)
weS/

as the canonical restriction morphism.

Definition 2.2. The Selmer complex associated with the choice of local conditions

A(M) on M is given by the complex

Cj(GKtS,M,A(M))

resS/-iJ(M)
:=Cone(C#(G*j5)M)0?7 + (M)—^ > 0 C*(GW)M))[-1]

weSf

where [n] denotes a shift by n. The corresponding object in the derived category will
be denoted by RT/ (GK,s, M, A(M)) and its cohomology by Hi (GKtS, M, A(M))
(or simply by Hi (K, M) or by Hi (M) when there is no danger of confusion). The

0-module Hl(M) will be called the extended Selmer group.
The object in the derived category corresponding to the complex C*(Gk,s ,M)

will be denoted by RT(Gk,s M).

2.1.2. Comparison with classical Selmer groups. For each w e Sf, suppose that
we are given a submodule

HJr(Kw,M)C Hl(Kw,M).

This data which 3? encodes is called a Selmer structure on M. Starting with 3?, one
defines the Selmer group as

H}AK,M)=^[hHGK!s,M)^ 0 gg"'%).

On the other hand, as explained in §6.1.3.1—§6.1.3.2 of [Nek06], there is an exact
triangle

Us(M)[-l]^Rff(GKis,M,A(M))^RT(GKis,M) —? Ug(M)

This gives rise to an exact sequence in the level of cohomology:

Proposition 2.3 ([Nek06], §0.8.0 and §9.6). For each i, the following sequence is
exact:

> Hl-\Us(M)) —? H}(M) —? Hl(GKtS,M) —? Hl(Us(M)) —?
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This proposition is used to compare Nekovar's extended Selmer groups to classical
Selmer groups. Although this may be achieved in greater generality, we will only state
the relevant comparison theorem for Greenberg's local conditions (and Greenberg's
Selmer groups) whose definitions we now recall. For further details, see [Gre89],
[Gre94], [Nek06].

Let Iw denote the inertia subgroup of Gw. Suppose we are given an <9[[GW]]~

submodule M + of M for each place w \p ofK, setM~ M/M+. Then Greenberg's
local conditions (on the complex level, i.e., in the sense of [Nek06], §6) are given by

U+={C-(GW,M+) if w\p,
w \C\GW/IW,M^) if w\p

with the obvious choice of morphisms

i+(M): U + (M)—,C'(GW,M).

As in Definition 2.2, we then obtain a Selmer complex and an extended Selmer group,
which we denote by Hl (M). Greenberg's local conditions are the only type of local
conditions we will deal with from now on.

We now define the relevant Selmer structure2 &cm on M.

Definition 2.4. The canonical Selmer structure 3?caa is given by

f im(H\Gw,M+) ^ H\KW,M))
ker(Hl(Gw,Mw) -> Hl(Gw,M~))

ker(Hl(Gw,M)^Hl(Iw,M))
im(Hl(Gw/Iw,MIw) -> Hl(Gw,M))

Hl(Kw,M)
if w\p,

ifw\p.

Hence, we obtain the following Selmer group (which is called the strict Selmer

group in [Nek06], §9.6.1, and denoted by S§(K)):

H^JK, M) ker (hl(GK>S, M) —? 0 HX(GW, M~) e 0 HX(IW, M)).
w\p w\p

(2.1)

Proposition 2.3 now shows that:

Proposition 2.5. The following sequence is exact:

MG« —? 0(M-)G- —? H}(M) -^ H^JK,M) -^ 0.

w\p

2For a general M, our definition of ^can (the canonical Selmer structure) slightly differs from its original
definition in [MR04]. However, for the specific Galois representation we use starting from §2.2 on, they do
coincide.
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See [Nek06], Lemma 9.6.3, for a proof.

Remark 2.6. Note that if (M~)Gw 0 for all w\p, then the extended Selmer group
Hi (M) coincides with the canonical Selmer group H^ (K, M). However, if some

(M~)Gw ^ 0 then Hi (M) is strictly larger than H^ (K, M) (under the assumption

that M K=0, say). This is the main feature of Nekovar's Selmer complexes: They
reflect the existence of exceptional zeros, unlike classical Selmer groups.

2.1.3. Height pairings. We now recall Nekovar's definition of height pairings on
his extended Selmer groups. All the references in this section are to §11 of [Nek06]
unless otherwise stated.

Let M* Hom(M, 0)(1) (in Nekovar's language this is £>(M)(1), the Grothen-
dieck dual of M). Let T be the Galois group Gal(Qoo/Q) (resp., the Galois group
GaKkoo/k)) and p be the cyclotomic character pcyC (resp., the character pr) when
the base field K is Q (also more generally, when K is a totally real number field)
(resp., when K is the quadratic imaginary number field k). The height pairing

{,)Nck:H}(M)0oH}(M*) *0®zpr ld01og^
Q

is defined in two steps:

(i) Apply the Bockstein morphism

ß: KTf(M) >RT/(M)[1] ®Ip T
ld01°gj?p

» Rf7(M)[l]

See §11.1.3 in [Nek06] for the original definition of ß. Let ßl denote the map
induced on the level of cohomology:

ß1: HJ(M) —? HJ(M).

(ii) Use the global duality pairing

{, )pr : H}(M) ®e Hf(M*) —, 0

on the image of ß1 inside of Hi(M). Here the subscript PT stands for Poitou-
Tate, and the global pairing comes from summing up the invariants of the local

cup product pairing, see §6.3 in [Nek06] for more details.

Just as for other height pairings, universal norms are in the kernel of Nekovar's
height pairing:
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Proposition 2.7 ([Nek06], Proposition 11.5.7 and §11.5.8). For X M,M*, the

universal norms

im(H}(GKtS,X®& <9P1, A(M) ® <9[P1) —? H}(X))

are in the kernel of the height pairing {, )Nek-

Here A(M) 0 O [[r]] stands for an appropriate propagation of the local conditions

A(M) on M to M ®0 <9[pl, see §8 of [Nek06] (particularly §8.6) for details.

2.2. The classical case: T (9(1) <8> X-1- In this section we explicitly calculate
both the classical Selmer groups and the extended Selmer groups associated with the

representations T 0(1) <g> X~l and T* 0(x), viewed as a representation of Gg.
We keep the notation of §2.1. Let S {cf. : Cf. | p^xoo} be a set of places of K. We

set T+ T, (T*)+ 0 (hence T~ 0, (T*)~ T*).

Lemma 2.8. (i) HJ(K, T) -^>H^K, T).
(ii) The sequence

0 -^@H°(Kp,0(x)) —? H}(K,T*) —? H^JK,T*)^0
p\p

is exact.

Proof. Immediate from Proposition 2.5. D

Remark 2.9. For our particular Galois representation T, the Selmer group Hp (K, T)
as defined above agrees with what [MR.04] calls H^ (K, T). Indeed, in the language

of [MR04], H^ (Q, T) is defined as

H^(K,T) kerU(GKß,T)^ 0 |g^)
where f fx denotes the conductor of /, and H\(K§, T) C Hl(K^, T) is as in
[RubOO], Definition 1.3.4. Let

H^K^T) ker(HHK^T) —? HUJ^T)).

It follows from Lemma 1.3.5 (iii) in [RubOO] that

H}(K(i,T) Hi(K<i,T)
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for every q: \ p (including primes q|f^), hence it follows that the canonical Selmer

group of [MR04] is given by

h^(k,t) ker (h^g^^t)^ 0 hHut)).
<\tS,<\\p

This shows that our definition of the canonical Selmer group given by (2.1) agrees
with the definition of [MR04].

Proposition 2.10. Let Ol denote the ring of integers ofL, Ol [1/p] its p-integers,
0£ its unit group and Ol [l/p]* its p-units.

(i) H^JK,T) (0L[l/p\y,
WH^(K,T*) 0.

Proof. The first part follows from Remark 2.9 and [MR04], Equation (25). For the
second part, observe that H^ (<Q>,T*) is contained in the submodule of unramified
homomorphisms inside

Hl(K,T*) Rom(GL,0)x~\

where the equality is obtained from the inflation-restriction sequence. In other words,

H^(K,T*) C HomfGalf/^/L)^)*-1

where Hl denotes the Hilbert class field of L. But since Ga\(HL/L) is finite, we
have Hom(Gal(i?L/L), 0) 0, so H^(K, T*) 0 as well. D

Corollary 2.11. Keep the notation above.

(i) H}(K,T) (Ol[1/pT)X,

(Ü) ®p\pHQ(Kp,0(x)) ^H}(K,T*).
We suppose until the end of this paper that

(H) x(p) 1 for a prime p C K lying above p, and that x(p') ¥" 1 f°r anv other

p' C K above p.

It follows from Corollary 2.11 that Hl(<Q,T*) is a free 0-module of rank one.
Furthermore, it follows from the proof of Proposition III.2.6 (ii) in [RubOO] that we
have

(Ol[1/p]xY (Ol[1/p]x)X
since we assume (H).
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When K Q and x is an even character, it follows from Theorem 5.2.15 in
[MR04] that the core Selmer rank of the canonical Selmer structure (in the sense of
Definition 4.1.11 of loc.cit, see also Corollary 5.2.6 of loc.cit.) is 2 (since we assumed

X is even and x(p) — 1); hence H^ (Q,T) Hl(Q, T) is a free (9-module of
rank 2. We will later describe an explicit ^-basis for Hl(<Q, T) <g) §\

When K is totally real and x is totally odd, then (0L [l/p]*)X (Ol [1/p]*)*
(resp., 0^'x) is a free (9-module of rank one (resp., ofrankzero) andhence Hl(K, T)
is also free of rank one.

Let ß\ : HJ(Q, T) -> Hj(Q, T) denote the Bockstein morphism, as in §2.1.3
above.

Proposition 2.12. For any x e HJ(K, T) and y e HJ(K, T*),

<*,y>Nek= {^(*),.y>PT.

Proof. This is just a restatement of the definition ofNekovar's height pairing we gave
in §2.1.3. D

3. Cyclotomic units

Throughout §3, our base field K is Q and x is an even, non-trivial Dirichlet character
whose order is prime to p and which has the property that x(p) 1- Let L be the

field cut by x and write A := Gal(L/Q). We set ex := £5eA X'HW e 0[A\. In
this section, we define three different types of special elements which will be crucial
in what follows: Tame cyclotomic units, wild cyclotomic units and Solomon's wild
cyclotomic p-units defined as in [Sol92].

Fix a collection {Çm : m > 1} such that Çm is a primitive m-th root of unity and

tmn Km f°r every m and n. Let / fx denote the conductor of x, and recall the
Kummer map which induces a canonical map

Fx —> H\F,Zp(l))

for every finite abelian extension F of Q.

Definition 3.1. For every positive integer n prime to p, define

cn Nq(aìh/)/L(aìh)(^/ - 1) e LQin)x

and

tf ^NQ(W)/L(^)(tn/ - 1) e LijlnY'X Hl(Q(ßn),T).
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The collection c {c„ : (n, p) 1} is called the collection of tame x-cyclotomic
units. The element cx is called the tame x~cyclotomic unit of L, or simply the tame

cyclotomic unit once x (thus also L) is fixed.

For every finite abelian extension F of Q of conductor m, define

§F N®(jj,mpyF(Çmp - 1).

Here and elsewhere in this paper, the symbol N stands for the norm map.

Let Qoo be the cyclotomic Z^-extension ofQ, and QR be its unique sub-extension
of degree pn over Q. We set Ln := LQB. Note that the collection {%f} satisfies
the Euler system distribution relation, in particular the collection {%Ln : « > 1} is

norm-coherent.

Definition 3.2. The collection

É & := {^Ln ¦¦ n > 1} e ]xmH\QK,T)
n

is called the wild x~cyclotomic units. When x is understood, this collection will be

called the collection of wild cyclotomic units.

3.1. Cyclotomic units and 'exceptional zeros'. From our assumption that x(p) —

1, it follows that p splits completely in L.

Lemma 3.3. Under the running assumptions fx — 1-

Proof. This is [Sol92], Lemma 2.2; see also Remark 6.1.10 in [MR04]. D

Let T Gal(Qoo/Q) and A 0[[T^. Let logp: Z* -> Zp be the p-aàic
logarithm, and let pcyC : T —>¦ 1 + pZp be the cyclotomic character. Fix a topological
generator y of T. The short exact sequence

induces a long exact sequence of cohomology (where we have the zero on the left
thanks to our assumption that x is non-trivial)

0 ^°(Q,r)^//1(Q,r® a)^Ih1(<q,t ® a)^>//1(q,t). (3.i)

It follows from Proposition II. 1.1 in [Col98] that we may identify H1 (Q, T <g> A)
with lim H1(<Qn,T), and thus view the wild cyclotomic unit £ as an element of
H1 (Q, T <g) A). The image of Ç under the map N of (3.1) is ££ 1, hence the exact

sequence (3.1) shows:



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin's formula 85

Proposition 3.4. There exists a unique

{z*} zx0e Hl(Q, T0A) \imHl(Qn, T)
n

such that
Y_

x zx — t
l°gpPcyc(y)

' °°

Remark 3.5. Just as we did above, one could have obtained an element Zoo <=

lm_n H1(Ln,Zp(l)) such that
log Y~^c(y) X2oo ?oo := {£«}• Then, /-part of this

element would be our z£o and f£> f, respectively. Although we only need to
analyze the /-parts zio and f ££, of these elements for our purposes, it may be

worthwhile to keep this in mind for a comparison with the treatment of [Sol92] and

§9.3 of [BG03].

3.2. Wild cyclotomic p-units. In this section we quickly review Solomon's [Sol92]
construction of cyclotomic p-units and relate these p-units to zio defined above.

Solomon's construction3 starts with the observation that there exists (thanks to
Hilbert 90) a unique ßl e L*'x/L*'x such that

y-l
rn Sr •

log^, PcycO)

Thus, from our definition of zio {^« } it follows that

ßl zxn inside L*'x/L*'x.

Applying Nlk/l on both sides of this equality we see that

< ¦= ^Ln/Lßl ^Ln/LZ* ZX mod P". (3.2)

Solomon proves (and (3.2) above shows as well) that

kx, K-l mod pn for n' > n,

and he defines

kx := iiniKx € LX'X-

This is what he calls the cyclotomic p-unit. By (3.2), we clearly have icx zx.

3The attentive reader will notice that Solomon's construction is carried out without taking j parts. However
his arguments apply on the x-parts verbatim. In fact, it is easy to see that the p- unit Ky- constructed below is
simply the J-part of the /7-unit K which Solomon constructs in §2 of [Sol92].
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Definition 3.6. The element zx is called the cyclotomic p-unit and the collection

z£, e limH^q^p^) lìmL*'x
n n

is called the collection of wild cyclotomic p-units.

Remark 3.7. By [Sol94] that {cx, zx) is an ordered $-basis for Hj (Q, T) <g> g5.

3.3. Local Tate duality. In this section we give a review ofwell-known results from
local duality which we will need later in §4. For each n > 0, we have the local Tate

pairing
Hl(q>ntp,T)*Hl(q>ntP,T*)^o,

induced from cup-product pairing composed with the invariant isomorphism, for more
details see §5.1—§5.2 of [Nek06]. This induces a map

Hl(q>n,p, T) -^ Hom(ff HQi..,, T*), 0)

thus, in the limit a map (using Proposition II. 1.1 in [Col98] once again)

H\Qp, T®A) -^» Hom(lim Hl(Q„tP, T*), 0).

Definition 3.8. (i) Let £ç be the image of £ under the compositum

loc r,~o
H^Q, T <g> A) —-^ H^Qp, T <g> A) -^* HomOimtf^Q«^, T*), 0).

n

(ii) Let £i be the image of zio under the compositum

H\Q, T <g> A)
Too°loc-r

Hom(lim//1(Q„)/,, T*), 0) —? Hom(tf ^Q^, T*), (9).

Remark 3.9. For n > n' we have a commutative diagram

#HQi../» F) * B.om(Hl(^ntP, T*), 0)

H\Qn>.p, T) > Hom^HQi.^, r*), 6»),

where res* is induced from the restriction map

res: Hl(^,p,T*) —? /^(Q^.r*).



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin's formula

We therefore have a commutative diagram

zio e Hl(%,T® A) ^Kom(\im Hl(^ntP,T*),0)

87

z£ e H >T) ^Hom^OQpT*),^)

Thus Xi is simply the image of Zq under the map

r0: //1(Q^,r)^Hom(^1(Q^,r*),(9).

4. Computation of the height pairing

Throughout §4, our base field K is Q and x is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that x(p) 1- In this section

we calculate the height pairing on the cyclotomic unit cx. Note that, in view of
Remark 3.7, Proposition 2.7 and the fact that zx <E Hl (Q, T) is a universal norm (by
its definition), this gives the only non-trivial output of the machinery we described
in §2 we could hope for.

For iff X±1^ we write as usual 0(\jr) for the free 0-module of rank one, on
which Gq acts via tfr. Define e-^ '¦= Xi<SeA ty~1(8)8 as the idempotent of 0[A]
associated to ty. We identify the module 0(ty) with (®vi„ O • v)^ (therefore we
regard q-^ := e-^ Vq as a generator of 0(ty), where we recall that Vq is the place of L
we fixed in §1.1 via choosing an embedding ip : Q <^-> <Qp) and we define

P**:(©<M* 0
v\p

by setting pr^. : g,/r i-> 1. In other words, pr^. is the map induced fromprojection onto
the Vo-coordinate. For each place v of L lying above p, write av : L ^^ Lv <QP

for the induced embedding.

Let px denote the compositum

Hj\ 0(1) ® Z"1) -^ ff? (Q, 0(1) ® Z"1) -U #2(Q, (9(1) ® /-1)

Px

H2(q>p,o(i)®x-1)
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and ßx the compositum

Hj(®, 0(1) ® x~l) -^ H2(QP, 0(1) ® X~l) -f- e,b H2(LV,0(1)))X

""*
-- ^ Eiiinvi;

*>vx

i. 0,

where the map ß * in the first diagram is the Bockstein morphism applied on the first
A

cohomology; i comes from Proposition 2.3; the isomorphism tj in the second diagram
from the Hochschild-Serre spectral sequence. Let log„ : Q* -> Zp be the p-a&ic

logarithm extended to the p-aàic completion Q* of Q* by setting \ogp(p) 0. We
extend log by linearity to define an 0 -module homomorphism

\ogp'.0®zp%^O.

Proposition 4.1. ßx(cx) \ogp(tp(cx)) v0(zx) e 0.

Proof. The second equality is the main calculation of [Sol92], hence it suffices to
check the first claimed equality. This assertion is essentially Proposition 9.3 (ii) in
[BG03]. In fact, the statement of loc.cit. is that

ßx(ci) PrzfeElog^a^Cl^ ' v)>

v\p

where the equality takes place in 0. Furthermore, we have the following brute-force
calculation:

0(X) ^exY, logger, (cO) -v J2 X~\W J2^gp(av(ci)) ¦ v

v\p SeA v\p

SeA v\p

SeA (ù\p

EE^1^lo^(cî))-û)
SeA (ù\p

J2^Bp(<yJcx))-coeO(x),
a>\p
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where v is the place obtained by the action of 8 <E À on the set of places {v : v \p};
and we have the final equality by the 0-linearity of log„, and the forth equality thanks
to the following commutative diagram:

L >QP

(4.1)

L 55"^-
We further have

J2 log^Mcf)) * 0) J2 log/^jfcf)) • v*

co\p SeA

^logp(cr,0((cf/-1)).^
SeA

SeA

J2x~l(ß)^gp(<yV0(cx))-v80
SeA

logp (ov,0(cf)) • exv0 e 0(x),

where the second equality holds thanks to (4.1) and the third because (cx)
(cx)x '. Putting all this together (and noting that aVo \l lp \l by definition), we
conclude that

ßx(ci %x (ioëp {gvo(cx)) • exv0) logp(ip(cx))

as desired. D

Remark 4.2. Note that ifwe replace Vq by another place Vq ofL, the value ofßx(cx)
^gp(crV0(cf)) changes by /_1(<$): \ogp(avs(cx)) /_1(«5)logp(ov,o(cf)).

We are now ready to complete the computation of Nekovar's height pairing
(c?f,a)Nek for a e Hl(Q,T*) and cx as above. We have the following identifications:

/ \ x~* p*1 —i

HJ(Q,T*) -^H°(Qp,0(x)) -^(($0 -v) -^ 0. (4.2)

v\p

Let <x(vo) denote the image of a under the compositum of the maps (4.2).

Remark 4.3. Note that since VYx~1 depends on the choice of Vq, so does ol(vq) e 0.
Write prv-i prv-i (t>o) only in this remark to remind us the dependence on Vq.

a A

One then has VTX~1 (vo) XÌ^)Vxx~l (v°) anc* *n turn a(vo) X(^)a(vo)-
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Lemma 4.4. Suppose x e H°(Qp,0) O and y e H2(Qp,0(l)). Then

(i) xUy=x-yeH2(®p,0(l)),
(ii) {x, yjxate x • in\p(y) <G O, where {, )xate is the local Tate pairing.

Proof. Clear.

Lemma 4.4 may be used to check the following:

Lemma 4.5. The following diagram commutes:

D

H°(Qp,0(x)) H2(QP,0(1)<S>X-1)-^!1**0

{^pH\Lv,0))x~l (®v\pH2(Lv,0(l)))

(®v\pV-vY\p

prx_i

0

P

Hv\p »"Vu

{®v\p0-vy\P

Vvx

0 ¦*-0.

Here, (a,b) := ab <G O for a,b <G 0, and the vertical isomorphisms between
first two rows come from the Hochschild-Serre spectral sequence.

The following proposition is key to our main results.

Proposition 4.6. For an arbitrary a e Hl(Q, T*), we have [cx, a)Nek üo(Zq) •

a(vo).

Remark 4.7. Both Vq(zx) and ol(vq) depend on the choice of Vq, yet Vq(Zq ¦ a(fo)
is independent of Vq thanks to Remarks 4.2 and 4.3.

Proof. By Proposition 2.12

(cf,a)Nek= (ß\(cx),a)Yi>

where

}PT:H2(<Q,T)®H}(®,T*) 0
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denotes the global pairing from [Nek06], §6.3. The definition of this global pairing
(along with the fact that H2(<Q>£, T) 0 for every t\fx) shows that the following
diagram commutes:

\0(1) ®x~l) <Hj\ Hj< UO(x))
{>h

loc» OJ^p

^0
imp

(4.3)

H: .^(l)®*-1) H°(Qp^(x))^H2(qp,o(i))
We explain the arrows in (4.3): The arrow on the left is the canonical map (coming
from Proposition 2.3)

i. H2(Q,0(1) ® /-1) —? H2(Q,0(1) ® /-1)

followed by the restriction map locj,. The extended Selmer group Hl (Q, 0(x)) may
be canonically identified by H°(<Q>p,0(x)) (see §2.2), this is how we obtain the
vertical arrow in the center.

The commutative diagram (4.3) gives (cx,a)Nek — {P^(cf)>a)iate> where px is

defined as in the beginning of §4. Furthermore, by Lemma 4.5

[px(cx), a hate (ßx(cx),a(v0)) vo(z$)-a(v0),

where (a,b) := a b for a,b € 0 as in Lemma 4.5, and the final equality is

Proposition 4.1. The proof is now complete. D

5. Rubin's formula

Throughout §4, our base field K is Q and x is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that x(p) 1- In this section

we complete our main computation, using the calculations carried out in §4. Starting
with a Hji

H]

\, O(x)) as above, we first wish to define an element <fia :

+ Hl(LVo,0)iP,V(x)) (®v]pH1(Lv,0))

-Rom(GV0,O).

x'
prv_i (5.1)

Here we recall that Gv Gal(<Qp/L„) and p^^-i is the projection onto the
incoordinate as in §4. In the equalities above, we are again using an identification coming

from Hochschild-Serre spectral sequence, along with the fact that H1 (Lv, 0)
Hom(Gj,, 0). Note also thatHom(Gj,, 0) is the group ofcontinuous homomorphisms
and we have

Hom(G„, 0) Hom(Gf, 0) Hom(Gf'p, 0) Hom0(<9 ®zv Gf'p, 0),
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where G* for the abelianization of the group Gv and G* 'p is its pro-/? part.

rV0:We write <pa° e Hom(Gj,0, 0) for the image of (pa under the compositum (5.1)
(which we henceforth call rx). Defining 0«° as the unramified homomorphism given
by

>*°: G„0—><9, Fr,0 h^ a(v0),

where Frj,0 denotes an arithmetic Frobenius at Vq, we also define <pa <G H1 (Q^,, O (x))
using the identification vx. Below, we normalize the local reciprocity isomorphism
(and the local invariant map) by letting uniformizers correspond to arithmetic Frobenius

elements.

Let £ £*,= {f*} e H1 (Q, T 0 A) be the collection of wild cyclotomic units,
as in §3. Recall the definition of the element Xi <G H1(<Qp, T) from §3.3 which we

regard as an element of Hom(H1 (Qp> T*), 0) via local duality. Recall also the tame

cyclotomic unit cx e H1(Q, T).

Theorem 5.1. (c ,a>Nek= £|(0a)-

Proof Let Zq be Solomon's cyclotomic /?-unit as above. It follows from the discussion

in §3.3 that

*$(« <*o.A*W (5-2)

The computation of the right hand side ofTheorem 5.1 is thus reduced to local class

field theor}'.

Let Yy-i denote the following compositum:

H\%,0(1)® x~l) {®v\pHHLv,0(l)))x ^ HHLV0,O(l))

ä
& (5.3)

L*0®zpO,

where %x is the projection onto the Vq -coordinate as above, and L* stands for the

p-aàic completion of the multiplicative group L*. We note that r„-i (loc^,(zx))
Lp(zx), with ip: L <—> Lvo is as in the introduction and

loc,,: Hl(q,T)^H1(Qp,T)

is the canonical restriction map, as usual. We then have a commutative diagram

H^QpiT) ® H^QptT*)
(')Tate

> 0
rx-i[

'V0Hl(LVu,0(l)) ® H\LVo,0) {-^^0
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which translates to
<z£, «Mxate {1P(Z$), «°>Tate. (5-4)

Let
av: Hl(Lv,Zp(l)) L* ^ Gf>P

denote the local reciprocity map. Let further

aW:L?^Gal(L»/L„)
denote the projection of av to the Galois group of the maximal unramified extension

ofLv. We also write av (resp., a{, for the induced map 0 ®%p L* -> O ®%p G% 'p

(resp., for the map 0 ®Zp LJ -> 0 ®Ip Ga\(Lf/Lv)).
By the very definition of the local Tate pairing,

W^)>«°)Tate «° KM'Ó») «° (<}(^(^)))
where we have the second equality because 0«° is unramified by construction. Write

h(4) *C(Z°X) •ueO®ZpLfo 0®Zp (m% e 5^),
where zuvo is a uniformizer of Lvo and w G 0 ®zp 0£ is a unit at Vq. Then

a«o (Lp(zo)) Fr«o ° since aVo(u) € âv C Gv, the inertia subgroup at f. Thus

M*?). «0)xate fi0(ftlfS)) Vo(zx) • K° (Fr„o)

and this equals, by the definition of <fia°, to Vq(Zq) * «(fo), which equals, by Proposition

4.6 to (Zq a)Nek and finally, by (5.2) and (5.4) to Xi(<pa). This completes the

proof. D

Next, we relate the right hand side of the statement of Theorem 5.1 to a special
value of a p-aàic L-function (that we call L|)(j>) which we construct below.

Let $oo denote the cyclotomic Z^-extension of Q^ := $o, and let <É>„ denote the

unique sub-extension of $oo/Qp of degree pn. Recall that T* Hom(T, 0(1))
0(X). We set

H^(Qp,T*) limHl(ß„,T*),
n

where the inverse limit is taken with respect to norm maps. We may identify
Galf^oo/Q^) naturally by T Gal(Q00/Q). Let y be a topological generator
for T and let A <9[[r]] as usual.

Lemma 5.2. The natural map H^(QP, T*) -> H1(QP, T*) is surjective.
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Proof. By [Col98], Proposition II. 1.1, we have H^CQp, T*) ^ Hl(<Qp, T* ® A)
and the map above is simply the reduction map modulo y — 1. Hence, the cokernel
of this map is H2(%, T* ® A)[y - l^the y -1 torsion of H2(<Qp, T* ® A). Since
the cohomological dimension of Gal(Q^/Q^) is 2, it follows that

H2(®p, T* ® A)/(y - 1) g* H2(®p, T* ® A/(y - 1)) H2(QP, T*),

which is trivial (by local duality). Thus we have an exact sequence

0 —? H2(QP, T* ® A)[y - 1] —? H2(Qp, T* ® A)

-^-U H2(Qp, T*®A)^ 0.

It is known that H2(Qp, T *®A) is an 0-module of finite type (cf. Proposition 3.2.1 in
[PR94]), thus it follows from Theorem 2.4 in [Mat89] that H2(%, T* ® A)[y -1]
0 as well, hence the lemma is proved. D

By Lemma 5.2, it is possible to choose $ {</><* }«>o <= H^Qp, T*) such that

Definition 5.3. Attached to f and <É>, define an 0 -valued measure //¦£,$ on T as

follows: For re T, set

mW) £*(r0«).

The fact that //•£,$ is a distribution follows from the fact that the collection {$« }„
is norm-compatible.

We define the "p-aàic L-function" associated to £ and $ by setting

£|,*0?) / Vdfi^q,

for each character r\ : T ^ Z*. Let 1 be the trivial character, and p^c : T -> 1 + pZp
be the cyclotomic character. We define the derivative at the trivial character 1 as

-^(ï) := -7:L^MPScyc)
s=0ds

We also define ^,* G A to be the power series associated with the measure //¦£,$.

Remark 5.4. Define

Pn(ß^):= £ ^Mrrpn)'teO[r/rpn],
zeTlTPn

so that tyçt$ lim„ Pn(/Açt$) e <9[[r]]. For the powers p*yc : T -> 1 + pZp of the

cyclotomic character, observe that

Pcyc(%*)=^m E ^M*rPn)-pScyc(ïy (5-5)

xeT/TPn
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Here, reT stands for an arbitrary lift of x G T/ Tp and it is not hard to see that
the limit above does not depend on the choice of these lifts although each sum does

depend on this choice. We therefore see that PcycOPl.*) ^t,*(Pcyc)' which in turn
implies that

Proposition 5.5. £ç(<f>a) L'^Q)-

Remark 5.6. Note that the left hand side of the equality in Proposition 5.5 depends

only on 0a, not on its lift $; whereas the right hand side depends a priori on $. Hence

Proposition 5.5 shows in particular that Li ,(1) does only depend on (f)a, and not on
the lifting <É>.

Corollary 5.7. (cx,a)Nek L!^(l).

The proof of Proposition 5.5 will be completed in a few steps, all of which are

essentially borrowed from [Rub94] with minor alterations.

Definition5.8. Suppose fi fi®) e Hl(<S>0,T*)anaß {/*(")} Glim Hl($n, T*).
Define

VtrPcycÇts){p) := Blim £ ^P(pcyc(r)) • ^(r^n))-
T€Gal(Q„/Q)

As the notation suggests, this definition only depends only on pi, not on the lift fx.
This fact will follow from Lemma 5.9 below (where we also prove that the limit above

exists).

Lemma 5.9. Suppose v G H1(<&n,T*) is such thatN$n/$0(v) 0. Then

E ^gp(pcyc(r)) £|(rv) 0 mod p".
reGal(Q„/Q)

Proof Fix n and to ease notation, set X £ç \Hl((J) r+) G Horn (H1(<$n,T*),0)
and G Gal(On/0). Write

^^(pcyc^-z-1 eZ/pnZ[G].
xeG

Note that the claim of the lemma is equivalent to showing that

SX(v) 0 (in 0/pnO). (5.6)
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It is easy to see that

(o - 1)8 log^, (pcyc(O) J2 x
zeG

log^PcycO)) * N$„/*0> for all o G G,

hence it follows that

(a - 1)8X \ogp(pcyc(o-))-N*n/*0X 0,

where we have the final equality because X\Hi(& r*% 0 by Lemma 3.3. This is

equivalent to saying that

8X G Horn^H*«* T*), 0/pn0)G. (5.7)

Consider the map

— ° N<|>„ /&nN*: B.om(Hl(<S>0,T*),O/pnO) ->Hom(Hl($n, T*), 0/pnO)G.

Note thatboth ofthe sides ofabove are finite and the map N* is injective by Lemma 5.2.

Claim below proves that there is an isomorphism

Hon^iï1^, T*), 0/pnO)G ^ Homf//1 ($0, T*), 0/pnO)

which in turn implies that N* is surjective as well:

Claim. ¥Lom(H1(ßn,T*),0/pn0)G ^B.om(Hl($o,T*),0/pnO).

Proofof the Claim: By slight abuse, we let y denote a generator of G. Then, an
element ty G Hom^H*«* T*), 0/pnO) is fixed by G if and only if

y-1 ty ty ^^ ty(yx) ty(x) for all x G H1 ($„, T*)

^^ ty((y - l)x) 0 for all x e Hl($n,T*)
s=ï ty factors through H1(ßn,T*)/(y - 1) ^ H\^o,T*).

where the very last isomorphism comes from the proof of Lemma 5.2. D

We are now ready to complete the proof of Lemma 5.9. It follows from our
conclusion that N* is surjective that there exists g G Hom(# ^^o, T*), 0/pn0)
such that 8X g o N$n/$, hence

[v) g(K<s>n/<s>o(v)) Oin0/pn0.

This is exactly the statement of (5.6). D



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin's formula 97

Remark 5.10. As in the remark following Lemma 3.1 in [Rub94], one can check that

DerPcyc(X0 X'ç

using the fact that H1(<Qp, T ® A) has no (y — l)-torsion. Here the equality takes

place in Horn (H1(<&o> T*), (9). Note that the term involving the p-aàic logarithm
in loc.cit. does not appear here because we have already normalized z£, by the factor

log^PcycO)-

ProofofProposition 5.5. (Compare with Proposition 7.1 (ii) in [Rub94].) By
Remark 5.10,

X'^(4>a) Blim Y, 1o&p A*c(T> * 2*(*$£°)
T€Gal(Q„/Q)

lim V log pcyC(r)ßi^(rrpn)
reGal(Q„/Q)

On the other hand

d-Plyc Q°ZpP*/c)plyc,

hence

Lt,*(1) T:( / P%cd^ds s=0
(log Pcyc)Pcyc * ^|,*

/ logp Pcyc ' ^,<ï>

s=0

D

6. p-adic L-functions and Nekovar's height pairing

In this section, we obtain a formula for the leading term of an imprimitive Kubota-
Leopoldt p-adic L-function in terms of Nekovar's height pairing, much in the spirit
of a p-aàic Gross-Zagier formula, using the Rubin-style formula we proved above.

This in particular suggests a new interpretation of the classical p-aàic Kronecker limit
formula (cf. [Was82], Theorem 5.18, §2.5 of [dS87]) and the formula of Ferrero-
Greenberg [FG78].

6.1. />-adic L-functions. In this section, we give an overview of the well-known
construction of the Kubota-Leopoldt p-aàic L-function (resp., Katz's two variable

p-aàic L-function) using cyclotomic units (resp., elliptic units).
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6.1.1. Cyclotomic units and the Kubota-Leopoldt />-adic L -function. We denote

by co : Gq -> (Z*)t0rs the Teichmüller character giving the action of Gq on the p-th
roots ofunity fip. Fix an embedding 0 °^ <Q>P ^-Cso that one can identify complex
and p-aàic characters of finite order of Gq. Via this identification, a character p of
T of finite order naturally extends to an 0-algebra homomorphism p: A -> <Q>P.

For a character p : Gq -> 0 °^ C of finite order, let L(s,p) denote the associated

Dirichlet L-series

Definition 6.1. Attached to a non-trivial even Dirichlet character ty of Gq whose

order is prime to p, there is an element X-^ G A such that for every k > 1 and every
character p of finite order of T,

p%cp(X+) (l-CD-kpty(p)pk-1)L(l-k,co-kpty).

See Theorem 7.10 in [Was82]. The element X^ is called the p-aàic L-function
attached to ty.

Remark 6.2. Starting from X^ above, one may construct a function Lp(s, ty) (which
is analytic at all s G Zp) by setting

Lp(s,ty) p1cy-cs(X*).

Recall that Ln LQB and Loo LQoo. For a prime p, let UntP denote the local
units inside (L„)p. Let \Ln := ]~[„i Un>p be the group of semi-local units and let

Vn (Ln® Qp) riü|ö(^«)p- By Kummer theory, we have an identification

H\(Ln)p,0(l))^Vn and Hl((q>n)p, T) ^+VX, (6.1)

where we recall that A denotes the p-aàic completion of an abelian group A and when
A is endowed with an action of Gal(L/Q), we write Ax for the /-part of A. Define
Xloo lim \ln and Voo — hm ^« >

where the inverse limits are taken with respect
<—n

_
<—n

_

to the norm maps. The identifications (6.1) above then gives in the limit

H1(®p,T®A)^+Vx0. (6.2)

Coleman introduced in [Co179] a useful tool which as an input takes a norm
coherent sequences in a tower of local fields and gives as an output a power series.

More precisely, Coleman defines a A-module homomorphism

c°r£: Ut —? 0[[n (6-3)

with the property that
cor£(&) £,, (6.4)
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where we recall that £oo G Xloo is the norm coherent sequence of cyclotomic units
along the tower of fields {L„}„>o. Let y be a topological generator of T as fixed above.

If the character ty is unramified at p, then col^, extends uniquely to a homomorphism

cor£:V*^-L-<9[ir]]. (6.5)

See §3 of [Sol92], §2 of [Gre92] and §4 of [Tsu99] for a detailed description of
Coleman's map.

We define using (6.5)

c7r£, -. — x cor£: V£ —? A, (6.6)
-logp(pcyc(y))

so that

£%,(&)= i,
Y~l x^ and ™lt(zto) pX+, (6.1)

7 log/,(pcyc(y))

z<£, G V^o being the collection ofwild cyclotomic p -units. Note that — log (pCyc(y *=

Zp since y G T assumed to be a topological generator and since we assumed p is

odd.

6.1.2. Elliptic units and Katz's />-adic L-function. Let £) be the completion of
the ring of integers of the maximal unramified extension of ^ and let k be a quadratic
imaginary number field such that p splits in k/<Q. Write p pp* with p ^ p*.
We adapt the notation and hypotheses from §1.1, in particular, koo is the unique
Zp-extension of k which is unramified outside p and T Ga\(koo/k). Write

MfP~) U>o*(fo*+1)andlet

^:Gal(Mfp°°)A(f))^Z;
be the character whose construction is sketched in §1.1; and let pr be its restriction
to T. We may similarly define p%, T* and pp* by replacing p by p*. Set *§

Gal(£(fp°°)/k(f and A £)[[$]]. We denote the Grössencharacter character
attached to the elliptic curve E also by p%, which should cause no confusion since
these two characters are related in a manner described in [Wei56].

For a Grössencharacter ty of k of type Aq (in the sense of [dS87], §11.1) and an

integral ideal m C k, the Hecke L-series of ty (with modulus m) is the complex valued
function Loo,m(ty>s) — X! ^(tt)Na_5, where a runs over all integral ideals relatively
prime to m. Let dk G Z~ be the discriminant of K. As before, let x '¦ Gk ~^ öx be a
Dirichlet character whose order is prime to p and let Q be the positive real period of
a global minimal model of E. For notational simplicity, write p Pe and p* Pg.

The following theorem describes the 2-variable p-adic L-function, first
constructed by Katz [Kat76] and Manin and Vishik.
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Theorem 6.3. For j,k e Z, set € pEpE} X- There is a p-adic period Qp e A
an element Xx G A such thatfor 0 < —j < k,

ùÇkXx(pkp*l) lj/-*<* - 1)! {^) ¦ G(0 (l -^) • W1. °)"

See Theorem II.4.14 in [dS87] for details (e.g., for a definition of G(e)) and for
the proof.

In this paper, we are only interested in the restriction Xx | r of the 2-variable p-aàic
L-function Xx to characters of I\ Starting from the one-variable p-aàic L-function
Xx\r, we define S,g,(s,x) ^xlr^r"')-

For kn as in §1.1, write Ln LÄ:B. For a prime q, let l7„)(j be the local units
inside (L„)q, and let Xln rial«? Un,<\ be the group of semi-local units. Set \ioo
lim Xln. As in §6.1.1, we consider Coleman's map
<—n

see §1.3.5 of [dS87] for a definition of this map. The map col^ here is the map " i "
of loc.cit. restricted to the /-parts and to the T-direction.

Let trj„ G L£ be the elliptic unit denoted by £„ by Bley [Ble04], §3. The collection
tD^c := {trj£} G \lo\> is called the collection of wild elliptic units along T. As wild
cyclotomic units recovers the Kubota-Leopoldt p-aàic L-function, wild elliptic units
along T may be used to obtain the one-variable p-aàic L-function:

colx00(wx00) Xx\r. (6.8)

This fact has been first proved by Coates and Wiles [CW78]. For the 2-variable
version of (6.8), see [Yag82] and [dS87], §IV.

6.2. Height computations for the base field Q: The case x is even. Let x be an

even Dirichlet character as before. Recall that $„ (Qn)^, and recall also the fixed

place fo of L which is induced from the embedding ip : Q °^ <Q>P. Write Vq for the

unique place of Ln which lies above Vq and define £„ (Ln)vo. In this section, we
construct a particular collection

<E> {4>{n)}n e H\Qp,T* ®A) \imHl(®n,T*)

starting from col£o, which we use together with Corollary 5.7 to prove a formula for
the leading term of an imprimitive Kubota-Leopoldt p-aàic L-function.
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As in (5.1), we have identifications

H1(ßn,0(x))=(^H1((Ln)v,0)Y -^UH1(ßn,0) Hom(Gzn,0)
v\p

Hom(5J,<9).

Here the direct sum is over the places of L which lie above p with the convention
that the unique place of Ln above a place v\p of L is also denoted by v. Also, £„-i
is the projection to the Vo-coordinate and the final equality is obtained by local class

field theory. Furthermore, as in (5.3), we have identifications

H l(ßn, 0(1) ® X'1) (0,1, H\(Ln)v,0(l)))x ^ H\Zn,0(l))
'SX

^®EP0,

which, put together with the identification above gives isomorphisms

Hom(#1(*„,:r),0) -^^iiom(S^,0) ^^H\^n,T*). (6.9)

Note that both isomorphisms in (6.9) depend on the choice of Vq, yet the compositum
of them does not.

Let UH1 (<É>„, T) C H1(<&n, T) denote submodule of universal norms inside of
H1(Q>n, T), i.e., the image of the canonical A-module homomorphism

H^Qp.T ® A) limHUßm^) —? Hl($n,T).
m

The Coleman map col£c,: lim H1($m, T) lim V™ —> A induces (since it is
<—m <—m

A-linear) a <9[r„]~module homomorphism

™ix:UHl(<s>n,T) ^ o[Tn}.

For a finitely generated 0 [Tn] -module M, there is a canonical isomorphism

6: Rom&(M,0) -^Rom&[Tn](M,0[Tn]), f h^ (m h> Zgern /(*_1m)**)

(cf. [Bro94], Proposition VI.3.4). Using the isomorphism B applied with M
UHl(<$>n, T), we define^ by requiring B(0(n)) colJ.

Lemma 6.4. The 0-module

Hl($n, T)/UHl(<S>n,T) o* coker (Hl (Qp, T ® A) -> Hl($n, T))

is free of rank one.
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Proof. By the long exact sequence of Gq -cohomology we have

coker (H\^p,T ® A) -> Hl(®n, T)) H2(QP,T ® A)[yp" - 1].

By Proposition II. 1.1 in [Col98] and by local duality, we have

H2(®p,T® A) \imH2(3>n,T) \imïiom(Ho(<ï>n,%/0(x)),%/O))

ïiom{\imHv(<ï>n,%/0(x)),%/0)) G* G,
n

which is free of rank one as an 0-module. D

Remark 6.5. In this remark, we give a further study of the universal norms
HH1($n,T) inside H1(Q>n,T). For notational simplicity, we assume 0 Zp;
the general case may be treated tensoring all our conclusions in this remark by 0.
Furthermore, since we assume x(p) 1 (i-e-> /Ig© !¦)' it suffices to study the

universal norms UHl(<$>n,Zp(l)) inside Hl($n, Zp(1)).

(i) Let zun G $* be a uniformizer which is chosen in a way that N$n/$m(TPn)
wm for every n > m. Let Hn the units of <É>B. Kummer theory gives an
identification

H1(<S>n,Zp(l)) <S>* m^xUn.
Since p G H1(Qp,Zp(l)) pIp x Zp is a universal norm, it follows from

Lemma 6.4 that no local unit (i.e., an element of Z* C Q*) besides 1 is a

universal norm, and we have 1\Hl(^p, Z^(l)) p p under the identification
above. Set Yq Z* so that we have a decomposition Hl(<Q)p,Zp(l))
Uutrl(<î>o,Z/,(l))x lo int° rank-one Zp -modules. Note that we adopt here the

multiplicative notation for these abelian groups.

(ii) For every n > m, the restriction map

«*?„/?„: H\^m,Zp(l)) ^ Hl(^n,Zp(l))G^-l^ ^ Hl($n,Zp(l))

is s imply the natural injection$^ °^ $*. When m 0, write res„ for res$n/Qp-

(iii) Ifl^MGZpC H1 (<Qp,Zp(l)), then res„(w) is not a universal norm. Indeed,

if otherwise, N<j>h/q (res„(w)) up G Z* would then be a universal norm

and hence up 1 by (i). Since Z* is torsion-free, it follows that u 1. Let

Yn im(Y0^% Hl(^n,Zp(l))).



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin's formula 103

(iv) The quotient Hl(<$>n,Zp(l))/Yn $J/im(Z| ^ ÎJ) is torsion-free. In¬

deed, if an element of the quotient $*/im(Z* °^ <É>*) represented by x G

<Ê>* — Zp is p-torsion, so that xp G Zp, then we would have \xp C $*, which
is not true. Hence, y„ is a free rank-one direct summand of Hl (0„, Z^(l)).

(v) By Lemma 6.4, we have

rankZpUHl(ßn,Zp(\)) varULzpHl(ßn,Zp(\)) -1. (6.10)

Using (iii), (iv) and (6.10), we conclude that

Hl(<S>n,Zp(l)) UHl(^n,Zp(l)) x Yn

as Zp-modules.

Remark 6.5 (v) ensures that one may extend (p^1' : UH1 ($„, T) —>• 0 to a
homomorphism if1 (<Ê>B, T) -> (9, by declaring (p^n'(c) 0 for c? G Y«. Note in particular
for n 0 that the map 0(o) coîj : Hl(Qp, T) ^> L*J <g>Zl, 0^0 (which is

extended from UH1 (Q^,, 71) as described above) is unramified since it is identically

zero on the units 0£ ®zp O by construction (as explained in Remark 6.5(i)).

Let mVo G L*0 be auniformizer and set a(t>o) — coto(mv0) e ®- Note that the

value coIq(7UVo) is well defined thanks to the discussion in the preceding paragraph.
Let coIq g HI(<Q, T*) be the element which maps to (x(vq) under the compositum
of the isomorphisms (4.2). Furthermore, one may verify without difficulty that the
collection <£> {^> } chosen as in this section is norm-coherent and the Rubin-style
formula we proved (Corollary 5.7) applies with the particular $ we have constructed.
Before stating the theorem we prove using these facts, we first define what we call
the "imprimitive p-aàic L-function".

Definition 6.6. For Xx G A as above and for any topological generator y G T, write

Xx := -j———— x Xx G A, and define the imprimitive p-adic L-function to be

Lp(s,x) plycs(Xx).

Note that,

Lp(s, x) is an Iwasawa function,

**#<**) does not depend on the choice of y.
s=i

Theorem 6.7. Suppose x(p) 1 and let Lp(s,x) be the imprimitive p-adic L-
function defined as above. Then

Lp(^,X) {cx,colx)Nek.
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Proof. As in §5, let //¦£,$ be the measure on T attached to Ç ££, and $ we chose

as above, let ^,* G A be the associated power series and let L^^(r}) denote the

'p-aàic L-function' on the characters rj : T -> Z*. We then have

$*.• cTr£,(&) n y"1, xcolici)
7 logp Pcyc(y)

y-1
i log. Pcyc(y)

'X-

We therefore see that

£
ds;Pcyc(%*)

1
/>* £/»(!>/) -tlp(s>x)

s l
(6.11)

where we have the first equality because jjPmc l°g» Pcyc * Pcyc the second thanks
to our definition of Lp(s, x) (see Remark 6.2).

On the other hand, we have ^Pcyc0Pt,*) |

_0 Li ^(1) by Remark 5.4, and the

theorem follows combining (6.11) and Corollary 5.7. D

Remark 6.8. When x is an even character with x(p) 1» the exceptionality that
Nekovar's extended Selmer groups detect are not due to an honest exceptional zero
of the associated Kubota-Leopoldt p-aàic L-function, but rather due to the fact that
the extended Selmer groups correspond to an imprimitive p-aàic L-function.

6.3. Height computations for the base field Q: The case x is °dd. We suppose
now that x '¦ Gq -*¦ O x is an odd Dirichlet character whose order is prime to p and
which has the property that x(p) 1- Keeping the notation of §2.1 and §2.2, we
have the following identifications as in Proposition 2.10 and Corollary 2.11:

H}(®, T) H^n(®, T) (Ol [l/p]x)x (6.12)

H°(®p,0(x)) ^+H}(Q,T*). (6.13)

In particular, Hl(<Q>, T*) is a free 0-module of rank one. Also, since x is odd and

X(p) 1, the (9-module Hl(Q, T) is also free of rank one.

The assumption that x(p) 1 implies that the prime p splits completely in
L/Q. Let p C Lbe any prime above p and let tp: L °^ Lp <Q_P be the induced

embedding. Let h denote the class number of L, and let x G OlWI'PY* he such that

Ol • x ph. Define

z ex<xe(0L[l/p]*)x H}(Q,T) and z0 - -z g H}(Q,T) ® Qp.
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It is not hard to see that the X-invariant (cf. [Gre94], §1)

v log^M*))

105

ordp(z)
\ogp(ip(z0)) ers Frac(<9)

is independent of the choice of the place p and the choice of x.
Let / /l be the conductor of the abelian field L. We regard the character x as

a character of the group Ay := Gal(Q(//./)/Q) via

/: A/—»Gal(L/Q)-X9x

and define the tome Stickelberger element

ae(Z//Z)x^A/

so that

/(ö/) 5lj;f-1 -L(0)/-1))
where B\tX-i is the generalized Bernoulli number.

Fixing generators gx of O(x) and gx-i of (9 (/_1), and using the fact that x(p)
1, we obtain isomorphisms

gx: H\®p,T)^ H\qp,0(l)) and gx-n H\qp, T*) -^H\®p, 0)

for every i > 0. We choose gx and gx-i so that the following diagram is commutative:

H1

Sx

Hl

>,T)

,0(1))

H 2-i,

°x~

H2-ii

„T*)-^^0

„O)-±^0
Via the identifications above, we view x(@f) as an element of Hl(<Q>, T*).

Let )Nek be Nekovar's height pairing as in §2.1.3 above. We write )Nek also
for the induced pairing

(H}(Q, T)®%)® (H}(Q, T*) ® rs) -^» ft.

Theorem 6.9. {z0, /(0/)>Nek -£ ¦ ^(0, X'1)-

Proof. The statement of this theorem is equivalent to the assertion that

(z, x(0/))n* \ogp(ip(z)) - x(0f). (6.14)
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As we have recalled in §2.1.3, we have (zq, x(ôf)}Nek — {ß1(zo)> X(@f)}vTi where

ß1: H}(Q,T)^Hf(Q,T)®r
is the Bockstein map which is defined as follows:

Fors G H}(Q,T),weaefmeß1(s) sUc G Hf(Q,T®T) Hf(<Q,T)®T,
where c G H1(Q,T) Hom(GQ, T) is the tautological homomorphism c: Gq ->
T. One similarly defines

H2(Qp,T)®rip-.H^ ;T)

by taking cup product with the element cp G H1 (Qp, T) HomfGQ^, T), which is

the restriction of c to Gq We then have the following commutative diagram:

H},

H

\,T)

>,T)

+ Hf(®,T)®r &y \,T*)
{,)pT logpOPcyc

>r **ö

-^//2(Q„,T)®r ® Hü(Qp,T*) i,h
log» ° Pcyc

^r—-—*-&.

Here, the square on the left is commutative thanks to the description of ßl and ßl,
above, and the square on the right is commutative by the definition of the Poitou-Tate
global pairing as the sumof local invariants, and thanks to the fact that H2 (<Q>£, T) 0
for i\fx. The proofof the theorem follows from the following lemma, whose first part
is a restatement of [Nek06], 11.3.5.3, and second part is Lemma II. 1.4.5 in [Kat93]:

Lemma 6.10. Suppose a G H\Qp, 0(1)) Q*,
the local reciprocity map as before.

(i) invp(ßp((x)) invp(a U cp) cp(ap(a)).

(ii) \o%p opcyc o Cp (<Xp(a)) log^a).

suppose ap : Gt is

D

Remark 6.11. The interpolation property that the p-aàic L-function Lp(s,x~Xti>)
satisfies (see Definition 6.1), along with our assumption that x(p) 1 forces the

Kubota-Leopoldt p-aàic L-function Lp(0, X~lco) to vanish at s 0. The theorem
of Ferrero-Greenberg [FG78] combined with a result of Gross and Koblitz [GK79]
shows that

4-Lp(s,X-1o>)\,_n -X-LfO,/-1).ds^
Thus, Theorem 6.9 implies that

d ,-i—sLp(s,X oj>)\s=0 (z0,x(ef)] Nek- (6.15)
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This provides us with a new interpretation of the Ferrero-Greenberg theorem. Of
course, it would be desirable to prove first a Rubin-style formula (as we did in §5)
in this setting and from that deduce (6.15) and the Ferrero-Greenberg theorem (as

we prove a p-aàic Kronecker formula from a Rubin-style formula in §6.2 above and

§6.4 below).

Remark 6.12. Suppose in this remark that our base field K is an arbitrary totali}'
real number field and X- &K ~> ®x i-s a totally odd character which has finite
prime-to-/? order. Assume further that x(p) 1 f°r exactly one prime p C K
above p. In this setting, Gross conjectured in [Gro81] a formula for the leading
coefficient L'(0, X~l(û) of the Deligne-Ribet p-aàic L-function Lp(s,x~lo)) at

s 0, and Darmon, Dasgupta and Pollack recently announced a proofof a portion of
this conjecture. Using their result, we may express L' (0, x~l 0)) in terms ofNekovar's
heights exactly as we did above for the Kubota-Leopoldt p-aàic L-function when

K q.
On the other hand, ifone succeeds in proving a Rubin-style formula in this setting4,

then one in turn would obtain an alternative proof of Gross' conjecture.

6.4. Height computations for a totally imaginary base field k. We keep the
notation from §6.1.2. Every Dirichlet character x of Gk behaves like an even character
and the results we presented in §5 and §6.2 extend to this case without an extra effort.
Replacing the cyclotomic units by elliptic units, and the results of [BG03] by that
of [Ble06], the results of [Sol92] by that of [Ble04], one may prove the following
formula:

Theorem 6.13. Suppose x(p) — 1- Then

Zp(l,X) {eXi,colx)Nek.

Here we follow the notation from §6.1.2. Namely,

• t\ is the (tame) elliptic unit which is denoted by Ny^/^i/^l, f, a) in [Ble04]
and ef G Hl (k, T) Hl (k, T) Lx>* is the y part of ei,

• coIq g Hl(k, T*) is the element which is obtained from the Coleman map (as

in §6.2),

~ pl-*(y)-l• Zp(s,x) i 7° ' £p(s>X) is the imprimitive (one-variable) Katz p-
-p ioëp Pcyc(y)

adic L-function, where Zp(s,x) is the restriction of the two-variable p-aàic
L-function to T.

4It is expected that obtaining a Rubin-style formulaforageneral totally real k (and fora totally odd character x)
should not be any harder than proving such a formula for k <Q>.
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Remark 6.14. Suppose E/q is an elliptic curve and only in this remark, let T Tp (E)
be the p-aàic Tate-module of E. Let Lp(E,s) denote the Mazur-Tate-Teitelbaum
p-aàic L-function attached to E. Assume that E has split multiplicative reduction
at p. In this case, LP(E, s) has an exceptional zero at s 1 which is forced by the

interpolation property. The Mazur-Tate-Teitelbaum conjecture (now a theorem of
Greenberg and Stevens [GS93]) asserts that

d ,i tn L(E,1)_L,(S,,)|f=1=*Ä.-i_2 (6.16)

where X^ is the X-invariant, L(E, 1) is the value of the Hasse-Weil L-function at

s 1 and Qg is the real period of E. Let

Mxate: H1(Qp,T)®Hl(Qp,T*)^Zp
denote Tate's local cup-product pairing. M. Kuriharahas kindly explained us how one

ma}' interpret the quantity on the right in (6.16) as the local Tate pairing calculated on
Kato's zeta-element Zo € H1 (Qp, T) and another special element a G H1 (Qp ,T*)
(which we do not define here). Using this observation, Kurihara was able to give
another proof of the Mazur-Tate-Teitelbaum conjecture (6.16).

Ifone succeeds in proving a Rubin-styleformula in this setting, one could globalize
Kurihara's calculation with Kato's zeta-element Zo and the element a, so as to obtain

a /?-adic Gross-Zagier formula in the presence of an exceptional zero, i.e., relate
Nekovar's height pairing to the Mazur-Tate-Teitelbaum p-aàic L-function via

(1) a Rubin-style formula to relate heights to local Tate pairing,

(2) then using Kurihara's local calculation,

much in the spirit of [BD96], [BD97].
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