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On the uniform perfectness of the groups of diffeomorphisms of
even-dimensional manifolds

Takashi Tsuboi *

Abstract We show that the identity component Diffr(M2m)o of the group of Cr
diffeomorphisms of a compact (2m)-dimensional manifold M2m (1 < r < oo, r ^ 2m + 1) is

uniformly perfect for 2m > 6, i.e., any element of Diff (M2m)o can be written as a product
of a bounded number of commutators. It is also shown that for a compact connected manifold
M2m (2m > 6), the identity component Diffr(M2m)o of the group of C diffeomorphisms
of M2m (1 < r < oo, r ^ 2m + 1) is uniformly simple, i.e., for elements / and g of
Diff/ (M2m)o \ {id}, / can be written as a product of a bounded number of conjugates of g or
„-1
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1. Introduction

For an n-dimensional manifold M", let Diffc(M") denote the group of C
diffeomorphisms of Mn with compact support (1 < r < oo). Here, the support of a

diffeomorphism / of Mn is defined to be the closure of {x e M | f(x) ^ x}. For a

compact manifold Mn, Diffc(Mn) coincides with the group Diff(M") of Cr
diffeomorphisms of Mn. Let Diff£ (Mn)o denote the identity component ofDiff£ (Mn).
Here Diff^M") is equipped with the Cr topology ([16], [23]). By the results of
Herman, Mather and Thurston ([11], [14], [16], [23], [2]), for an ft-dimensional manifold
M", Diff^(MB)o is a perfect group if r 0 or 1 < r < oo and r ^ n + 1. Here,
a group is said to be perfect if it coincides with its commutator subgroup. In other
words, a group is perfect if any element can be written as a product of commutators.
The perfectness of a group is equivalent to the vanishing of first homology group of
the group. The homological properties of the group Diff^(M")o has been studied in
connection with the theory of foliations ([23]).

*The author is partially supported by Grant-in-Aid for Scientific Research (A) 20244003, Grant-in-Aid for
Exploratory Research 21654009, Japan Society for Promotion of Science, and by the Global COE Program at
Graduate School of Mathematical Sciences, the University of Tokyo.
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In general, for an element g of the commutator subgroup [G, G] of a group G,
its commutator length is defined to be the minimum number of commutators whose

product is equal to g. It is natural to ask whether the commutator length function
cl: [G, G] -> Z is bounded. When the commutator length is not bounded, then it
is very interesting to know about the stable commutator length defined by scl(g)
lim„_ä.oocl(^")/n in Bavard [3]. The stable commutator length function is related
with the bounded cohomology groups Hj*(G) of the group G defined by Gromov
([7]). Namely, the homomorphism H?(G) -> H2(G) is injective if and only if
the stable commutator length function vanishes on [G, G]. This is formulated as the
Bavard duality theorem which describes the stable commutator length in terms of
homogeneous quasimorphisms ([3]). In recent years, the stable commutator length
and the quasimorphisms appear as an important key to study infinite groups (see for
example [5] and its references).

We say that a group is uniformly perfect if any element can be written as a product
of a bounded number of commutators. It is easy to see that the uniform perfectness
implies the vanishing of stable commutator length function, and hence the injectivity
of the map from the second bounded cohomology group to the usual one.

For the question of uniform perfectness of the group of diffeomorphisms, the

following results are shown in [4], [30] and [31].

Theorem 1.1 (Burago-Ivanov-Polterovich [4], Tsuboi [30], [31]).

1 For the interiorMn ofa compact n-dimensional manifold which admits a handle

decomposition only with handles of indices not greater than (n — l)/2, any
element of Diff^(M")o (l<r<oo,r^n + l) can be written as a product
of two commutators.

(2) For a compact even-dimensional manifold M2m which has a handle decom¬

position without handles of the middle index m, any element of Diff (M2m)o
(1 <r < oo, r ^ 2m + 1) can be written as a product offour commutators.

(3) For an arbitrary compact odd-dimensional manifold M2m+l, any element of
Diff(M2m+1)o (l<r<oo,r^ 2m + 2) can be written as a product offive
commutators.

Now the result of this paper concerns the remaining cases.

Theorem 1.2. The identity component Diff (M2m)o of the group of C diffeomorphisms

Diff (M2m) of the compact (2m)-dimensional manifold M2m (1 < r < oo,

r ^ 2m + 1) is uniformly perfectfor 2m > 6, i.e., any element of Diff (M2m)o can
be written as a product ofa bounded number of commutators.

Here the bound for the number of commutators may depend on manifolds. For
the manifolds of dimensions 2 and 4, the problem of uniform perfectness of the
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identity component of the group of diffeomorphisms is still open. The vanishing of
the stable commutator length of these groups is not known either. It is interesting to
find some other approach to study the stable commutator length of diffeomorphism
groups which might solve the remaining cases (see [4], [12]).

The argument deducing the simplicity of Diff (M ")o from the proof of its
perfectness ([8], [23], [2]) applies to showing the uniform simplicity from the proof of
its uniformly perfectness ([31]). We say that a group G is uniformly simple if, for
elements / and g of G \ {1}, / can be written as a product of a bounded number of
conjugates of g or g~l.

Corollary 1.3. For a compact connected (2m)-dimensional manifold M2m (2m >
6), the identity component Diff (M2m)0 of the group Diff (M2m) of Cr diffeomorphisms

ofM2m (1 < r < oo, r ^ 2m + 1) is uniformly simple.

The main part of the proof of Theorem 1.2 is a decomposition of an isotopy into
a bounded number of isotopies with controlled support. Then the theorem follows
from Theorem 1.1 (1) in a way similar to the proof of Theorem 1.1 (2) and (3) in
[30] and in [31]. For the decomposition, we give a technique to find the Whitney
disks which guide to separate two stratified subsets of the middle dimension m. The
condition 2m > 6 on the dimension implies that the Whitney disks can be disjointly
embedded in the manifold and enables us to show Theorem 1.2.

We review the proof ofTheorem 1.1 in Section 2 and there we give lemmas about
the general position of two stratified subsets which were not correctly stated in [31].
Then we give the proof of Theorem 1.2 in Section 3. The proof of lemmas used in
Section 3 is given in Sections 4 and 6. We show Corollary 1.3 in Section 5.

The author is grateful to the referee for patient and careful reading and for pointing
out several errors in the earlier versions, one of which is a misleading statement on
relationship between the decomposition by the stable manifolds of a gradient flow of
a Morse function and a cellular decomposition of the manifold (see Section 6).

2. Decomposition of isotopies

The proofof our Theorem 1.2 relies on the general position argument for differentiable

maps between manifolds with stratified subsets. In [30] and [31], we looked at the

general position of the differentiable mappings from a cellular complex to a manifold
with differentiable cellular decomposition.

The argument in [30] and [31] works for differentiable manifolds with stratified
subsets which are defined as follows: Let Mn be an n-dimensional manifold. A
subset X of Mn is an m-dimensional stratified subset if there is a filtration

X X(m) D X{m~l) D---D Z(1) D X(0\
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such that, for k 0, m,

(1) X^ is a closed subset,

(2) X{k) \ X(*-1) is afc-dimensional submanifold of Mn,

(3) for the closure X^ \ Z(*_1) of X^ \ X&'V,

x(k) y Z(A:-1) y sX(k) y X(Ä:_1)) C X(*_1).

The subset X^ ' is called the k-dimensional skeleton of X. This definition of the
stratified subsets is a weak one ([36], [24]).

First we show the following lemma which is the necessary generalization of
Lemma 4.3 in [30] or Lemma 2.3 in [31].

Lemma 2.1. Let Mn be an n-dimensional manifold with a compact k-dimensional
stratified subset K and Nm be an m-dimensional manifold with a compact l-
dimensional stratified subset L Let f : Nm -> Mn be a differentiable map. If
k + l+l <n, then there is an isotopy {<Pt : Mn -> Mn}te[0,i] (^o id) such that
&i(Kk) n /(/_/) 0.

Proof We construct the isotopy <I>t» skeleton by skeleton. Let K^u> denote the u-
dimensional skeleton of K

Kk K(k)D,,,DK(DDK(o)_

Assume that for u — 1 < k — 1, there is an isotopy {(I>f~1}te[o,i] (^o_1 ^) such
that

&if-1(K(u-l))nf(Li) 0.

Then there is a neighborhood Uu-i of K^'^ such that 0^-l(Uu-i) n /(/_/) 0.

Now for u < k, we construct an isotopy {<X>f }fe[o,i] (&0 ^) such that
#«(£•(«)) n fsLe^ 0 Since ^(m) is closed in frk^'friu) y j7m_i is compact
and is covered by finitely many coordinate neighborhoods {(Du x Dn~u)i}i=l of
Mn of the form Z)M x Dn~u, where D* and Z)"-" are the closed balls of radius 1 in
M.u and M"_M, respectively, and

(£¦<"> \ l/m_i) n (Z)M x Dn~u)i C (Du x {0}),.

Moreover we can take such neighborhoods that the family

;/2)xint(D'^{(mt(D»/2)xwt(D»T»))i}*l1

still covers K^ \ Uu_1, and

ku

i=l
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where DL and D?72 are the images of the closed balls of radius 1/2 in ~RU and

M.n~u, respectively, and "int" denotes the interior.
Now assume that for i — 1 < ku — 1, we have an isotopy {(P"'l~ }te[o,i] (^o *~

id) with support in U}=\(-D" x Dn~u)j such that

ku
*<"> n (<X>ux~l o <P1"'f-1r1(/(L/)) C U(mt(i?r/2) x mtPÎ/-?))/.

On the neighborhood (Du x Dn~u)i, we have the projection

Pl pro}2: (Du x Dn~u)i ^ D>\n—u

PutLf_i W-1 °®iS~l)~l(f(L1)). Since/?j(Lf_1 n(Z)M xZ)"-M)j) is a finite
union of images of manifolds of dimension <i<n—k — 1 < n — u — 1 under
differentiable maps of class Cr (r > 1), it is a measure zero subset of Dn~u by
the Sard theorem. Moreover, since Ll is compact, pi(Lf_1 fl (Du x Dn~u)i) is a
nowhere dense closed subset of Dn~u. Take a point qi close to 0 in the complement
of Pi(Lf-i n (DU x Dn~u)i)- Let i®'"'1 '¦ Mn ~* ^"}*€[o,i] W' id) be an

isotopy with support in (int(Du) x int(Dn~u))i such that &'tu,i (x, 0) (x, tß(x)qt
on (Du x Dn~u)i, where \x: int(Du) -> [0,1] is a C°° function with compact
support such that fi(x) 1 for x e Dy2. Since we took qi in the complement of

Pi(LJ_ln(DuxDn~u)i),

L\_x n <P[u>l(K^) n (int(i?ï/2) x int(Dl/-2u))i 0,

hence

(<PÎ"'fr1(Lf_1) n *<»> fi (int(2>ï/2) x int(i?^)), 0.

Since we took (ft sufficiently close to 0 e Dn~u,

i-l
(<p;«.')-i(/<_!) n (*<»> u |J(int(Z)f/2) x int(Z)^))y) 0(^ [o, l]).

Thus we found the isotopy {#"'* <p",f_1 o <Pj"'f}(e[0)i] (<Po"'' id) with support
in \JJ=1(DU x Dn~u)j suchthat

ku
*<"> n («PJ-1 o <P1"',)-1(/(L/)) C (J (int(DÏ/2) x mt(D»y»))j.

j=i+ l

Let <PJ* be the composition (P,""1 o (2>"'*M, then {<P?}te[<u] (®X id) satisfies
that «Pf (tfW) n /(/_/) 0. Then <P, <pf satisfies $>i ({&) n /(/_/) 0. D
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We use Lemma 2.1 to show the following theorem ([30], [31]).

Theorem 2.2. Let Mn be a compact n-dimensional manifold. Let Pp and Qq be

p-dimensional and q-dimensional stratified subsets in Mn, respectively. Assume

that p + q + 2 < n and that Pp n Qq 0. Then any element f e Diff (Mn)0
(1 < r < oo) can be written as aproductf goh suchthat g e DiîfJMn\k(Qq))o
and h e DiffJ (MB \ Pp)o, where k e DiffJ (Mrt \ Pp)o is a diffeomorphism of
Mn with support in a small neighborhood of Qq, and Diffrc(Mn \ k(Qq))o and

Diffc(M" \ Pp)o ore considered as subgroups of Diff (Mn)o, respectively.

The statement ofTheorem 2.2 means that, by moving Q by a small isotopy k, the

diffeomorphism g of Mn obtained in Theorem 2.2 is isotopie to the identity by an

isotopy which is the identity on a neighborhood of k(Qq), and h is isotopie to the

identity by an isotopy which is the identity on a neighborhood of Pp.
For the completeness, we include the proof of Theorem 2.2.

Proofof Theorem 2.2. Let {ft}te[o,i]De the isotopy such that /o id and fi f ¦

Let F: [0,1] x M" -> M" be the trace of the isotopy: F(t,x) ft(x). Here,
[0,1] x M" contains the (p + l)-dimensional stratified subset [0,1] x Pp.

We look at the image F([0,1] x Pp) C Mn. As p + 1 + q < n - 1, by Lemma

2.1, there is an isotopy {ks}se[o i] (ko id, k\ k) such that .F([0,1] x Pp) D

k(Qq) 0.

Then the following lemma implies Theorem 2.2 by putting Po 0 and replacing
Qq by k(Qq).

" '
D

Lemma 2.3. Let Mn be a compact n-dimensional manifold. Let Pp and Qq be

p-dimensional and q-dimensional stratified subsets ofMn, respectively. Let Po be a
subset of Pp. Let {ft} C Diff (Mn)o (fo id) be an isotopy which is the identity
on a neighborhood of P0. Assume that ft(Pp \ Po) H Qq 0 (t e [0,1]). Then

fi e Diffr(MB)o can be written as a product f\ g\ o h\, where {gt}te[o,i] C

Diffc(Mn \ Qq)o (go id) and {ht}te[o,i] C Diffc(Mn \ Pp)0 (h0 id).

Proof. Let F : [0,1] x Mn -+ Mn be the trace of the isotopy: F(t,x) ft(x).
Let W be a neighborhood of Pq in Mn where ft is the identity. Let U be a

neighborhood of F([0,1] x (Pp \ W n Pp)) and V be a neighborhood of Qq such

that U n V 0.

Let | be the vector field on [0,1] x M" given by ^ + (d/r+;(y))i=0 at (t, ft (x)).
This £ generates the isotopy ft. Let rj be a vector field on [0,1] x Af" with support
in [0,1] x U such that rj £ on a neighborhood of
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Then n d/dt on [0,1] x (V U W) which is a neighborhood of [0,1] x (Qq U P0).
Then r\ generates an isotopy {gt}te[o, l] such that gt is the identity on the neighborhood
V U W of Qq U P0 and g,(x) /,(x) for x in a neighborhood of Pp (Pp \W fi
P^)U(P7nP^). Here, for x G P7,g,(x) x /,(x). Put A gr1 fu then h is

the identity on a neighborhood of P^, and it is isotopie to the identity as an element
of Diff (M"). For, put ht gt-1 ° f- Then «* is the identity on a neighborhood
ofP^.

Thus we can write/ g°h,where g e Diffc(Mn\Qq)0,h e Diff^(MB\P^)0.
D

To use Theorem 2.2, we looked at the stratifications of a compact manifold Mn
given by the stable manifolds or by the unstable manifolds of the gradient flow of a
Morse function associated with a handle decomposition.

A function /: Mn -^ Iona compact n-dimensional manifold Mn without
boundary is called a Morse function if the critical points are nondegenerate, that is,
the Hessian matrices of/ at the critical points are nondegenerate. For such a function

/, the set of critical points is a finite set. The index of the Hessian matrix of / at a
critical point is called the index of the critical point.

Any compact n-dimensional manifold Mn without boundary admits a Morse
function / : M" -> M such that f(Mn) [0, n], the set of critical points of index k
is contained in /_1 (k) (k 0,..., n). Such a Morse function is called self-indexing.
If Mn is a compact connected n-dimensional manifold Mn without boundary, there
is a self-indexing Morse function / : Mn -> M such that /-1(0) and f~l(n) are

one point sets ([19]).
For a e [0, n], put Ma f~l(a). Then Ma is a codimension 1 submanifold of

Mn ifa is not an integer. Put Wk f~l ([0, k + 1/2]), and then this Wk is a compact
manifold with boundary dWk Mk+i/2 f~l(k + 1/2). Let ck be the number
of critical points of index k. Then the manifold Wk is diffeomorphic to the manifold
obtained from Wk_\ by attaching ck handles of index k (k 0, n). This means
the following.

Let Dk x Dn~k be the product of the /^-dimensional disk Dk and the (n — k)-
dimensional disk Dn~k. Let <pt: (dDk) x Dn~k -> Wk-\ (i 1, •••, ck) be

diffeomorphisms with disjoint images. Let

Ck

Wlc Wk.lU[fàim[_\(DkAD"-k)l
i l

be the space obtained from the disjoint union Wk-1 U |_|^= i (D x D" )t by identifying

x e (dDk) x Dn~k C (Dk x Dn~k)i with cpt(x) e 3P^_i C Wk-X. The image
of D x Dn in W'k is called a handle of index k. We will simply write the handle

of index k as (D x Dn )f. Then W! is a manifold with boundary and the corner
which is the image | |^=i <Pi((dD x (dDn By smoothing along the corner, we
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obtain Wj! from W! and W/r has a differentiable structure which is diffeomorphic to
Wk, and we say Wk is obtained from the manifold Wk_\ by attaching ck handles of
index/: (k 0,..., n).

In fact, we can consider W£ as a submanifold with corner of Wk, W£ is obtained

by taking the union of W'k and a neighborhood of corner of W'k, and Wk \ W// is

diffeomorphic to (—oo,k + 1/2] x dWk. We have the sequence of submanifolds

W0 C W[ C W{' CWXC • •• c wk_x c wl C W£ C wk

c ••• c wn-x c wn w;; wn Mn.

Then, when we identify W'k with Wk, Mn is decomposed into the union of the handles

(Dk x Dn~k)i (i 1, ...,ck; k 0, n) and this decomposition into handles is

called a handle decomposition of M. However, hereafter we do not identify W'k or

W£ with Wk. We call the image of Dk x {0} the core disk of the handle (Dk x Dn~k)i
of index k. The boundary of the core disk of the handle of index k is an embedded

(k — l)-dimensional sphere in BWk_i Mk_\j2 and it is called the attaching sphere.
For the above self-indexing Morse function / : Mn -> M. and the constant function

n, the function n — f is a Morse function, and the critical points of index k of
the Morse function / are nothing but the critical points of index n — k of the Morse
function n — f. Hence this gives rise to a handle decomposition of M" called the
dual handle decomposition. That is for

K-k (« - fr1([0,n-k + 1/2]) f-\[k - 1/2,«]),

Mn W* W*" W*' D W*

D ». D V/U D W*lk D W*Lk D W:_k_x

D ••• D W* D W*" D W*' D W*.

Then W„Lk is obtained from W*_k_l by attaching ck handles of index n — k. The

core disk of the handle of index n — k for this handle decomposition is called the

cocore disk of the handle decomposition for /. The boundary of the cocore disk of
the handle of index k is an embedded (n—k — l)-dimensional sphere in dW*_,_.
dWk Mk+i/2 and it is called the belt sphere.

By choosing a Riemannian metric on the manifold Mn, the Morse function /
defines the gradient vector field and the gradient flow Wt ¦ The singular points of the

gradient vector field are precisely the critical points of /. The local stable manifold
and the local unstable manifold of the singular point p of the gradient flow Wt

correspond to the core disk and the cocore disk of the handle containing p of a handle

decomposition of Mn, respectively ([18], [19]). Let ek and e*n~k denote the global
stable manifold and the global unstable manifold, respectively, for the singular point
pk which is a critical point of index k of / (i 1, ck). Then ek and efn~k are
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diffeomorphic to M and Mn~ respectively. Let

CJ

X^k) y y e/ (k 0, «).

j<ki=l
Then

Mn x{n) D x{n-l) D,,,D X(D D X(0)

is a stratification of Mn ([18]). That is, X*® is a closed subset, \Jc.k=l ek is a k-

dimensional submanifold, and Uf=i e\ \ U^Li e\ c X^k~1^. We call this the
stratification by the stable manifolds (for the gradient flow of the Morse function). We also
have the stratification by the unstable manifolds (for the gradient flow of the Morse

function):
j^n _ x*(n) -y x*(n-l) 3 3 X*(l) -y X*(0)

where X*(-n~k^ \JJ>k Uf=i eï"~J (* 0,..., n). This is the stratification by the

stable manifolds for the gradient flow of the Morse function n — f.
We look at the Ä:-dimensional skeleton X^-' of the stratification by the stable

manifolds and the (n —k — l)-dimensional skeleton x*^n l> of the stratification
by the unstable manifolds. The boundary BWk Mk+i/2 of Wk is transverse to the

gradient flow &t, and hence M \ (X^ U X*("-k-i)) is diffeomorphic to dWk x M

by the map

dWkxM3(x,t)\-^ &t(x) eM\ (X(k) U X*(n-k-i)y

Moreover &t(dWk) converges to X^ as t -> —00 and to X*^n~k~^ as t ^00.
Hence, M \ X*(" ^ is diffeomorphic to the interior int(W^) of Wk, and any small

neighborhood of X^ contains a deformation retract ofboth Wk and M \ X*(n-k~l) :

X{k) C int(Wk) cWkcM\ X*(n-k-i)_

Using the gradient flow ^, f°r any neighborhood V of X^ ' in int(W^) and for
any compact subset A in int(W^), we can construct an isotopy {Gt int(R^) ->
intfP^)}^^^] with compact support such that Go id^i^.), Gt(X^>) C X^ >

(t e [0,1]) and Gx (A) C V. A similar statement is true for X^ CM\ X<n-k-\)

Remark 2.4. For our Morse function there is a Riemannian metric on M" such that
the stable manifolds ek and the unstable manifolds e* intersect transversely ([21]).
As we shall see in Section 6 (Proposition 6.2), for a carefully chosen Riemannian
metric, there is a cellular complex structure compatible with the stratification by
stable manifolds.

Now for the interior Mn of a compact manifold with boundary Mn which admits

a Morse function such that Wm Mn for 2m < n, we have the following lemma
(see [30], Lemma 4.5).
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Lemma 2.5. Let Mn be the interior of a compact n-dimensional manifold which
admits a handle decomposition only with handles ofindices not greater than (n—1)/2.
Let X^m' be the m-dimensional skeleton ofthe stratification by the stable manifoldsfor
the gradientflow of the Morse function on Mn adapted to the handle decomposition
(2m < n). Then there are an isotopy {Ft : Mn -> Mn}te[o,i] with compact support
(Fo id) and an open neighborhood U ofX^ such that (Fif(U) (l e TL) are
disjoint.

Proof. Let Vo be a small neighborhood of X^m' C Mn. We apply Lemma 2.1 to
the identity map Mn -> Mn of Mn with stratified subset X^m\ Then there is an
isotopy {ht}te[o,i] such that «o — id and h\(X^) fl X^ 0. We may assume
that the support of the isotopy {ht }te[o,i] is contained in Vo. Take a neighborhood Vi
of X(-m) and V2 of hi(X{m)) suchthat Vx n V2 0. Then V3 Vx n (hi)-l(V2)
is a neighborhood of X^m' such that V$ fl «1(1^3) 0. Here we can take V\ and V2

such that their closures V\ and V2 are compact, and then V?, is compact.
For V3 and h\(V$), by using the flow lines of the gradient flow Wt, we have an

isotopy {Gt : M" -> MB}f€[0,i] with support in F suchthat G0 id, G,|X(m)
iàX(m) and G^ft^I^)) C V3.

Let i*V be the composition of G^ and Ä* : Ft Gt oht- Then ^1(1^3) C V3. For
C/ V3 \ Fi(T^), (Fi)€(C7) (£ e TL) are disjoint. D

We give the proof of Theorem 1.1 (1).

Proofof Theorem 1.1 (1). For the manifold M", we take the m-dimensional stratified
set X(-m) (2m < n) given in Lemma 2.5. Let / e DiffJ(M")0 (r ^ « + 1). By the

result of Herman, Mather and Thurston ([11], [14], [16], [23], [2]), / can be written
as a product of commutators.

/ [ai,bi]'-[ak,bk], alt blt ak, bk e Diffc(Mn)0,

where [oj,èj] aibtaf^bf^. Let C be a compact subset of M" such that the

supports of ûj, bi as well as the supports of the isotopies {äit}te[o,i] (ai0 — id and

an aï), {bit}te[o,i] (ho id and bn bt) are contained in C.

By using the flow lines ofthe gradient flow Wt, we have an isotopy {G't }te[o, 1] with
compact support such that G[(C) C U, where U is the open neighborhood taken in
Lemma 2.5. Then by Lemma 2.5, for Ft in Lemma 2.5 and g (GJ)-1 o F\ o G[,
gl((G[)~l(U)) (t> € Z) are disjoint.

Put
k

H Y\gk-l([aubl]---[al,bl})gl-k.
i l
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Then H is an element of Diff (Mn)o- Now the conjugate of H by g is as follows:

k
i-k-1gHg~l Y\gk-l + l([aub1}---[ai,bi])g

i=l
k-l
Y\gk-i{[aubi]---[al+i,bi+i])g
i=0

Hence

jfc-i

H-1gHg-1 ([ai,bi]...[ak,bk])-1Y\gk-î[aî+i,bî+i]g
i=0

k-l
rlY\gk-l[ai+i,bi+i]gl-k

i=0
k-l k-l

=r1 [ n g'-'ot+ig*-*, n êk-ibl+igi-

k-l k-l
i—k

i=0 i=0

Put

A=Y\gk-îaî+lgî-k and B \\gk-îbî+lg
i=0 i=0

then A and B are elements of Diffc(M.n)o. Thus / can be written as a product of two
commutators: / [A, B][g, H~1]. D

Proofof Theorem 1.1 (2). For an even-dimensional compact manifold M2m which
has a handle decomposition without handles of the middle index m, Theorem 2.2

together with Theorem 1.1 (1) implies Theorem 1.1 (2) (see [30]). D

For the decomposition of an isotopy on an odd dimensional manifold, we used
the following lemma (see [30], Remark 4.4).

Lemma 2.6. In Lemma 2.1, let Kk £"<*> D K^-V D ••• D K^ D K^and
Le L® D L(^_1) D D L(1) D L(0) be the stratifications. Then there
is an isotopy {<î>t'- Mn -> Mn}te[o,i] (^o id) with support in a neighborhood
of Kk such that <X>i(K^) n f(L&) 0 for a + b + 1 «, and the intersection

<Pi(K^) fl f(L^>) consists offinitely many transverse intersection points for
a + b n.

Proof. We proceed as in the proof of Lemma 2.1. Assume that for u — 1 < k — 1,

there is an isotopy {$ut-l}te[o,i\ ($l~l id) suchthat $\~1{K^) n f(L^) 0

fova + b + l n and a < w — 1, and the intersection $\~l (K^) n /(L(è)) consists
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of finitely many transverse points for a + b n and a < u — 1. Then there is a

neighborhood Uu-i of ä"(m_1) such that ^_1(^«-i) n f(L^n~u)) 0. We cover
£"(M) \ C/„_i by finitely many coordinate neighborhoods {(Du x £""");}?= i such
that

(K^ \ l/m_!) n (Du x Dn~u)i C (Du x {0})i

and {(int(i>y/2) x int(Df/-M))f}^1 still covers K^ \ Uu-i.
By the proof of Lemma 2.1, we have isotopies {(P*'l}t€[olï\ (^o'' ià, i 1,

k„) with support in \Jj=l(Du x Dn~u)j such that

ku

KM n (^r1 o ^)-\f(L^-u-^)) C (J (int(Z)J/2) x mt(D»j?))j,

and for &? $ut~l o <p^*", d>^(K^) n /(l/"-"-1)) 0.

We modify $? to obtain $ut suchthat $\(K{-ìi)) Ci /(/_>_m)) consists of finitely
many transverse intersection points.

Since ^(tf^n/CZ/"-"-1)) 0,(/|L("-^)-1(^r(^(M)))isaclosed subset
hence is a compact subset in /_,(R_M). Thus it is compact subset in /_,(R_M) \ ]_,(n-w-i)

Now assume that, for « < ku, we have an isotopy {(P"'*_ }*e[o,i] (^o'i_ id)
with support in (Jy=\ (-D" x Dn~u)j such that

i-1
*<"> n {$» o ^ï'f-1r1(/(L(,I-">)) n |J(int(Z)f/2) x int^"")),.

/=1

consists of transverse intersection points. Then for

L'frf (<z>r ° ^sf_1r1(/(i("~M))))

we look at Pi(L"lZx n (Z)w x D"-"),-) in D"_M. More precisely, we look at the map

Pio^oSf-y'of:
sL(n-u) \L(«-"-D)n/-1((^1Mo$^f-1)((int(Z)M)xint(Z)"-M)).)) —? 2)""".

Then by the Sard theorem for Cr mappings between the manifolds of the same
dimension (r > 1), the critical value of pt o ((Z>" o(p"'l~ )_1 o / is measure zero in
Dn~u. We choose a regular value q'. close to 0.

Let {$'tUti }t&[o,i\ be the isotopy with support in (int(Du) x int(Dn~u))i such that

$'tU!Ì(x,0) (x,tfi(x)qfi) ($'0U!Ì id). Then since q\ is a regular value,

Lm-u n ^«/(^M) n (int(Z)f/2) x int(Z)f/-2w))I-
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or
{$'u,iriL,n-u n K(u) n (int(Z)»/2) x mt(Dfô))t

consists of transverse intersection points. Since q't is close to zero, the transversal-

ity in U^iCint^S^) x int(Z)f7"2M)) is preserved. Hence for {$u/ $u/~l o

^^[0,1],
K(u) n (qu-I o £u,iyl^L(n-u-l)^ 0

and

i
KM n («P»"1 o ^ï',r1(/(L(,I-"))) n (J(int(X>ï/2) x irt(Dfö))j

Then for $? (P?-1 o $"'*k
consists of transverse intersection points.

o$ut'ku,

K(u) n ($J)-i(/(/,(»-«-!))) 0

and

^n^;)-1^-"»))
consists of transverse intersection points. Since K^ fl (<X>^)~l(f(L^n~u^)) is compact,

this is a finite set.

Put &t @k- Then <S>t is the desired isotopy. D

In the rest of this section, we sketch the proof ofTheorem 1.1 (3). We need three

more lemmas whose proofs are omitted because they are either straightforward or
given by rewriting those in [30].

By using Lemma 2.6 and the argument of the proof of Theorem 2.2, we obtain
the following lemma.

Lemma 2.7 ([30], Lemma 6.3). Let Mn be a compact n-dimensional manifold. Let
Pp and Qq be p-dimensional and q-dimensional stratified subsets of Mn, respectively.

Assume that p + q + 1 n and that Pp n Qq 0. Let Pp P^ D
p{p-D D D p(o) and Qq Q{q) D g(«-i) D D g (o) be the stratifications.
Then any element f e Diff (Mn)o can be written as a product f g oh such that

g e Diffc(Mn\k(Qq))oandh e Diffc(Mn\P(p-l))0,wherek e Diff^(M"\P^)0
is a diffeomorphism of Mn with support in a small neighborhood of Qq. Moreover
there is an isotopy {ht}te[o,i] such that ho id, h i h, ht is the identity on a
neighborhood of P{p~l), andfor H(t, x) ht(x), H([0, l]xPp) nfc(g(*_1)) 0 and

H([0,1] x (Pp \ pt?-1))) n k(Qq \ Q{q~l)) consists offinitely many transverse
intersection points.
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For an odd dimensional compact manifold M2m+1, we considered a handle

decomposition of M2m+l in [30]. Let M2m+l p(2m+D D-oP(0)be the
stratification by the stable manifolds for the gradient flow for the corresponding Morse

function, and M2m+1 Q(2m+V> D ¦¦¦ D Q <°> be the stratification by the unstable
manifolds for the gradient flow. We look at the stratified subsets Pm p(m> and

Qm Q and we have the following lemma.

Lemma 2.8 ([30], Lemma 6.4). Let {ht}te[o,i] (ho ià) be a Cr isotopy which is
the identity on a neighborhood of P^-V and H([0,1] x Pm) n fc(ô(ro_1)) 0

for H(t,x) ht(x). Let Vm C Pm be the complement of a neighborhood of
pv"-i) wfoere fit — j(j- Then there is a C°° isotopy {ht}te[o,i\ (^o — ià) fixing a
neighborhood of pC™-1) such that its trace Hj [0,1] x M2m'+1 -> M2m+l is C
close to H : [0,1] x M2m+l -> M2m+1 and H\[0,1] x Vm is an immersion outside

ofa finite subset. Moreover the image

H([0,1] x Vm) C M2m+l \ (P^-1) U Jfc(g(m-1)))

hasfinitely many double point curves which is in general position with respect to the

curves H([0,1] x {v}) (v e Vm). Ifm>2 these double point curves are disjoint,
ifm 1, there are at mostfinitely many triple points and cusps.

Then, using the idea of Burago, Ivanov and Polterovich ([4]), we constructed an
isotopy {at}te[o,i] (ao — id) with support in a union ofdisjointly embedded (2m + 1)-
dimensional open balls embedded in M2m+1 such that (at oht)(Pm) C\k(Qm) 0

(t e [0,1]), and we showed the following lemma.

Lemma 2.9 ([30], Lemma 6.5). For the generic diffeomorphism

h hxe Difff(M2m+l \ P(m-1})o

given by Lemma2.S, h canbedecomposedash aog oh', where a e Diff£°(|_|j Ut)o,
|_|j- Ui is a union of (2m + l)-dimensional open balls Ui disjointly embedded in
M2m+\ g e Diff^(M2m+1 \k(Qm))o andh! e Diff^°(M2m+1 \ Pm)0.

Proofof Theorem 1.1 (3). Note that the element h'1 ohe Diff (M2m+1)0 is close

to the identity and it can be decomposed ash-1 oh hog with h e Diffrc(M2m+1 \
Pm)o and g e Diff£(M2m+1 \ k(Qm))0 (Remark 5.4 in [30], see Remark 2.10).
Then by Lemmas 2.7 and 2.9,

f g oh g oho (h~l o h)

goaogoh'ohog
(g o a o g'1) o (g o g o g) o (g'1 oh' oho g)
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and g o a oj-i e Diffc(g(\J. Ut))0, g ° g o g e Diffc(M2m+l \ k(Qm))0 and

g-1 oh' ohog e Diff^(M2m+1 \ |-1(Pm))o- Noticing that a can be taken as

a commutator with support in | |^ Ui, Theorem 1.1 (1) implies Theorem 1.1 (3) (see

[30]). D

It is worth noticing again that, for any compact manifold Mn, there is a
neighborhood of the identity of Diff (M")o (1 < r < oo, r ^ « + 1) whose element can
be written as a product of four or six commutators([30], Remark 5.4).

Remark 2.10. For a compact manifold M, we have a self-indexing Morse function

F : Mn -> [0, «]. By choosing a Riemannian metric on Mn, we have the

stratification {X^ '}rjc=Q by the stable manifolds for the gradient flow of the Morse

function F, and the stratification {X*(n '}?=0 by the unstable manifolds. For a

compact odd-dimensional manifold M2m+1, M2m+l is covered by two open sets

Ui F~l([0,m + 2/3)) and U2 F~l((m + 1/3,2m + 1]), where any
neighborhood of X^m' C U\ contains a deformation retract of Ui and any neighborhood
of X*^m' C U2 contains a deformation retract of U2. Then by the fragmentation
lemma ([2]), there is a neighborhood JV of the identity in Diff (M2m+1)o such that

any element f of M can be written as a product / g oh, where g e Diffc(U\)o
and h e Diffc(U2)o. Hence by Theorem 1.1 (1), any element / of JV* can be written
as a product of four commutators of elements of Diffr(M2,n+1)o (1 < r < oo,

r ^ 2m + 2). For a compact even-dimensional manifold M2m, M2m is covered by
three open sets U\, U2 and U$. Here, U$ is a union of disjointly embedded open balls
which is a neighborhood of the set of critical points of index m. Let Vj, be a smaller

neighborhood of the critical points of index m such that V?, C U$. Then we can put
Ui (M2m \ V3) n F_1([0, m -I- s)) and U2 (M2m \ V3) n F~l((m - s, 2m])
for a small positive real number s. Here, we can choose Vj, so that any neighborhood

of X^m~1' C U\ contains a deformation retract of Ui and any neighborhood
of X'v"-1' C U2 contains a deformation retract of U2. Then by the fragmentation
lemma, there is a neighborhood J/ of the identity in Diffr(M2m)o such that any
element / of JV* can be written as a product / a o g oh, where g e Diffc(Ui)o,
h e Diff£(i72)o and a e Diff£(i73)o. Hence by Theorem 1.1(1), any element /
of JV* can be written as a product of six commutators of elements of Diff (M2m)o
(1 < r < oo, r ^ 2m + 1).

3. Proof of the main theorem

For an even dimensional compact manifold M2m, we proceed as follows to prove
Theorem 1.2. (The proofs of lemmas are given in the next section.)

For the manifold M2m, we consider any smooth triangulation P of it (for the
existence of smooth triangulations, see [33], [37], [20], [6]). Let P^ ' denote the
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&~dimensional skeleton of P. Then the (m — l)-dimensional skeleton p(m_1) of the

triangulation P has the following property:

For each m-dimensional simplex om of P^, let (P (m_1) U om)jom denote the

(m — l)-dimensional cell complex obtained from P^-m~i> \Jam by identifying am

to a point. Then there is an embedding i of (p(m~^ Uam )jom in M2m such that,
for any neighborhood U of i((P^m~1^ U om)/om), there is a diffeomorphism
of M2m isotopie to the identity which maps p(m_1) U om into t/.

For any smooth triangulation P of M2m, there are a Morse function on M2m and

a Riemannian metric on M2m such that the stratification by the stable manifolds of the

gradient flow is homeomorphic to P. Here, in a neighborhood ofthe barycenter bak of
the simplex o~ we can take a coordinate neighborhood (U, (xi,... ,xn)) suchthat a
is locally given as xk+i xn 0, and the Morse function in a neighborhood
of bak is given by /:—Xi2 x^2 -\-xk+\2 H hxB2. The homeomorphism can
be constructed so that it sends the stable manifold of the barycenter bak differentiably
to the interior of the simplex a Moreover the homeomorphism can be constructed
so that it sends the stratification Q by the unstable manifolds of the gradient flow to the

cell decomposition P * dual to P. We show this fact in Section 6 (Proposition 6.1). In
this section, we identify the stratification by the stable manifolds with the triangulation
P by the homeomorphism and it is denoted by P, and then, we call the stratification
Q by the unstable manifolds the cell stratification dual to P. We call the stable
manifolds of P simplices and the unstable manifold of Q dual cells.

Remark 3.1. We may use a cellular complex associated with a handle decomposition
of M2m if it has the above property for each m-dimensional cell am. The number

N of the m-dimensional cells of such a cellular decomposition of M2m appears in
the estimate of the bound for the number of commutators at the end of the proof of
Theorem 1.2. We discuss the relationship between the handle decomposition and the

cellular decomposition in Section 6 (Proposition 6.2).

Now we look at the m-dimensional skeletons Pm and Qm of the triangulation
P and its dual cell stratification Q. These Pm and Qm intersect transversely at the

barycenters of m-dimensional simplices of P. Then by an isotopy ft (t e [0,1]), the
intersection f(Pm) H Qm becomes very complicated. However, we can treat it as

follows.
For the manifold M2m, the statement of Lemma 2.7 is written as follows.

Lemma 3.2. Let Pm denote the m-dimensional skeleton ofa triangulation ofa (2m)-
dimensional manifold M2m, and Qm, the m-dimensional skeleton of the dual cell
stratification. Let P"' and <2 denote the i-dimensional skeletons (i m — 2,

m — 1) of Pm and Qm, respectively. Then any element f e Diff (M2m)o can
be written as a product f g o « such that g e Diffc(M2m \ k(Qm))o and
h e Diff (M2m \ P{m-2))o, where k e Diff (M2m \ Pm)0 is a diffeomorphism
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of Mn with support in a small neighborhood of Qm. Moreover there is an isotopy
{h t} t e [o, l] which has the foilowing properties:

(1) ho id, «i h, and ht is the identity on a neighborhood of p(m_2).

(2) ForH(t,x) ht(x),
H([0,1] x P^-D) nk(Q{-m-v>) ® and H([0,1] x Pm) n k^™'2)) 0.

(3) For each (m — l)-dimensional simplex am~l ofP^m~^ and each m-dimensional
cell xm ofQm, the intersection H([0,1] x om_1) n k(xm) is transverse. Thus

H([0,1] x P^-D) n k(Qm) is a finite set.

Then, if 2m > 4, we can separate the image H([0,1] x P^"1)) fromk(Qm) by
an argument similar to the proof of Lemmas 2.8 and 2.9.

First, we approximate the isotopy H by a generic one, say H. Let

{ht}te[0M C Difff(M2m \ p(—2>) (Äo id)

be a C°° approximation of {ht}te[o,i] C Diffc(M2m \ p(™-2)) generic with respect
to Pm and k(Qm) such that ht is the identity on a neighborhood of p<-m~2\ Then

H(t,x) ht(x) has the following properties:

(0) H : [0,1] x M2m -> M2m is close to H : [0,1] x M2m -> M2m and A, is the

identity on a neighborhood of pym~2\

(1) The restriction

H\([0,1] x Vm~l): [0,1] x Vm~l —? M2m

is an immersion, where Fm_ * (c P ^m_1^ is the complement of a neighborhood
of p(m-2) c p(i»-i) where jit is the identity.

(2) H([0,1] x P^-1)) n fc(ô(ro-1)) 0 and tf([0,1] x Pm) n k(Q^m~^) 0.

(3) #([0,1] x PC™-1)) n /;(gm) is a finite set:

H([0,l]xP(ro-1))nÄ:(j2,f,) {^(^,Vi)| « 1, •--,?•}.

(4) ff([0,1] x {Vi})nk(Qm) H(Si,Vi) (i 1, ...,r).

(5) H([0,1] x {Vi}) does not contain double points of H([0,1] x pO»"1)) (f 1,

...,r).

(6) H\[0,l]xP("-1) restricted to a neighborhood of [0,1] x {rç} in [0,1] x P^m~*>

is an embedding (i 1, r), and

(7) H([Si, l]x {Vi}) (i 1, r) are disjoint.
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Here, the statements (l)-(7) hold for generic H (or the properties (l)-(7) are generic
in the space of isotopies). In particular, the statement (5) holds because the inverse

image of the double point set of H([0,1] x p(m-1)) is a finite set which is in general

position with respect to [0,1] x {vt} (i 1,..., r) and 2m > 4.

Note that for the proof of uniform perfectness, we can approximate the
diffeomorphism for a bounded number of times. In fact in this case, fi gi o h\
gì ohi ° (hi~l o hi) and hi~l o hi e Diff(M2m) is close to the identity. By
Remark 2.10, «i_1 o h\ can be written as a product of six commutators.

For the above disjoint curves H([Si, 1] x {t>i}), we can construct isotopies as in
Lemma 2.9 which was used to prove Theorem 1.1 (3).

Lemma 3.3. For the above generic isotopy {ht}te[o,i], there is a neighborhood
Ui (i 1, r) of the curve H([Si, 1] x {vt}) C M2m diffeomorphic to a (2m)-
dimensional ball such that Ui are disjoint and there is an isotopy {at }te[o,i] (ao — id)
with support in \_\i=i Ui such that, for h't at o ht,

h't(P{m-l)) n k(Qm) 0 (t e [0,1]).

Note that at e Diff^(|_|^=1 U{)o can be taken as one commutator with support in

Uf=i ui (see Pi])-
Since h'tiP^-V) n k(Qm) 0 (t e [0,1]), by Lemma 2.3, there are isotopies

{*;},€[0fi] C Diffc(M2m \k(Qm)) and {«'/},e[0)i] C Diffc(M2m \ pO»"1)) such
that h\ g\ o h'[. In other words, g't and h"t (t e [0,1]) are the identity on
neighborhoods ofk(Qm) and p(m_1), respectively. Note that, by taking h"t generically on
Pm, h't(Pm) nfc(ô(ro_2)) 0.

Put ht h"t. Then ht is the identity on a neighborhood of p(m_1) and

hf)(Pm) n k^™-2)) 0 (t e [0,1]).
We look at the intersection hf^P™) n k(Qm). At time 0, the intersection

hQ (Pm) fl k(Qm) is the set of the points near the barycenters of m-dimensional

simplices. The image under the isotopy h\ of an m-dimensional simplex am intersects

k(Q^m~^') and k(Qm). We assume 2m > 6 and we are going to construct an

isotopy with support in the union of disjointly embedded balls which removes the
intersection of am and k(Qm) except on the dual m-dimensional cell.

This is the main part of the proof of our Theorem 1.2.

In fact, for an m-dimensional simplex am, we can remove the intersection of the

image of the isotopy of om and &(ô in a waY similar to Lemma 3.3, and then

we can remove the intersection of the resultant isotopy ofam and k(Qm\om *), where
am* is the m-dimensional cell of Qm dual to am. For the latter process, we will find
the Whitney disks which guide the construction of isotopy to reduce the order of the
intersection point set. After removing the intersection of an m-dimensional simplex
am and k(Qm \ am*), we continue the process for other m-dimensional simplices.

More precisely, we construct the isotopies inductively, in Lemmas 3.4—3.7.
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Let of (i 1, JV) be the m-dimensional simplices of Pm. For 0 < j < N,
assume that we have an isotopy

{h^}te[o,i] C Diff(M2m)o (h{0j) id)

such that h\j) is the identity on a neighborhood of P(m_1) U (j/=1 of. Let h^ be a

C°° approximation of h/ generic with respect to Pm and k(Qm) such that h/ is

the identity on a neighborhood of P&»-1) U (j/=i of- Then H°'\t,x) h\j)(x)
has the following properties:

(0) HM : [0,1] x M2m -> M2m is close to #^ : [0,1] x M2m -> M2m defined

by i?(/) (r, x) h\J) (x) and h{p is the identity on a neighborhood of P(m_1) U

(1) The restriction

HU)\[0,1] x V™ : [0,1] x V™ —? M2m

is an immersion outside of a 1-dimensional subset (a codimension m subset)
of [0,1] x Vf\, where VT" (c Pm) is the complement of a neighborhood of
p(m-i) in pm where £(/) is the identity_

(2) ^^([0>l]x^(m_1))n/:(ô(m-1)) Ç)anàH^\[0,l]xPm)nk(Q{~m-2^)
0.

(3) #^([0> 1] x Pm) n fc(ô(ro_1)) is a finite set:

/?c/)([0,1] x Pm) n *(ô(ro_1)) {H{j)(s\j),v\j)) | * 1, r0)}.

(4) H^([o, i] x {v(.J)}) nfc(ô(ro_1)) ^(/)(4;)' VF}) (' L ¦¦¦. r(/))-

(5) //</> ([0,1] x {v^ }) does not contain double points ofH^ ([0, l]x?m)(/ l,
...,rW).

(6) //^ |[0,1] x Pm restricted to a neighborhood of [0,1] x {vP1} in [0,1] x Pm
is an embedding (i 1, r^"), and

(7) HU)([s\J), 1] x {vfC/)}) are disjoint.

Here, the statements (l)-(7) hold for generic H^\ In particular, for the statement

(1), we notice that the set of rank m matrices in the space of (m + 1) x (2m) matrices
is codimension m ([22]). The statement (6) holds because the inverse image of the

double point set of Hü)([0,1] x Pm) is 2-dimensional in [0,1] x Pm which is in

general position with respect to [0,1] x {v\} } (i 1, r^) and 2m > 6.
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Lemma 3.4. For the above generic isotopy {h \J } t e [o, l], there is a neighborhood Ì7-

(i 1,..., ry ofthe curve H^\[s\J\l]x{v^}) C M2m diffeomorphic to a (2m)-
dimensional ball such that Î7- are disjoint and there is an isotopy {a\J }te[o,i]

(a{0j+l) id) with support in [JC^ u}j) such that, for h'{p a{/+l) o h{p,

h'{p(Pm) n fc(ô(m_1)) 0 (te [0,1]).

Note again that ap e Diff£(|_£=1 Ut )o can be taken as one commutator

with support in UJL^ c/.(/) (see [31]).
The isotopy « ^ given by Lemma 3.4 has the following properties.

(0) h'\J) is the identity on a neighborhood of pC™-1) U (j/=i of.
(1) i?'^([0,1] x Pm) nk(Q(m-V) 0.

(2) h'\j) is generic with respect to Pm and k(Qm).

Now we look at the intersection h'^(Pm) D &(Ôm)- Since «'^ is the identity
on a neighborhood of P&"-1) U (j/=i of, the intersection h'P(of) nk(Qm) for
i < j is always the one point set of fl k(of*), where of* is the m-dimensional

cell of Qm dual to of (i < y). For the simplex of+v the intersection «'S;)(oj"+1) n
k(Qm) is a finite set which vary with respect to the parameter t. If 2m > 6, we

can find the Whitney disks which guide to reduce the order of intersection point set

A'FVf+i) n k(Qm \ ff™_*), where of*x is the m-dimensional cell of Qm dual to

o~f+l as we explain now.
For the m-dimensional simplex o,f+1 of Pm, the intersection of o'Jl+l and k(Qm)

is just one point which is the intersection of o'f,l and k(of*^, Then the behavior

of the intersection h / (of+l) fl k(ofT{) it rather complicated. Hence we look at

H'W>([0,1] x of+l) n k(Qm \ of*^ or h'(/\o™+l) n /:(ôm \ of^). First, note

that Ä'S;)(oj"+ j) n k(Qm \ of*x is the empty set for small t, and since h'\J) (of+1 f)

HQ(-m~1)) 0 (and h'P (P(m_1) f)k( Qm 0), the algebraic intersection number

of the two m-dimensional cells h'\J'(of+l) and k(xm) (t e [0,1]) is always 0 for
each m-dimensional cell xm of the dual cell complex Qm other than o~f?1.

If we look at the movement of the intersection h / (oj1,^ fl k(xm) with respect
to the parameter t, there happen a finite number ofgenerations ofpairs of intersection

points and cancellations of pairs of intersection points. For generic H'^> or h /
the values of the parameters of generations and cancellations are different. This
genericity argument follows from the following well known lemma.

Lemma 3.5. Consider the space ofC°° maps F: Mx W" -> W". Then, for generic
F, the inverse image ofa generic point y e W" consists of regular points anc



Vol. 87 (2012) On the uniform perfectness of diffeomorphism groups 161

points for Ft F(t, •). At afoldpoint x for Ft, by changing the coordinates ofM.m
(both of the secondfactor ofWx W" and the target W"), Ft is locally written as

Ft(xi,...,xm) (xi,...,xm-i,ym(t,xi,...,xm)),

where |^- 0, -^f ^ 0 and J^f =é0atx. Thefoldpoints are discrete in F~\y)
and correspond to the generations or cancellations ofpairs of intersection points.

We use this Lemma 3.5 in the following way. We take a tubular neighborhood
of k(xm) and the projection pk(zm) to the fiber which is an m-dimensional disk, and
look at the map pk(zm^ o (H'^\[0,1] x of. x). Then for generic H'^J\ by using
Lemma 3.5, there are only fi ni tei}' man}' generations and cancellations of pairs of
intersections in the family {h t (<7f+1) C\ k(xm)}te[o,i]-

We are going to construct the disks associated with the intersection H'^\[0,1] x
of+i) n k(xm) for an m-dimensional cell xm of Qm other than of*v

For a generation of a pair of intersection points, the intersection points near the

generation point are written as h'y (xt) and h / (yt) (t e [to, to + Sq)), where

h'Y (xto) h'tQ y* (yto) is the generation point. Here, Xt and yt are continuous functions

written as xt (c\,..., cm_\, *Jt — to) and yt (c\,..., cm_\, —*Jt — to),
respectively, for a suitable choice of coordinate around (to,Xt0) (to,yt0) e
[0,1] x o'f+l, where C\,..., cm_\ are constants.

We take a flat metric on the m-dimensional simplex of, l and we draw the geodesic

segment xjy} in &T+\ joining the intersection points Xt and yt (t e [to, to + £o))-
Once we choose the pair of intersection points to be joined by the geodesic

segment, we continue joining them as the parameter t increases unless one of these

intersection points meets a cancellation point.
For a cancellation of a pair of intersections, the intersection points near the cancellation

point are written ash'/ \xt) and«' t (yt) (t £ (h~£o> to]),whereh fQ (xto)

h'fi (yto) is the cancellation point. Here, xt and yt are continuous functions written
as Xf (ci,..., cm-i, *J—t + to) and yt (ci,..., cm-i, -\j-t + to), respectively,

for a suitable choice of coordinate around (to, Xt0) (to, yt0) *= [0,1] x o'f+1,
where c?i,..., cm_\ are constants.

Assume that we have chosen geodesic segments for the intersection points such
that t < to- Let x't (t e (to — Sq, to)) be the other endpoint of the geodesic segment
containing Xt, and y't (t e (to —£o > h)) be the other endpoint of the geodesic segment
containing yt. There are two cases. In the case where x't ^ y't that is, if it is

a cancellation of intersection points belonging to different geodesic segments xtx't
and yty't in {?} x o'f+l (t e (to — £o> to)), we draw the geodesic triangle joining the
3 points Xt0 yt0, x't and y't in {to} x ofLp and continue to draw the geodesic

segment x'ty't joining x't and y't in {t} x o'f+l (t e (to, to + £o))- In the case where

x't y't that is, if it is a cancellation of intersection points of the same geodesic
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segment xjjt in {t} x <if+l (t e (to — SqJq), x't yt and y't xt), we add the

auxiliary band

y [u]x{x,}u U mi***}.
te[to-e,t0] te[t0-e,to\

which contains the curve [to, 1] x {xt0} [h,l]x {yt0}, where s (< So) is a small

positive real number. Note that the image of the auxiliary band does not contain
double points of H'^J\[0,1] x &f+1) for generic H'^J\ and hence H'^ restricted

to the auxiliary band is an embedding into M2m \ k(Q^m~^).
Now we have a family of geodesic segments in of, l moving with respect to the

parameter t and there are only finitely many times ti (i 1, f^') when there

appear geodesic triangles.
We are assuming that 2m > 6, and for generic h't the family of geodesic

segments satisfies the following properties because the preimage of the double points

of h'P(Pm) is 1-dimensional in [0,1] x af+v
(1) The geodesic segments in o'f+l joining the pairs of intersection points in

(h'p')-1 (k(xm)) never contain the preimage of double points of (h'p')(Pm).
(2) The geodesic triangles never contain the preimage of double points of

(h't^)(Pm).
For ti (i 1, fu'), let Y be the union of the geodesic triangle with the

three vertices x*. ytt, x't. and y't. in {ti} x o'f+l, the geodesic segments XfX't and

yty't in {t} x o'f+l, (t e (tt — st, tt)) and the geodesic segments x'ty't in {t} x o'f+l
(t e (h,h + st)):

7 (J (0xx^ï)u( (J {t}xy~tj't)
te (t( —8i,ti) te(ti—ei ,ti

u({f,}xAV^;f)u( [J {t}xx^
te(ti,ti+Bi)

C(ti-Si,ti +Si)xof+v
We deform it to obtain a 2-dimensional manifold Y' embedded in (ti — Si,U + Si) x
o'f+l suchthat

BY' BY {(t,x't)}te(tr-er,tr+er) U {(t, y't)}te(tr-er,tr+er)
U {(t^t^tedi-eiJi] U {(t^t^tedi-eiJi]

C(ti-Si,ti +Si)xof+l,
and Y' coincides with Y for \t — ti \ > Si/2 and the intersection of Y' and {t} x o'f+1
is a union of two disjoint differentiable curves near the original geodesic segments
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for t e [ti — Si/2, ti) and is one differentiable curve near the geodesic triangle for
t e [h,h -rSi/2].

Now we look at the union Z of geodesic segments which are not modified by the
above operation and the manifolds Y' for all ^ (i 1,..., r^'). If there are auxiliary
bands we add them to Z and modify it to make Z an embedded 2-dimensional
manifold with boundary in [0,1] x o'f,1.

For a generic choice of the isotopy H'^> and manifolds Y', if 2m > 8, Z is a
union of disjointly embedded 2-dimensional disks in [0,1] x o'f+l. If 2m 6, the 2-

dimensional disks may intersect in [0,1] x o"?+1 creating finitely many double points.
For 2m > 8, the fact that a connected component of the union Z is diffeomorphic

to a 2-dimensional disk can be seen as follows: Consider the space obtained from Z
by identifying the points in each connected component ofZPl({?}x of, l Then it is

a graph with vertices corresponding to the generation points and cancellation points.
The generation points correspond to the vertices of valency 1 and the cancellation
points correspond to the vertices of valency 3 except the cancellation points with
auxiliary bands. For the cancellation points with auxiliary bands, the auxiliary bands
become edges ending at {1} x o'f+l. Thus each connected component of the graph
is a tree rooted at time t 1 which grows in the negative direction in t. Hence each

connected component of Z is a 2-dimensional disk.

In the case where 2m 6, we see in a similar way that Z C [0,1] x o"?+1 is an
immersed image of 2-dimensional disks which has generically a finite number of double

points. That is, the curves joining the pairs of intersection points in (h'\ )_1 (k(x3))
may intersect at finitely many points (tt,xi) (I 1, r^'). Then for generic
H'(J\ tg are not the time of generations or cancellations. When two geodesic curves

y| and y2 intersect at the time ti, we modify one of the family {y2 } of geodesic

curves near ti by a family {y2} of curves which does not intersect {y\ } near ig.

More concretely, for a small positive real number si, we can find a neighborhood

of y\ z U y2 C [0,1] x om which is diffeomorphic to (t£ — S£, ti + si) x X, where

X is a neighborhood of [-1,1] x {0} x {0} U {0} x [-1,1] x {0} in i 3

and

yf€) A}x[-l,l]x{0}x{0}

ytù {h}x{0}x[-i,i\x{0}.
We can choose the parametrization in this neighborhood so that

and

ylk+s)(u) (te+s,u,Q,s)

y2 (u) (ty + s,V\S,u + v2s,v?,s)
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for a vector (v\, v2, v$) e M3 (v^ ^ !)• By using a smooth bump function

fx: [-1,1] -> [0,1] such that //,(x) /a(-x), fx\[0,1/3] 1 and /x|[2/3,1] 0,

we modify y2 Put

y2fe+5)(w) (t£ +s,(l+ ct)/x(s/st)/x(u/8t) + vxs,u + v2s, v3s),

where ct and 8t are small positive real numbers such that the image of y'2^^+s> is

contained in our neighborhood X. Then the curves y\ and y2 G (tt —S£, tt +êt))
do not intersect in of, x.

Thus for 2m > 6, using the above family of curves if necessary, we have the union
Z' of a finite number of disjointly embedded 2-dimensional disks in [0,1] x o'f+1
such that

(H'U)\[0,1] x of+l)-\k(xm)) C Z'.

Since 2m > 6, the images under generic H'^' of these 2-dimensional disks are

disjointly embedded in M2m \ &(ô )• The images of these disks are called the

Whitney disks.

We have been looking at the intersection point set h'\ (of+l) fl k(xm) for one
m-dimensional cell xm of Qm other than om*. These considerations can be applied to

the intersection point sets «'\J (of+l) fl k(xm) for all (finitely many) m-dimensional
cells xm of Qm other than om* simultaneously. This is because, if 2m > 8, the
embedded 2-dimensional disks Z' are disjoint for different xm for generic H'^> ,anà
if 2m 6, we can remove the intersection of the embedded 2-dimensional disks

Z' for different xm in a way similar to what we did for the intersection of Z for the

same xm. Thus we obtained the union Z' of a finite number of disjointly embedded

2-dimensional disks in [0,1] x o'f+l such that

(H'W\[0,l]xof+l)-\k(Qm \of+*)) C Z',

and H'^'\Z' is an embedding.
If 2m > 8, then the Whitney disks H'^(Z') do not contain double points of

H'^i> ([0,1] x Pm) for generic H'^'. This is because the inverse image of the double

point set of H'^\[0,1] x Pm) is 2-dimensional in [0,1] x Pm and m + 1 > 5.

If 2m 6, then the Whitney disks H'^'(Z') may intersect the double point set

of HrV'([0,1] x P3). Then, for generic H'^J\ the intersection is a finite set and we

pick up the points ofWhitney disks which are in the image of h'\ (P 3) with larger t ;

H'u)(4j),wlj)) H'U)(t'P,w'P) (i 1,..., r'U)),

where (t\j),w\j)) is a point Z' C [0,1] x of+l, (t'\J),w'\J)) e [0,1] x P3 and

t (/) < f/(/) rj^ for generic Hf(J)t the curve H'ü) ([f'^, 1] x{iy'p)}) is embedded

in M2m \k(Qm) and does not contain double points of H'^([0,1] x P3) other than
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H,(J) (t'P, w'P). Hence if 2m 6, we have the Whitney disks H,(J) (Z') together

with the curves H'^\[t'\j), 1] x {w'\j)}) (i 1, r'^).
Using the Whitney disks H,(J)(Z') and curves H'^([tf\ 1] x {w'P}) (i 1,

r'(J)), we prove the following lemmas in the next section.

Lemma 3.6. For h'P, there is an isotopy {bf }te[o,i](bo + ià) with support
in a union ofdisjointly embedded open balls such that for h'fi* bt3 ° h t
hfJ) is the identity on a neighborhood of pO»"1) U (j/=i of and «70)(of+1) f)

k(Qm\of*,) &.

Lemma 3.7. For h"V' given by Lemma 3.6, there are isotopies

{g?+1)he[o,i] C Diffc(M2m \ k(Qm \ of+*)) (§o+1) id)

/+i
{äF+1)}*€[o.i] C Diffc(M2m \ (P^-1) U \J of)) (h(0J+1) id)

i=i

such that «7^ g¥+1) o «(/+1).

Now we complete the proof of our main Theorem 1.2.

Proofof Theorem 1.2. Let / be an element of Diff (M2m)o- By Lemma 3.2, there

are g e Diffc(M2m \k(Qm))0 and h e Diffc(M2m \ p(m-2))o suchthat / g oh.
Then b}' using the approximation « of «,

f goho(h-1oh).

By Lemmas 3.3 and 2.3, there are a diffeomorphism a with support in a union of
disjointly embedded open balls, g' e Diffc(M2m \k(Qm))0 and h" e Diffc(M2m \
P^-^o such that

« a-1 o (a o h) a~l o g' o h".

Put ft<°> ft" e Diffc(M2m \ P(m-1))o, and for ft^ e Diffc(M2m \ (P^-D u
U/=i of ))o (j — 0» ¦¦¦, N — 1), we use its approximation h^ and by Lemmas 3.4,

3.6 and 3.7, there are diffeomorphisms a^+l' and b^+l> with support in unions
of disjointly embedded open balls, gO'+D € Diff^(M2m \ fc(ßro \ of+*))0 and

ftO+D € Diff^(M2m \ (P^-1) U U/=/ of ))o suchthat

hU) hU) o ((h^y1 o hU))

(aü+1))-1o(aü+1) oh^o^h^y1 ohU))

(a^+vy1 o (bU+vy1 o gU+u o a(/+d 0 «Ä^r1 o «^).
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Hence,

/ g oh o (ft"1 oft)

goa~1 o g'o h^ o (h'1 oh)

goa-1og'o (a^y1 o (b^y1 ° S(1) ° ä(1) o ((ft*0))"1 o ft(°)) o (ft-1 o ft)

g o a'1 o g' o (ad))-1 o (b^y1 o^o-o (a^yi 0 (ôWyi 0 ^W

o ftW o ((ft^-1))"1 o ftC^-D) o • • • o ((A*0))"1 o ft(°)) o (ft"1 o ft).

Here, note that

N
h{N) e Diff^M2™ \ (P^-1) u (J of ))o Diff^M2"1 \ Pm)0.

i=l

Since

((h^-Vy1 o ftC^-D) o o ((ft*0))"1 o ft(°)) o (ft-1 o ft) G Diff (M2m)

is close to the identity, bj' Remark 2.10, it can be written as h o a o g, where ft e
Diffc(M2m \ Pm)o, g e Diff£(M2ro \ k(Qm))0 and a is with support in a union of
disjointly embedded open balls which is a neighborhood of the union of m handles.
Thus

/ ^0^0/0 (flW)-1 o (b(l)yl 0^0...
...o(flW)-i0(éW)-iOAWoAW0)joâo^

Now by the construction, each of c?-1, (a(1))_1,..., (fl(JV))_1,(*(1))_1, •••, (£(JV))_1

can be written as one commutator with support in a union of disjointly embedded

open balls. The diffeomorphism a can be written as a product of two commutators by
Theorem 1.1(1). The diffeomorphism ft(Ar) oft e Diff^(M2m\Pm)0canbewrittenas
a product of two commutators in Diffc(M2m \ Pm)o by Theorem 1.1 (1). Each of the

diffeomorphisms g, g' and g e Diff^ (M2m \k(Qm ))o can also be written as a product
of two commutators in Diffc(M2m \ k(Qm))o by Theorem 1.1 (1). By the property
of the triangulation, the diffeomorphism g& e Diff£(M2ro \ k(Qm \ of+*))0 is

supported on an open set which can be deformed in a neighborhood of the embedded

(m — l)-dimensional complex i((P^m~1^ U of)/of), and hence g^ can be written

as a product of two commutators in Diff£(M2ro \k(Qm \of+*1))0 by Theorem 1.1(1).
Thus / can be written as a product of 4iV + 11 commutators. D
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4. Proofs of the lemmas

We now give the proofs of the lemmas we used in the previous section to show
Theorem 1.2.

Proofof Lemma 3.2. This follows from Lemma 2.7. D

Proofof Lemma 3.3. The construction of at is essentially due to Burago, Ivanov and
Polterovich ([4]) and we wrote it in the proof of Lemma 2.9 which is Lemma 6.5 in
[30]. However, we write it again here, for, we use this argument later again.

For H(Si ,Vi), we take a small neighborhood Ui of H([Si, 1] x {Vi}) diffeomorphic
to the (2m)-dimensional ball. We can take these Ui to be disjoint.

The intersection of Ut and H([0,1] x P^"1)) or k(Qm) is described as follows.
We put a coordinate

(xi,x2,...,xm,xm+i,...,x2m) e (-2,2)2m

on Ui such that, for Si > 0,

k(Qm) nUi {0} x {0}m~l x (-2,2)m,

H((st -2Si(l -St), 1] x {vt}) nUi= (-2,1] x {0}2m~\ and

ki+td-sdP^-V) nUi {t} x (-2,2)m~l x {0}m (t e [-Si,l]).

Take an isotopy {a t}te[o,i] with support in |_|j=1 Ui suchthat, on each Ui,ao id
and, for(xi,x2,...,x2m)è [-et, 1] x [-1, l]2m_1 C (-2,2)2m,

at(xi,x2,...,x2m) (xi -(1 +Si)t,x2,...,x2m).

Now (ai ohi)(P^n~1^)nk(Qm) 0. Moreover, by changing the time parameter
of the above at, we obtain an isotopy at (ao id) with support in |_|£=1 Ui suchthat
for h't at o ht,

ft;(P(m_1)) n k(Qm) 0 (te [0,1]).

In fact, if we put

t =Si +Ui(l -St) e [st -Si(l -Si),l], i.e.,Ui e [-Si,l],

and look at a^+B^/ii+ei) o ftJf+Mf (i_Jf), then on Ut,

(a^+sO/d+si) o ftJf+Mf(i-,f))({-£f} x [-1,1]™"1 x {OD
a{ui+eùl{l+eù({Ui} x [-1,1]"1"1 x {OD
{Ui - (Ui + Si)} x [-1,1]"7"1 x {0}m

{-si}x[-l,l]m-1x{0}m.
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Hence by using the above at with appropriate time change, we obtain the desired

isotopy at.
Note that ui e Diff£(|_£=1 Uì)o can be taken as one commutator with support in

Uf=i^(Pi]).
Proofof Lemma 3.4. The proof is similar to that of Lemma 3.3.

For H^(s\J), v\J)), we take a small neighborhood u\j) of H([s\j), 1] x {^0)})
diffeomorphic to the (2m)-dimensional ball. We can take these Up to be disjoint.

The intersection of uiJ) and Hu\[0,1] x Pm) or &(ô(m_1)) is described as

follows. We put a coordinate

(xi,x2,..., xm+i,xm+2,... ,x2m) e (—2,2)

on U\J) such that, for s\J) > 0,

k(Q{m~l)) n uP {0} x {0}m x (-2,2)m-\
H((sP - 2sP(l - sP), 1] x {vP}) n UP (-2,1] x {0}2m~l, and

~.U) / T)tn\ o jj{j) (tt ^, / o o\m ^, (f\im—l /f ,_ r ^0")Koi^n ^(nnr^oxH^rxff-1 (* € [-*}", id.

Take an isotopy {a/ }t e[o,i] with support in |_£_ i ^ such that, on each Up
ay+1) =idand,for(xi,x2,...,x2m)G [sP, 1] x [-1, l]2™'1 c (-2,2)2m,

of (Xi,X2,. ,X2m) (X\ —(1 + s. )t, x2,... ,x2m).

Now (a(/+1) o ft^XP™) n fc(ô(m_1)) 0. Moreover, by changing the time

parameter, we obtain an isotopy a\3 (a0J id) with support in |_|f=i ^i
such that, for h'P atJ+1) o hP,

h'P(Pm) n k(Q{m-l)) 0 (te [0,1]).

In fact, if we put

t sP + uP(l -sP) e [sP -sP(l -sP), 1], i.e., wfc/) e [-efc/), 1],

{uP - (w^ + sP)} x [-1,1]™ x {O}"7-1

{-£°')}x[-l,l]mx{0}m-1.
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Hence by using the above a/ with appropriate time change, we obtain the desired

isotopy a^

Note again that a\J e Diffc(\_\ri=l Ut )o can be taken as one commutator

with support in \J^l\ u[j) ([31]). D

Proof of Lemma 3.5. For

F(t,X\, ,xm) (fl(t,X\, ,xm),..., fm(t,X\, ,xm)),

put

dF I
dt

1 3F àxm

: and
~dt ~ ,; dx

\ 3/m / dfm dfm
\~ÏÏF/ \dxi dxm /

On the 2-jet bundle J2(M x Mm,Mm), we consider the subbundle Ex defined by
rank (W- -l^-i m — 1 and the subbundle E2 defined by the two equations,

— \rank (|j) m — 1 and rank I 9
9x

9F J m — 1, where
Vfe det ä7/

d dF f d dF d dF\
—-det—- -—det-;— • • • -—det-;—
dx dx \oxi ox axn ax J

Then E\ and E2 are codimension 2 subbundles. The closures of these subbundles

are the sets determined by the inequalities expressing the ranks are not greater than
m — 1.

By the jet transversality theorem, the jet of a generic map F intersects these
subbundles transversely. Hence the set

{(t,x)\ J2>X)F eExUE2}

is an (m — l)-dimensional subset and its image in M.m is nowhere dense. We take a

point y in Mm in the complement of this image and consider its inverse image F~1(y).
Then for a point x e F-1 (y), either rank (y-) m holds or the three equations

— \rank (|^) m — 1, rank {M- W-} m and rank j 9
9x

9F j m hold.

If rank {W-) m at x, then x is a regular point of Ft F(t,") and the inverse

image is locally a 1-dimensional manifold transverse to {t} x W71.

Assume that the three equations hold. Since rank (^-) m — 1, by the implicit
function theorem, we can change the local coordinate (xi,... ,xm) of the second
factor ofthe source to (x[,..., x'm) and that (y\,..., ym) of the target to (y[,..., y'm)

so that

F(t,x,1,...,x,m) (x,1,...,x,m_1,y,m(t,x,1,...,x,m)).
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Then det (^)
is written as

3 ' —\ — y%L and the matrix a
3x

ap I with respect to these coordinates
dx™ \ T-àetW- '

V dx dx

1

0

0

Mil
dx[

Py'm
Bx'm Sx',

0
1

^xm-l
&y'm

dx'm dxi

0 \

0
0

tyjn
dx'm
Py'm
dx'm2/

and the matrix (4£- 4p-) with respect to these coordinates is written as
V dt dx '

0 0 \

0
dy'm
dt

0

M
dx

0 0
1 0

dy'm ty

Hence, Ä- 0, %j*
ox™ at

Oand

i

3x' 2

dxi. dxi

Oatx.

Thus at x e F l(y), either det (|j) ^ 0 or F is locally written as

F(t,x[,... ,x'm) (x[,... ,x'm_x,y'm(t,x[,... ,x'J),

where $^ 0, ^f Oand 0.
3^m "' 3f 7~ ^ ""•-* dx'm'*-

The proof of Lemma 3.6 is divided into two cases.

D

Proofof Lemma 3.6 in the case where 2m > 8. If 2m > 8, the Whitney disks guide
the way to construct the isotopy bp with support in a union of disjoint open balls.

In fact, the support of b\} is in a neighborhood of the union of the Whitney disks.

The construction of the isotopy bp is possible because the neighborhood of one
of the Whitney disks can be considered as a neighborhood of a tree growing in the

negative direction in t in [0,1] x o'f+l.
The construction ofbf is as follows. Take a vector field of the form •*% + £ (t, v

on the union of disks Z' C [0,1] x of, l which is tangent to Z' and transverse to the

boundary dZ' C Z', where Ç(t, v) is a vector field in the direction of o'f+l. Such a

vector field gj + Ç(t, v) exists because Z' deforms to a tree which grows in the negative
direction in t by shrinking the connected components of Z' fl ({t} x o'f+l) to a point.
We extend Ç(t, •) on o'f+l so that the support is contained in a small neighborhood
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of Z'. Let b / denote the isotopy generated by gr + £(/> v)- Then the support

of b/ is contained in a neighborhood U'^> of the union of the Whitney disks

H'^(Z'). Since H'U)(Z') does not contain double points of H'U)([0,1] x Pm),
the support of b'\j+1) intersects H'u\[0,1] x Pm) only in U'u\ Here, U,(J) is a

union ofdisjointly embedded open balls in M2m. Moreover, (ft ^ )*£(?, •) is tangent
to the union of the Whitney disks H'^'+1\Z') in M2m and

(b'Y+1)y\h'P(of+l)) n k(Qm \ of*,) 0 (te [0,1]).

Put b\j+l) (b'\j+l)y\ then

(btj+1) o h'P)(of+l) n k(Qm \ of*,) 0 (te [0,1]).

Note that b, e Diffc(U'(J')o can be taken as one commutator with support
inU'ü) ([31]). D

Proofof Lemma 3.6 in the case where 2m 6. If 2m 6, then we also consider

the curves H'^([t'P, 1] x {w'P}) (i 1, r'^).
First take a small neighborhood U'^> of the union of the Whitney disks which is

a union of disjointly embedded open balls in M6, and construct bp as in the case
where 2m > 8. Then we modify it by using an isotopy.

We take a small neighborhood c/.'(/) of the curve H'W ([t'P, 1] x {w'P }) (i 1,

r'V*). We put a coordinate

(Xi,X2,X3,X4,X5,X6) G (—2, 3) x (—2,2)5

on U'P such that, for s'P > 0,

H'<d\(t'P - 2s'P(l - t'P), 1] x {w'P}) n U'P (-2,1] x {0}5,

and

h't'P-2s'Pil-t'P)(P3) n U'iJ) ^ X (-2'2)3 X W2 (f € [-<0)' 1])-

We take an isotopy {a } t e [o,l] with support in t/ ^
such that a'0J id

and, for (xi,x2,X3,x4,x5,x6) e [-s'P,l] x [-1,1]5 C (-2, 3) x (-2,2)5,

ûf I(Xi,X2,X3,X4,X5,X6) (Xi + t(l + s'f X2, X3, X4, X5, Xö).

Put fl n^=i û 1 • Then fl o &}J o a-1 is isotopie to the identity by the

isotopy with support in the union of disjoint 6-dimensional open balls ä(U'(J*). By
the construction,

((a ob[J+1) 0^)0hi)(of+l) nk(Q3\of*l) 0.



172 T. Tsuboi CMH

Moreover, by an appropriate change of time parameter on each U'f we obtain an

isotopy at (t e [0,1]) such that

{{àt o btJ+1) o flj1) o ht)(of+l) n k{Q3 \ of*,) 0

and the support of the isotopy at obf o äp1 is contained in U'^' U |_|£=1 U'P
which is a union of disjointly embedded open balls in M2m. Thus we obtained the
desired isotopy.

Note that fl o b \J oa-1 can be taken as one commutator with support in a union
of disjointly embedded open balls. D

Proof of Lemma 3.7. This follows from Lemmas 3.6 and 2.3. D

5. Uniform simplicity

We prove Corollary 1.3. In Theorem 2.2 of [31], we showed the following theorem.

Theorem 5.1 ([31]). Let Mn be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than (n — l)/2. Let c
be the order of the set of indices appearing in the handle decomposition. Then any
element of Diffc(Mn)o (1 < r < 00, r ^ « + 1) can be written as a product of
two commutators. Moreover, ifMn is connected, any element of Diffrc(Mn)o can be

written as a product of Ac + 1 commutators with support in embedded open balls.

In Section 3, we showed that any element / e Diff (M2m)o can be written as

/ g o a-1 o g' o (a(l)yl o (b(l)yl o gœ o...

Since a compact subset of a union of disjointly embedded open balls is contained in
a larger embedded open ball, each of diffeomorphisms fl-1, (fl^)-1, (fl^)_1,
(M1))-1,..., (M ))-1 can be written as one commutator with support in an embedded

open ball and the diffeomorphism a can be written as a product of two commutators
with support in an embedded open ball. Now by Theorem 5.1, each of the

diffeomorphisms ftW o ft e Diffc(M2m \ Pm)0, g, g' and g e Diffc(M2m \ k(Qm))0,
gU) e Diff^M2™ \k(Qm\ of*,))o is written as a product of 4m + 1 commutators

with support in embedded open balls. Hence / is written as a product of
4(iV + 4)m + 3iV + 7 commutators with support in embedded open balls.

Now Corollary 1.3 follows from the following lemma ([31], Lemma 3.1).

Lemma 5.2 ([31]). Let Mn be a connected n-dimensional manifold. Let g be a
nontrivial element of Diff£(MR)o- Assume that f e Diff£(M")o is written as a
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product of commutators [fl;,&;] (i 1, ...,k); f [fli,&i] ••• [ajcb^], whereat
and bi are with support in an embedded open ball Ui C Ui C Mn. Then f can be

written as a product of4k conjugates ofg or g~l.

Proofof Corollary 1.3. Let g be a nontrivial element of Diffr(M2m)o (1 < r < oo,
r ^ 2m + 1). Since any element / of Diffr(M2m)o can be written as a product
of 4(N + 4)m + 3N + 7 commutators with support in embedded open balls, by
Lemma 5.2, / can be written as a product of 16(iV + 4)m + 12ÌV + 28 conjugates
of g org-1. D

Remark 5.3. We showed in [31] that, for a compact connected n-dimensional manifold

Mn with handle decomposition without handles of the middle index n/2, for
any elements / and g of Diff(Mn)o \ {id}, / can be written as a product of at most
16« +28 conjugates of g or g-1. For such manifolds, the bound for the number of
conjugates depends only on the dimension n. In Corollary 1.3, however, the bound
for the number of conjugates may depend on the topology of M2m.

6. Appendix

In this section, we show two propositions. The first proposition constructs the Morse
function adapted to a smooth triangulation of a compact manifold. The second proposition

constructs a cellular decomposition adapted to a Morse function.

Proposition 6.1. Let P be a smooth triangulation ofa compact n-dimensional manifold

Mn. Let bsd(P) denote the barycentric subdivision of P and P* be the cell
decomposition dual to P of Mn. Then there is a Morse function f on Mn and a
Riemannian metric on Mn such that, for the gradientflow (pt of f, there is a
homeomorphism ofMn which sends the stratification by the stable manifolds ofthe critical
points of f and that by the unstable manifolds of the critical points off to P
P*, respectively.

First we prepare a Morse type function on each simplex of bsd(P).
Let et (i 1, «) be the basis of W1. Let

A" {(tu. ..,tn) YH=i ttet € M" I 1 > h > ••• > tn > 0}

be the standard simplex. Let / : M" -> M. be the function defined by

f(h,...,tn) n-^cos(tn/it).
i l

The function / is a Morse function such that the vertex (1,...,1,0,...,0)
Yij=i ei ofAn is the critical point of index j (j 0,1,..., n) and fQ2{=i ei) j ¦
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Let X^n grad(/ denote the gradient vector field of/with respect to the Euclidean
metric. The standard simplex is invariant under the flow generated by Xrk

Let bsd(P) be the barycentric subdivision of P. An «-dimensional simplex of
bsd(P) is the simplex with vertices bao,. ..,ban, where o° < ol < • • • -< on~l < on,
baj is the barycenter of the y-dimensional simplex oJ and "ol -< oJ "means that "ol
is a face of oJ ".

Let g : Mn -> A" be the map which sends each «-dimensional simplex with
vertices bao, ban of bsd(P) linearly to A" so that g(baj) Ylj=oei- Then

/ o g is a piecewise smooth function on Mn which looks like a Morse function on
Mn and X g^ATR» is a Lipschitz continuous piecewise smooth vector field on
Mn.

We show that there are a Morse function / : Mn -> M. and a Riemannian metric

on M" such that there is a homeomorphism of M" sending the stratification by the

stable manifolds for the gradient flow of the critical points of / to the triangulation
P and the stratification by the unstable manifolds of the critical points of / to the
dual cell decomposition P*.

Since the function / og is transverse to the triangulation outside a neighborhood of
the set of vertices ofbsd(P), (/ o g)_1 (k + 1/2) is a piecewise smooth codimension
1 submanifold of M "transverse" to each simplex of bsd(P) and is transverse to the

vector field X.
We are going to modify (/ o g)~l(k + 1/2) to a smooth manifold Mk+i/2

transverse to each simplex of bsd(P) and to the vector field X.
Let bsd(P)^ denote the i -dimensional skeleton ofbsd(P). First, we modify (f o

g)~x(k + 1/2) in a neighborhood of the intersection (fog)~1(k + 1/2) nbsd(P)(1)
and obtain M)__/.,. C Mn approximating (/og)~1 (k+1 /2) which is smooth near the

1-dimensional skeleton bsd(P)^ and transverse to bsd(P)^ and to the vector field
X. After obtaining M^.,. C Mn which is smooth near the «-dimensional skeleton

bsd(P)^) and transverse to bsd(P)^ and to the vector field X, we obtain Mi?

approximating M^,,2 in a neighborhood of the intersection M^,,2 fl bsd(P)"+1^
which is smooth near the (i -\- l)-dimensional skeleton bsd(P)^+1^ and transverse

bsd(P)(i+1) and to the vector field X. Finally, put Mk+l/2 M^JT Then

Mjc+i/2 is a smooth codimension 1 submanifold transverse to bsd(P) and X.
The codimension 1 submanifold M^+i/2 divides Mn into two compact manifolds

Wk and W*_k which are obtained from (/ o g)-1([0, k + 1/2]) and (/ o g)-1([A: +
1/2, «]) by smoothing, respectively.

We are going to show that W^ is diffeomorphic to the manifold obtained from W^_i
by attaching handles of index k for /^-dimensional simplices of P and by smoothing
along the corner. That is, for each /^-dimensional simplex o we can define a handle
D k x D"k of index k such that W^ is diffeomorphic to the manifold obtained from

Wk-i by attaching Dkk x Dnkk for all k-dimensional simplices ok of P and by
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smoothing along the corner. The reason is as follows. First, for each /^-dimensional

simplex o of P, since the intersection S kl o C\ Mk-i/2 approximates o D

(f ogy1 (k —1/2), it is diffeomorphic to the (k — l)-dimensional sphere S 1 which
bounds a /^-dimensional disk D k in o Then by choosing a Riemannian metric in

a neighborhood of o and using the exponential map, we obtain a diffeomorphism
from a neighborhood of the zero section of the normal bundle of the /^-dimensional
disk D k to a neighborhood of D k. By an appropriate choice of the metric, this

defines an embedding Dkk x D^kk C M" such that dDkk x D^kk C Mk-i/2. Then

we obtain

K Wk-i U \J{D*k x Dn~kk) (C Wk)

We can add a neighborhood of the corner of W'k and obtain W^' such that the orbits
of tyt on Wk — int(l#7') are transverse to Mk+i/2 dWk and dWl'. Here each

orbit of tyt intersects both dW^.' and dWk- Since this transversality is preserved when

we approximate X by a smooth vector field X, Wk — int(W^') is diffeomorphic to

-Mjfc+i/2 x [0,1]- Thus this gives the (n — k — l)-dimensional sphere Snk on

-^fc+i/2 — dW^c corresponding to {0} x dDnk which will be used as the belt sphere.

Now we define a smooth vector field X on Mn which generates the flow yjft

satisfying the following conditions.

(1) X restricted to a neighborhood of bak is of the form

öXi *—' öXii=l i=k+l

and the stable manifold Ls,( k. of bak of the flow fit contains Dkk x {0} C ok.

(2) The orbits of^ are transverse to Mk+i/2 (k 0,..., « — 1).

(3) An orbit of \jrt in Wk \ int(W^_i) is one of the following types.

— An orbit crossing through both Mk-1/2 and Mk+i/2-
— An orbit contained in the stable manifold of bak and crossing through

Mk-i/2 at a point of Skk1.

— An orbit contained in the unstable manifold of bak and crossing through
Mjfc+i/2 at a point of S^k~l.

(4) For two simplices ok and o^+1 of P, if ok < ok+1, then Snkk~l and Skk+1

(C Mk+i/2) intersect transversely at a point. Conversely, if Snk and S k+1

(C Mk+i/2) intersect, they intersect transversely, and o -< o +1.
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The statement (4) implies that there is a unique orbit of yjft connecting bak and bak+i
if and only if ok < ok+1.

By [21], for this \jrt, we can define a Morse function / and a Riemannian metric

such that grad(/) X. These are the desired Morse function and Riemannian
metric for our Proposition 6.1.

Proofof Proposition 6.1. We show that the configuration of stable manifolds and
unstable manifolds of \jrt is homeomorphic to the configuration of the triangulation
P and its dual cell decomposition P*.

We explain how we take W£ and W£ such that Wk-i C W'k C W£ C Wk related

to the flow 'ft-
First, each connected component of Wo is in the unstable manifold of a 0-

dimensional simplex o°. OnMi/2 BWq we have a number of5 °1 for 1-dimensional

simplices o1. Hence the stable manifold Li, 1, of bai consists of bai and the two

orbits of tyt connecting bai and of (i 1, 2) such that of < ol.
For a 1-dimensional simplex o1, in a neighborhood of bai, the unstable manifold

Vi, !» of bai divides the neighborhood into two parts which are the subsets of the

unstable manifolds of o~° -< o1 and o2 < o1. We can take the union of Wq and

appropriate closed neighborhoods of Li, ^ for 1-dimensional simplices o1 of P

as W{ W0 U U<ri Dli x -öjr1. where the flow ft on D^ x D^1 is of the

form \jft(xi,..., xn) (e~*x\ ,etx2,..., elxn). Then we can take W[' which is

obtained from W[ by smoothing along the corner and there is an isotopy sending
W" to Wi along the orbits of ^. There is a homeomorphism fti sending W\ to

(/ ° £)-1([0> 1 + 1/2]) such that fti sends the stable manifold L{, ^ of bai to a1

and the unstable manifold L%, ^ ofbai too1*n(/og)-1([0, 1 -I-1/2]), respectively.

Now we look at a 2-dimensional simplex o2. On M\+\/2, we have S12 for each

2-dimensional simplex o2 of P and Sn^2 for each 1-dimensional simplex o1 of P.
A 2-dimensional simplex o2 of P has three faces o^1 (i 1, 2, 3), hence we have

three orbits of tyt which pass through S12C\ S\2 and connect bai and ba2 (i 1,2,

3). Each component of S12 \ Ui=i $ 12 ^ S"i~2 ^s sen^ by the flow \jrt in the negative

time direction to one of the components of Wq. The component of Wo is necessarily
the one which contains one of the three vertices of o2 and the stable manifold Li, 9»

of ba2 is bounded by the union of stable manifolds of bai (i 1, 2, 3) and the

vertices of o2. Thus the stable manifold L{, 2\ is homeomorphic to a 2-dimensional

simplex and the union [Ji<2 Ls,( f> is homeomorphic to the 2-dimensional skeleton

P (-2-). Then the stable manifold Li, ?» as well as a neighborhood of Li, ?» is divided
o(crz) ° o(az)

by the union of the unstable manifolds of b i (i 1, 2, 3) and ba2 into three parts,
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each of which is contained in the stable manifold of one of the vertices of o2. We can
take the union of Wi and closed neighborhoods ofLi, 2\ for 2-dimensional simplices

o2 of P as W{ =WiU \J02(D2c2 x D%22), where the flow ft on Z)22 x D%22 is of
the form ift(xi > • • • > xn) — (e~*xi > e~lx2, elx^, ¦ ¦ ¦, etxn). We can take W2 which
is obtained from W2 by smoothing along the corner and there is an isotopy sending

W2 to W2 along the orbits of $>. Then there is a homeomorphism ft2 sending W2 to

(f og)~l ([0, 2 + 1/2]) extending ft i such that ft2 sends the stable manifold Li, 2. of
ba2 to o2 and the unstable manifold L" ff2) of ba2 to o2* n (/ o g)_1([0,2 + 1/2]),
respectively.

Inductively, assume that we showed that

(1) for a (j — l)-dimensional simplex oJ_1 of P, the stable manifold of baj-i is

bounded by the union of the stable manifolds Li, ,-, ofbni such that o* -< oJ~l,

(2) Ls,( j_x. is homeomorphic to a (j — l)-dimensional simplex,

(3) the union Uf<;-i -^lr ò 1S homeomorphic to the (j — l)-dimensional skeleton

pCZ-D,

(4) Li, j_x. as well as a neighborhood of Li, J-_1. is divided by the union of the

unstable manifolds L" ,-. of b„i such that o* < oJ_1 into / parts each of which
b(al) ° J L

is contained in the unstable manifold of one of the vertices of oJ~l, and

(5) there is a homeomorphism fty-i sending Wj-\ to (/ o g)_1([0, j — 1/2]) such
that hj-i sends the stable manifold Li. f, of è^j to o1 and the unstable manifold

Ll{ai) of bai to of* n (/ o g)~\[0, /- 1/2]), respectively.

Consider a y-dimensional simplex oJ. On Mj_\/2, we have SJ j for each y-
dimensional simplex oJ of P and S""^ for each (y* — l)-simplex oJ~l of P. A

y-dimensional simplex oJ of P has y + 1 (y — l)-dimensional faces o(~ (i 1,

y + 1), hence we have y + 1 orbits of ^ which pass through SJJ fl S""^
and connect è /_i and b0j (i 1, y +1). Any point on SJJ is in an unstable

manifold Vi, k. of bak for a/^-dimensional simplex, where k < y — 1. If& y — 1,

it is one of the points SJj fl S"J-l1. The flow ^ transverse to My_i/2 sends a

neighborhood of Wj-\ U P^ to a neighborhood of Wj. Hence a neighborhood of
SJJ Pi Sn~i'Jì e Mi_\i2 is divided by the union of the unstable manifolds Vi, ,-x<ri err-1 ^ ' J 6(crJ)

of bai such that o~* -< oJ_1 into y parts, each of which is contained in the un stable
manifold of one of the vertices of oJ~l. This means that the closure of the stable

manifold of bnj contains the union of the stable manifolds Li, .*, of b„i such that

ol < oJ. Since [Jai<crj Ls,( f, is homeomorphic to dAJ, by looking at the flow yjft,
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we see that the stable manifold of b0j is bounded by the union of the stable manifolds

Li, of bai such that ol < oJ. We see then that Li, y. is homeomorphic to a y-
dimensional simplex and Li, y. as well as a neighborhood of Li, y. is divided by

the union of the unstable manifolds ofbaì such that ol < oJ into y + 1 parts each of
which is contained in the unstable manifold of one of the vertices of o^. We can take

the union of Wj-\ and closed neighborhoods of Li, y. for y-dimensional simplices

oJ of P as Wj Wj_lU \JaJ (DJaJ x D"~]j), where the flow ft on DJffJ x DnJj
is of the form

ft(xi,..., xn) (e~lxi,..., e~lXj, e'xj+i,..., e'xn).

We can take W" which is obtained from W by smoothing along the corner and there is

an isotopy sending W'.' to Wj along the orbits of \jrt. Then there is a homeomorphism

hj sending Wj to (/ °g)_1 ([0, y +1/2]) extending ft/-i such that hj sends the stable
manifold Li, ,-, of b„i to ol and the unstable manifold Vt, ,-. of b„i to ol* C\(fob(al) ° b(al) ° w
g)_1([0,y* + 1/2]), respectively.

Thus we see that the configuration of stable manifolds and unstable manifolds
of tyt is homeomorphic to the configuration of the triangulation P and its dual cell
decomposition P*. D

Now we construct a cellular decomposition adapted to a Morse function.
Let Mn be a compact «-dimensional manifold. Let F : Mn -> [0, «] be a self-

indexing Morse function. Then there is a Riemannian metric such that the gradient
flow (pt at a critical point of F of index k is of the form

(pt(xi,...,xn) (e~lxi,..., e~lxk ,elxk+i,..., elxn)

in a coordinate neighborhood and the stable manifolds and unstable manifolds of
critical points of F are transverse.

For such a gradient flow we have the following proposition.

Proposition 6.2. For a k-dimensional stable manifold L ofa criticalpoint (ofindexk)
of F, there is a continuous map ft : D -> Mn such that h\lnt(D is a diffeomorphism

to L andh(dD C p(*-1), where p(^_1) is the (k — l)-dimensional skeleton

of the stratification by the stable manifolds ofcpt.

This proposition is shown by Laudenbach in [13]. The author is grateful to the

referee for indicating him this reference. We include the proof of Proposition 6.2 for
completeness.

To show Proposition 6.2, we need to use the fact that the stratification by the
stable manifolds of such <pt satisfy a much stronger condition, namely, the closure of
a stable manifold is a submanifold with conical singularities (smcs) which is defined
in [13].
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An m-dimensional stratified subset X X^ D ••• D X^ of Mn defined in
Section 2 is called a submanifold with conical singularities (smcs) if, for 1 < k < m
and any x e X*- ' \ X*- \ there are a neighborhood V of x diffeomorphic to
Dk x Dn-k and an (m _/:)_dimensional smcs T T(m-k) D---D P(0) in Dn~k
such that V fl X is diffeomorphic to Dk x T, and for x e X^°\ there is a C1

embedded «-dimensional ball B centered at x such that X' X fl dB is an (m — 1)-
dimensional smcs in the (« — l)-dimensional sphere and (B,B fl X^™',••* B D

XW) is diffeomorphic to (5, CX,(-m-1\<<< ,CX'^), where C denotes the cone
with respect to the linear structure of the C1 parametrization for B.

Roughly speaking Proposition 6.2 is shown in the following way. Let p[,..., p3c.

be the critical points of F of index y. Let SJ .• denote the attaching sphere which
W

is the intersection of the stable manifold Ls ¦ and M,-_i/2, and is the boundary of
pj

the core disk Dj, V ,-nT1 ([/ - 1/2, j + 1/2]). Let SB7/_1 denote the belt
^ Pî Pi

sphere which is the intersection of the unstable manifold Lu. and M,+i/2, and is the

boundary of the cocore disk Dn~j Lu, n F_1(L/ - 1/2, y + 1/2]).
/»/ Pi

We look at L fl Mj+\/2 for y Ä: — 1, 0. and we show that L fl Mj+\/2 is

a (/: — l)-dimensional smcs of Mj+\/2. In fact, on Mj+\/2, there are belt spheres

iS"f J (i 1,...Cj which intersect transversely to L C\ Mj+i/2. On the cocore disk

Dn~} which is bounded by SnJJ~ L fl DnJJ is homeomorphic to the cone over
_Pi _

PJ Pt

LOS"; J L restricted to a neighborhood of the cocore disk D " ,*J is homeomorphic
Pi

_
" Pi

to a product of L C\ Dn. ^ and an open ball of DJ. Using the flow (pt on F_1 ([j —
p{

1/2, j + 1/2]) \ Uf=i Dnj J, we see that L C\ Mj_\j2 is a (k — l)-dimensional smcs

ofM;_i/2.
By using this structure we define the homeomorphism ft in the proposition.

Now the first step of the proof of Proposition 6.2 is the following lemmas, which
show that the closure of a stable manifold of such (pt is a submanifold with conical

singularities (smcs) ([13], Proposition 2).

Lemma 6.3. Let <pt be the flow on Dj x Dn~j such that <pt(x,y) (e~tx,ety),
where x (x\,..., xj) and y (xj+ì,..., xn). Let N N^ D ••• D /Y(0) be a
k-dimensional stratified subset ofDJ x Dn~J invariant under the flow (pt such that
N n (DJ x dDn~J) is a(k- l)-dimensional smcs ofDJ x dDn~j near {0} x dDn~j
and N is transverse to {0} x Dn~}. Then there is a neighborhood Uof0eDJ such
that N C\(U x Dn~j) is homeomorphic to U x C(N C\ ({0} x dDn~j)), where C
denotes the cone.
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Proof. Since N H (DJ x dDn~J) is a (k — l)-dimensional smcs and transverse

to {0} x dDn~j, N' N n ({0} x dD"-J) is a (k - 1 - y )-dimensional smcs
in {0} x dDn~J and there is a positive real number s such that the £-neighborhood
U int(Z)i)ofO e ZV has the following property. There is a mapping v : UxN' —>

tfZ)"--' such that v(0, y) y,
N n(UxdD"-j) {(x,v(x,y)) | (x,y)e UxN'},

and v is smooth on each product U xS, where S is a stratum of N'. By the invariance
under the flow (pt, the set {(x, v(x ,y)) | (x, y) e U x S } is contained in the stratum
in N fl (U x D"~J) which is written as

{(x,sv(sx,y)) \(x,y)eU xS, s e [0,1]}.

In particular, JV n ({0} x Dn~j) C(N'). Hence the map (x,sv(sx, y)) i—>

(x, sv(0, y)) is a homeomorphism sending N fl (U x Dn~j) to U x C(N'). D

Lemma 6.4. L D My+i/2 is a (k — l)-dimensional smcs ofMj+i/2for j k — 1,

0.

Proof. The above lemma implies that if L fl Mj+\/2 is a(k — l)-dimensional smcs
of Mj+i/2, then on

M;+U2 Mj+1/2 \\JUx dDnpjJ U (J dU x Dnpjj

smoothened appropriately, L fl M'+1<2 is a (& — l)-dimensional smcs of M'.+l,2.
Since ^"Hfy — 1/2, j + 1/2]) \ (l7 x Dn;J) after smoothing along the corner is

Pi
diffeomorphic to [0,1] x My_i/2, where the flow (ft corresponds to the flow in the

direction of [0,1], L fl M'.+l ,2 is diffeomorphic to L fl My_!/2. Hence L fl MJ*_1/2
is a (/: — l)-dimensional smcs of My_i/2.

Since LC\Mk-i/2 is aunion of attaching spheres 5 fc (?* 1, ...,Ck),LC\Mj+i/2'k-l
is a (/: — l)-dimensional smcs of Mj+\/2 for i k — 1, ...,0. D

Let L L* be the stable manifold of the critical point p of index k. The stable

manifold L is diffeomorphic to M and the restriction (pt \L of the flow (pt is conjugate
to the radial contraction ^ on Mk defined by ^(xi,..., x^) e~l(xi,..., Xk).
First we embed M in D such that the ray from the origin corresponds to the radial

ray in int(D Let i: L —>¦ D denote the embedding. Then we see that the identity
map i(L) -> L does not extend to a continuous map D —> L in general.

In order to define the map ft : Z) -> L, we use the construction in the above
lemmas. For a subset A of Z) we write R(A) the radial saturation of A, that is the

union of the radial segments of length 1 from the origin 0 passing through the points
of A.
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Proofof Proposition 6.2. We are going to construct the /^-dimensional compact
submanifold Bj of D with boundary such that

Bk cBk-i C-CBi cB0 Dk

and the homeomorphisms

hj : Bj —? I n F-'aj - 1/2,k + 1/2]) (y =*,..., 0),

such that hj \(Bj C\ int(Dk)) is a diffeomorphism onto L n F_1 ([/ -1/2, it + 1/2]).
First, for L Ls, L fl Mk-i/2 is a (k — l)-dimensional sphere which is the

5*-
pattaching sphere Sk 1

bounding the core disk Dk. Put Bk i(Dp) C Dk, and we

define hk '- Bk -> Z, to be i-1.
Secondly, we look at the finite set Sk~l n 5V-i • The cone Cp*-i (5p~* n s"k-i

is contained in L and we take the closed disk neighborhood Ui of Sk~l C\ Snk_x in

Sp1 given by Lemma 6.3 such that Ui x C k-i (Sp1 H Snk_x is a neighborhood of

C *-i (S*-1 n SV-i) in Z. Then we take the radial saturation R(i(Ui)) in 2)*. The

part Ä(i(C70)\urt(i(Z>*)) is diffeomorphic to i{Ut)x[Q,1], where i(Üi)x{0} C dDk

and i(Ui) x {1} i(Ui). Then we define

tik : *(t/f) x [0,1] —? c7f x cpk-i(skp-1 n s^i)
by ft^.(x,?) (i~1(x),t), where t is the parameter of the cone such that t 0

corresponds the vertex. Then we take the union i(Dk) U U^Li* ^O(^i)) and add a

neighborhood of Uf^i1 * (^i) to obtain a smooth manifold B', in D On the otheriti1
hand, we take the union

Ck-l

Dku\J UixCpk-i(skp-lnsnA)
i=l

\Ck-l

P,

and add a neighborhood of Uj*!1 ^Ui to obtain the subset Ak C L. There is a

continuous map h'^: B'k ^ Ak C L extending hk such that h"k \(B'k fl lnt(Dk)) is a

diffeomorphism onto L fl A^. Since L fl Z7-1 ([/: — 3/2, k + 1/2]) \ Ak is invariant
under the flow <pt and the flow (pt on

c/t-i
F"1^ -3/2,/: + 1/2]) \ (J I/ixD^

i=i
n-k+l
PÌ

is conjugate to the flow on [0,1] x Mk-$/2 in the direction of [0,1], we can perform
the following construction. We take a collar neighborhood dB'k x [0,1] of dB'^ in
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D \ int(B', and let Bk-i be the union of B', and its collar neighborhood. Using
the flow (pt, we can construct a continuous map

Ajfc-i : Bk-i -^ïn F~l([k - 3/2,* + 1/2])

such that «£_i |(Z?&_i n int(Z)*)) is a diffeomorphism onto L fl F~l(\k — 3/2, k +
1/2]). We may arrange that Bk-i is star-shaped with respect to 0 € D in such a

way that dBk-1 and radial segments from 0 to points of dD are transverse.

Thirdly, assume that we have constructed the k-dimensional compact submanifold

Bj+i of D with boundary and the homeomorphism

ft/+1 : BJ+l —? L n F-^ty + 1/2,/: + 1/2])

such that hj+i \(Bj+\ fl int(Z)*)) is a diffeomorphism onto L fl Z7-1 ([y* + 1/2, k +
1/2]) and Z?y+i is star-shaped with respect to 0. Then L D Mj+\/2 is a (k — 1)-

dimensional smcs ofMy+1/2 and the belt spheres SnJJ ~ (C Mj+1/2) are transverse

to L fl Mj_|_ 1/2 (* 1,.. .C/)• Hence L fl SnJJ~ isa(k — j — l)-dimensional smcs

of Sn.-J The cone C j(L C\ SnrJ is contained in L and we take the closed
pj Pi " pj

disk neighborhood Ui C D}.- of »f_1 given by Lemma 6.3 such that Ui xC j(L fl

SB7/_1) is a neighborhood of C/(Ifl S"/7-1) in Z. We look at (ft/^)"1^ n

S"JJ~ and its closed neighborhood

^/+1 (Az+i)"1^ x (L n S^"1))

in BBj+i. Then we take the radial saturation i?^/ in Z) This time, the part

R(VJ \ int(5y+i) and Vj x [0,1] are not diffeomorphic, but homeomorphic.
The reason is that R(VJ \ int(Z?y+i) near VtJ fl dD is a manifold with corner

along V/+1 n dDk, and there is a homeomorphism v/+1 x [0,1] -> R(VJ+1) \
int(fi/+i) such that v/+1 x {0} c 9Z)* and F/+1 x {0} V/+1, which straighten

the corner along (VtJ Pi 3Z) x {0} and is no longer send the radial segments to the

direction of [0,1] near (VtJ fl dD x {0}. This homeomorphism can be taken to be

a diffeomorphism on V/ x [0,1). Then we take the union 5/+i U (J.71 R(VJ
and add a neighborhood of U;4i dVj to obtain a smooth manifold B'+l in Z)

On the other hand, we take the union

(L n F~l([j + 1/2,k + 1/2])) U y Ut x Cpj(L n S", ; *)

i l
' ^1
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and add a neighborhood of Uf^I* UiX(Lf) S"j J to obtain the subset Aj+\ CL.

There is a continuous map h".+l'. B'j+l -> Aj+\ C L extending fty+i such that

hj+i\(Bj+i H lnt(Dk)) is a diffeomorphism onto LC\Aj+l. Since L n F_1([/ -
1/2, j -\- 1/2]) \ Aj+i is invariant under the flow ^ and the flow ^ on

F~\[j -1/2, j + l/2])\\JUixD n-J

*
is conjugate to the flow on [0,1] x My_i/2 in the direction of [0,1], we can perform
the following construction. We take a collar neighborhood dB'.+l x [0,1] of dB'.+l in

D \int(B'- l and let Z?y be the union of B'+l and its collar neighborhood. Using the

flow (pt, we can construct a continuous map ft/ : 5/ -> L fl Z7 ([y —1/2, k + 1/2])
such that hj \(Bj n int(.D*)) is a diffeomorphism onto L n Z7-1 ([/ -1/2, it + 1/2]).
We may arrange that Bj is star-shaped with respect to 0 G D in such a way that 9Z?y

and radial segments from 0 to points of dD are transverse.

Finally, for y 0 in the above construction, we notice that B[ B\ U

U?=i R(Vl) is Dk itself and the map ft": Z?{ -> Ai extending fti is the desired

map. D
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