Hydra groups

Autor(en): Dison, Will / Riley, Timothy R.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 88 (2013)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-515647

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Hydra groups

Will Dison and Timothy R. Riley

Abstract

We give examples of CAT(0), biautomatic, free-by-cyclic, one-relator groups which have finite-rank free subgroups of huge (Ackermannian) distortion. This leads to elementary examples of groups whose Dehn functions are similarly extravagant. This behaviour originates in manifestations of Hercules-versus-the-hydra battles in string-rewriting.

Mathematics Subject Classification (2010). 20F65, 20F10, 20F67.
Keywords. Free-by-cyclic group, subgroup distortion, Dehn function, hydra.

1. Introduction

1.1. Hercules versus the hydra. Hercules' second labour was to fight the Lernaean hydra, a beast with multiple serpentine heads enjoying magical regenerative powers: whenever a head was severed, two grew in its place. Hercules succeeded with the help of his nephew, Iolaus, who stopped the regrowth by searing the stumps with a burning torch after each decapitation. The extraordinarily fast-growing functions we will encounter in this article stem from a re-imagining of this battle.

For us, a hydra will be a finite-length positive word on the alphabet $a_{1}, a_{2}, a_{3}, \ldots$ - that is, it includes no inverse letters $a_{1}^{-1}, a_{2}^{-1}, a_{3}^{-1}, \ldots$. Hercules fights a hydra by striking off its first letter. The hydra then regenerates as follows: each remaining letter a_{i}, where $i>1$, becomes $a_{i} a_{i-1}$ and the a_{1} are unchanged. This process removal of the first letter and then regeneration - repeats, with Hercules victorious when (not if!) the hydra is reduced to the empty word ε.

For example, Hercules defeats the hydra $a_{2} a_{3} a_{1}$ in five strikes:

$$
a_{2} a_{3} a_{1} \rightarrow a_{3} a_{2} a_{1} \rightarrow a_{2} a_{1} a_{1} \rightarrow a_{1} a_{1} \rightarrow a_{1} \rightarrow \varepsilon
$$

(Each arrow represents the removal of the first letter and then regeneration.)

Proposition 1.1. Hercules defeats all hydra.

Proof. When fighting a hydra in which the highest index present is k, no a_{i} with $i>k$ will ever appear, and nor will any new a_{k}. The prefix before the first a_{k} is itself
a hydra, which, by induction, we can assume Hercules defeats. Hercules will then remove that a_{k}, decreasing the total number of a_{k} present. It follows that Hercules eventually wins.

However these battles are of extreme duration. Define $\mathscr{H}(w)$ to be the number of strikes it takes Hercules to vanquish the hydra w, and for integers $k \geq 1, n \geq 0$, define $\mathscr{H}_{k}(n):=\mathscr{H}\left(a_{k}{ }^{n}\right)$. We call the \mathscr{H}_{k} hydra functions. Here are some values of $\mathscr{H}_{k}(n)$.

	1	2	3	4	\cdots	n	\cdots
1	1	2	3	4	\cdots	n	\cdots
2	1	3	7	15	\cdots	$2^{n}-1$	\cdots
3	1	4	46	$3\left(2^{46}\right)-2$	\cdots	\cdots	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots			
k	1	$k+1$	\vdots	\vdots			
\vdots	\vdots	\vdots	\vdots	\vdots			

To see that $\mathscr{H}_{2}(n)=2^{n}-1$ for all n, note that

$$
\mathscr{H}\left(a_{2}{ }^{n+1}\right)=\mathscr{H}\left(a_{2}^{n}\right)+\mathscr{H}\left(a_{2} a_{1}{ }^{\mathscr{H}\left(a_{2}{ }^{n}\right)}\right)=2 \mathscr{H}\left(a_{2}^{n}\right)+1 .
$$

And $\mathscr{H}_{3}(n)$ is essentially an n-fold iterated exponential function because, for all $n>0$,

$$
\mathscr{H}_{3}(n+1)=3\left(2^{\mathscr{H}_{3}(n)}\right)-2,
$$

by the calculations

$$
\begin{aligned}
\mathscr{H}\left(a_{3}^{n+1}\right) & =\mathscr{H}\left(a_{3}^{n}\right)+1+\mathscr{H}\left(a_{2} a_{1} a_{2} a_{1}^{2} \ldots a_{2} a_{1}{ }^{\mathscr{H}\left(a_{3}{ }^{n}\right)}\right), \\
\mathscr{H}\left(a_{2} a_{1} a_{2} a_{1}^{2} \ldots a_{2} a_{1}^{m}\right) & =3\left(2^{m}\right)-m-3 .
\end{aligned}
$$

Extending this line of reasoning, we will derive relationships (15) and (19) in Section 3 from which it will follow, for example, that

$$
\mathscr{H}_{4}(3)=3\left(2^{3\left(2^{3\left(2^{3\left(2^{5}\right)-1}\right)-1}\right)-1}\right)-1
$$

So these functions are extremely wild. The reason behind the fast growth is a nested recursion. What we have is a variation on Ackermann's functions $A_{k}: \mathbb{N} \rightarrow \mathbb{N}$, defined for integers $k, n \geq 0$ by

$$
\begin{aligned}
& A_{0}(n)=n+2 \quad \text { for } n \geq 0, \\
& A_{k}(0)= \begin{cases}0 & \text { for } k=1 \\
1 & \text { for } k \geq 2\end{cases}
\end{aligned}
$$

and

$$
A_{k+1}(n+1)=A_{k}\left(A_{k+1}(n)\right) \quad \text { for } k, n \geq 0 .
$$

So, in particular, $A_{1}(n)=2 n, A_{2}(n)=2^{n}$ and $A_{3}(n)=\exp _{2}^{(n)}(1)$, the n-fold iterated power of 2. (Definitions of Ackermann's functions occur with minor variations in the literature.) Ackermann's functions are representatives of the successive levels of the Grzegorczyk hierarchy, which is a grading of all primitive recursive functions - see, for example, [37].

We will prove the following relationship in Section 3. Our notation in this proposition and henceforth is that for $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we write $f \preceq g$ when there exists $C>0$ such that for all n we have $f(n) \leq C g(C n+C)+C n+C$. This gives an equivalence relation capturing qualitative agreement of growth rates: $f \simeq g$ if and only if $f \preceq g$ and $g \preceq f$.

Proposition 1.2. For all $k \geq 1, \mathscr{H}_{k} \simeq A_{k}$.

Other hydra dwell in the mathematical literature, particularly in the context of results concerning independence from Peano arithmetic and other logical systems. The hydra of Kirby and Paris [27], based on finite rooted trees, are particularly celebrated. Similar, but yet more extreme hydra were later constructed by Buchholz [14]. And creatures that, like ours, are finite strings that regenerate on decapitation were defined by Hamano and Okada [25] and then independently by Beklemishev [7]. They go by the name of worms, are descended from Buchholz's hydra, involve more complex regeneration rules, and withstand Hercules even longer.
1.2. Wild subgroup distortion. The distortion function $\operatorname{Dist}_{H}^{G}: \mathbb{N} \rightarrow \mathbb{N}$ for a subgroup H with finite generating set T inside a group G with finite generating set S compares the intrinsic word metric d_{T} on H with the extrinsic word metric d_{S} :

$$
\operatorname{Dist}_{H}^{G}(n):=\max \left\{d_{T}(1, g) \mid g \in H \text { with } d_{S}(1, g) \leq n\right\}
$$

Up to \simeq it is does not depend on the particular finite generating sets used.
A manifestation of our Hercules-versus-the-hydra battle leads to the result that even for apparently benign G and H, distortion can be wild.

Theorem 1.3. For each integer $k \geq 1$, there is a finitely generated group G_{k} that

- is free-by-cyclic,
- can be presented with only one defining relator,
- is CAT(0),
- and is biautomatic,
and yet has a rank-k free subgroup H_{k} that is distorted like the k-th of Ackermann's functions - that is, Dist $_{H_{k}}^{G_{k}} \simeq A_{k}$.

This distortion of a free subgroup of a CAT (0) group stands in stark contrast to that of any abelian subgroup - they are always quasi-isometrically embedded (see Theorem 4.10 of Chapter III. Γ in [13], for example) and so no more than linearly distorted.

The distortion we achieve exceeds that found in the hyperbolic groups of Mitra [32] and the subsequent 2-dimensional CAT(-1) groups of Barnard, Brady and Dani [2]. They give families of groups that have free subgroups distorted like the iterated exponential function $\exp ^{(k)}(n)$, and examples with faster growing distortion like $\exp ^{\left(\left\lfloor\log _{4} n\right\rfloor\right)}(1)$. Their approach is to iterate the exponential distortion of the subgroup F in certain free-by-cyclic groups $F \rtimes \mathbb{Z}$.

In contrast to those of Mitra and of Barnard, Brady and Dani, our examples contain \mathbb{Z}^{2} subgroups and so are not hyperbolic. However, in a subsequent article [10] with N. Brady we will give an elaboration of G_{k} that is hyperbolic and has a free subgroup distorted $\succeq A_{k}$.

Explicitly, our examples here are

$$
\begin{equation*}
\left.G_{k}=\left\langle a_{1}, \ldots, a_{k}, t\right| t^{-1} a_{1} t=a_{1}, t^{-1} a_{i} t=a_{i} a_{i-1}(\text { for all } i>1)\right\rangle \tag{1}
\end{equation*}
$$

and their subgroups

$$
H_{k}:=\left\langle a_{1} t, \ldots, a_{k} t\right\rangle
$$

So G_{k} is the free-by-cyclic group $F\left(a_{1}, \ldots, a_{k}\right) \rtimes \mathbb{Z}$ where $\mathbb{Z}=\langle t\rangle$ and t acts by the automorphism of $F\left(a_{1}, \ldots, a_{k}\right)$ that is the restriction of the automorphism θ of $F\left(a_{1}, a_{2}, \ldots\right)$ defined by

$$
\theta\left(a_{i}\right)= \begin{cases}a_{1}, & i=1 \tag{2}\\ a_{i} a_{i-1}, & i>1\end{cases}
$$

This automorphism of $F\left(a_{1}, \ldots, a_{k}\right)$ is polynomial growing and of the type studied by Bestvina, Feighn and Handel in [9]. Indeed, our technique in Section 6 and following of using pieces to analyze its affect on words is also employed in [9].

For $i \leq j$, the canonical homomorphism $G_{i} \rightarrow G_{j}$ is an inclusion as the free-by-cyclic normal forms of an element of G_{i} and its image in G_{j} are the same. So the direct limit of the G_{i} under these inclusions is

$$
\left.G=\left\langle t, a_{1}, a_{2}, \ldots\right| t^{-1} a_{1} t=a_{1}, t^{-1} a_{i} t=a_{i} a_{i-1}(\text { for all } i>1)\right\rangle
$$

Also, the subgroup $H:=\left\langle a_{1} t, a_{2} t, \ldots\right\rangle$ of G is $\underset{\longrightarrow}{\lim } H_{i}$ and $H_{k}=G_{k} \cap H$.
Our convention is that $[a, b]=a^{-1} b^{-1} a b$. By re-expressing the original relations as $\left[a_{1}, t\right]=1$ and $a_{i-1}=\left[a_{i}, t\right]$ for $i>1$ and then eliminating a_{1}, \ldots, a_{k-1} and
defining $a:=a_{k}$, one can present G_{k} with one relation, a nested commutator, known as an Engel relation:

$$
G_{k} \cong\langle a, t \mid[a, \underbrace{t, \ldots, t}_{k}]=1\rangle .
$$

That is, the relation is $v_{k}=1$ where v_{k} is the word defined recursively by $v_{0}=a$ and $v_{i+1}=\left[v_{i}, t\right]$ for $i \geq 0$.

Recursively define a family of words by $u_{0}=a$ and $u_{i+1}=u_{i}^{-1} s u_{i}$ for $i \geq 0$. By inducting on i, one can verify that after substituting $t^{ \pm 1}$ for every $s^{\mp 1}$ in u_{i}, the words $t^{-(i-1)} u_{i} t^{i}$ and v_{i} become freely equal for all $i \geq 1$. So the relation $v_{k}=1$ can be replaced by $u_{k}=s$ to give an alternative one-relator presentation for G_{k} :

$$
G_{k} \cong\langle a, s \mid \underbrace{s^{.} \cdot s^{a}}_{k}=s\rangle .
$$

That the groups G_{k} are CAT(0) was proved by Samuelson: set $\kappa=1$ in Lemma 5.2 of [38]. We explain the result by re-expressing the presentation via $\alpha_{i}:=u_{k-i}$ for $1 \leq i \leq k$ as

$$
G_{k} \cong\left\langle\alpha_{1}, \ldots, \alpha_{k}, s \mid \alpha_{1}^{-1} s \alpha_{1}=s, \alpha_{i}^{-1} s \alpha_{i}=\alpha_{i-1}(i>1)\right\rangle .
$$

By checking the link condition (see, for example, [13], II.5.24) one finds that the Cayley 2-complex of this presentation (that is, the universal cover of the associated presentation 2-complex), metrized so that each 2-cell is a Euclidean square, is CAT(0). Gersten \& Short [23] proved that all such groups are automatic, and later Niblo \& Reeves [33] proved that a more general class of groups, those acting geometrically on CAT(0) cube complexes, are biautomatic.

The groups G_{k} are well-behaved in a couple of senses not mentioned in Theorem 1.3. They are residually torsion-free nilpotent by Baumslag [4] ${ }^{1}$ and enjoy the property of rapid decay by Jolissaint [26], Corollary 2.1.10. We thank Gilbert Baumslag and Indira Chatterji, respectively, for these observations.

We remark that a corollary of our recursive upper bound on Dist ${ }_{H_{k}}^{G_{k}}$ is that the membership problem for H_{k} in G_{k} is decidable.

The family G_{k} have received attention elsewhere. From a geometric point-ofview, it is natural to see G_{k} as the fundamental group of a mapping torus, and indeed G_{2} is a 3-manifold group. In [22] Gersten showed the group G_{2} to be CAT(0) with quadratic divergence function. He gave the free-by-cyclic, the one-relator, and the $\operatorname{CAT}(0)$ presentations of G_{2} we have described. In [30] Macura shows G_{3} to be CAT(0) and proves that an associated CAT(0) complex has a cubic divergence

[^0]function. Results in [30] imply that the divergence function of the universal cover of the mapping torus associated to the free-by-cyclic presentation of G_{k} is polynomial of degree k (up to \simeq) and in [28] Macura proves the same result for CAT(0) spaces associated to each G_{k}. Macura also mentions G_{2} and G_{3} in [29] as examples in the context of Kolchin maps and quadratic isoperimetric functions, and she and Cashen use G_{k} as examples in [15] when studying novel quasi-isometry invariants they call line patterns. It is stated in Example 4 of [5] that G_{3} is biautomatic. Bridson uses G_{k} in [12] as a starting point to construct free-by-free groups with Dehn functions that are polynomial of degree $k+1$ and he shows them to be subgroups of $\operatorname{Out}\left(F_{n}\right)$ for suitable n. Additionally, he shows his examples are asynchronously automatic via normal forms which have length $\simeq n^{k}$, but by no shorter normal form. En route he shows (Section 4.1 (3)) that free-by-cyclic $F_{k} \rtimes \mathbb{Z}$ groups, such as G_{k}, embed in $\operatorname{Aut}\left(F_{k}\right)$.

Examples of yet more extreme distortion are known, even for subgroups of hyperbolic groups. Arzhantseva \& Osin [1], §3.4, and Pittet [35] explain an argument attributed to Sela in $\S 3,3 . K_{3}^{\prime \prime}$ of [24]: the Rips construction, applied to a finitely presentable group with unsolvable word problem yields a hyperbolic (indeed, $C^{\prime}(1 / 6)$ small-cancellation) group G with a finitely generated subgroup N such that $\operatorname{Dist}_{N}^{G}$ is not bounded above by any recursive function. The reason is that when N is a finitely generated normal subgroup of a finitely presented group G, there is an upper bound for the Dehn function of G / N in terms of the Dehn function of G and the distortion of N in G - see Corollary 8.2 in [19], [35]. Ol'shanskii \& Sapir in [34], Theorem 2, provide another source of extreme examples - using Mikhailova's construction as their starting point, they show that the set of distortion functions of finitely generated subgroups of $F_{2} \times F_{2}$ coincides (up to \simeq) with the set of Dehn functions of finitely presented groups. As for finitely presented subgroups, Baumslag, Bridson, Miller and Short [6] explain how to construct groups Γ that are both CAT(0) and hyperbolic and yet such that $\Gamma \times \Gamma$ has a finitely presented subgroup whose distortion is not bounded above by any recursive function.

We are not aware of any systematic study of subgroup distortion in one-relator groups. It seems natural to ask whether our examples are best-possible - that is, whether there is a one-relator group with a finite-rank free subgroup of distortion $\succeq A_{k}$ for every k.
1.3. Extreme Dehn functions. The Dehn function $\operatorname{Area}(n)$ of a finitely presented group $\langle A \mid R\rangle$ is related to the group's word problem in that $\operatorname{Area}(n)$ is the minimal N such that given any word w of length at most n that represents the identity, w freely equals some product $\prod_{i=1}^{N^{\prime}} u_{i}^{-1} r_{i} u_{i}$ of $N^{\prime} \leq N$ conjugates of relators $r_{i} \in R^{ \pm 1}$, or, equivalently, one can reduce w to the empty word by applying defining relations at most N times and removing or inserting inverse pairs of letters. At the same time, the Dehn function is a natural geometric invariant (in fact, a quasi-isometry invariant
up to \simeq) of a group: $\operatorname{Area}(n)$ is the minimal N such that any edge-loop of length at most n in the Cayley 2-complex of $\langle A \mid R\rangle$ can be spanned by a combinatorial filling disc (a van Kampen diagram) with area (that is, number of 2-cells) at most N. This geometric perspective is related to the classical notion of an isoperimetric function in Riemannian geometry in that if $\langle A \mid R\rangle$ is the fundamental group of a closed Riemannian manifold M, then its Dehn function is \simeq-equivalent to the minimal isoperimetric function of the universal cover of M.

Theorem 1.3 leads to strikingly simple examples of finitely presented groups with huge Dehn functions, namely the HNN-extensions of G_{k} with stable letter commuting with all elements of the subgroup H_{k}.

Theorem 1.4. For $k \geq 2$, the Dehn function of the group

$$
\begin{gathered}
\Gamma_{k}:=\left\langle a_{1}, \ldots, a_{k}, t, p\right| t^{-1} a_{1} t=a_{1}, t^{-1} a_{i} t=a_{i} a_{i-1}(i>1), \\
\left.\left[p, a_{i} t\right]=1(i>0)\right\rangle .
\end{gathered}
$$

is \simeq-equivalent to A_{k}.
So, together with Γ_{1}, which has Dehn function \simeq-equivalent to $n \mapsto n^{2}$ (see Proposition 9.1), these groups have Dehn functions that are representative of each graduation of the Grzegorczyk hierarchy of primitive recursive functions. Details of the proof are in Section 9.

These are not the only such examples (but we believe they are the first that are explicit and elementary): Cohen, Madlener and Otto [17], [18], [31] embedded algorithms (modular Turing machines, in fact) with running times like $n \mapsto A_{k}(n)$ in groups so that the running of the algorithm is displayed in van Kampen diagrams so as to make the Dehn function reflect the time-complexity of the algorithms. They state that their techniques produce yet more extreme examples as they also apply to an algorithm with running time like $n \mapsto A_{n}(n)$, and so yield a group with Dehn function that is recursive but not primitive recursive. More extreme still, any finitely presentable group with undecidable word problem is not bounded above by any recursive function.

Elementary examples of groups with large Dehn function are described by Gromov in [24], $\S 4$, but their behaviour is not so extreme. There is the family

$$
\left\langle x_{0}, \ldots, x_{k} \mid x_{i+1}^{-1} x_{i} x_{i+1}=x_{i}^{2}(i<k)\right\rangle,
$$

which has Dehn function \simeq-equivalent to $n \mapsto \exp _{2}{ }^{(k)}(n)$. [We write $\exp _{2}(n)$ to denote 2^{n}.] And Baumslag's group [3]

$$
\begin{equation*}
\left\langle a, b \mid\left(b^{-1} a^{-1} b\right) a\left(b^{-1} a b\right)=a^{2}\right\rangle \tag{3}
\end{equation*}
$$

which contains $\left\langle x_{0}, \ldots, x_{k} \mid x_{i+1}{ }^{-1} x_{i} x_{i+1}=x_{i}{ }^{2}(i \geq 0)\right\rangle$ as a normal subgroup, was shown by Platonov [36] to have Dehn function \simeq-equivalent to $n \mapsto$ $\exp ^{\left.\left(\log _{2} n\right\rfloor\right)}(1)$. (Prior partial results in this direction are in [8], [20], [21].)
1.4. The organisation of the article. We believe the most compelling assertion of Theorem 1.3 to be the existence of groups H_{k} and G_{k} with H_{k} free of rank k, G_{k} enjoying the bulleted list of properties, and $\operatorname{Dist}_{H_{k}}^{G_{k}}$ bounded below by A_{k}. In particular, this shows that there is no uniform upper bound on the level in the Grzegorczyk hierarchy at which the functions Dist ${ }_{H_{k}}^{G_{k}}$ appear. The reader who is primarily interested in these components of Theorem 1.3 need only read up to the end of Section 5. In Section 2 we derive a collection of elementary properties of the Ackermann functions that will be used elsewhere in the paper. Section 3 contains a proof of Proposition 1.2 comparing the hydra functions to Ackermann's functions. In Section 4 we prove that the subgroups H_{k} are free. And in Section 5 we prove that each function Dist $_{H_{k}}^{G_{k}}$ is bounded below by \mathscr{H}_{k} - combining this result with Proposition 1.2 gives the lower bound A_{k}.

Our proof that each function $\operatorname{Dist}_{H_{k}}^{G_{k}}$ lies in the same \simeq-equivalence class of functions as $A_{k}-i . e$. that A_{k} is an upper bound for Dist ${ }_{H_{k}}^{G_{k}}$ - is considerably more involved than that of the lower bound and occupies most of the second half of the article: Sections 6, 7 and 8. In deriving the upper bound, a key notion will be that of passing a power of t through a word w on the letters a_{i}. We explain this idea in Section 6, where we also identify recursive structure that will be crucial in facilitating an inductive analysis. In Section 7 we focus on the situation where w is of the form $\theta^{n}\left(a_{k}{ }^{ \pm 1}\right)$ and derive preliminary result that will feed into the main proof, presented in Section 8, that Dist $_{H_{k}}^{G_{k}} \preceq A_{k}$.

Finally, in Section 9, we prove Theorem 1.4, which gives the Dehn functions of the groups Γ_{k}.

We illustrate some of our arguments using van Kampen diagrams, particularly observing their corridors (also known as bands). For an introduction see, for example, I.8A. 4 and the proof of Proposition 6.16 in III. Γ of [13].

We denote the length of a word w by $\ell(w)$. We write $w=w\left(a_{1}, \ldots, a_{k}\right)$ when w is a word on $a_{1}{ }^{ \pm 1}, \ldots, a_{k} \pm 1$.
1.5. Acknowledgements. We are grateful to Martin Bridson for a number of conversations on this work, to Volker Diekert for a discussion of Ackermann's functions, to Arye Juhasz for background on one-relator groups, and to John McCammond for help with some computer explorations of Hercules' battle with the hydra. We also thank an anonymous referee for a careful reading, for bringing to our attention the connections between this work and [9], and for simplifying our proof of Proposition 5.2.

2. Ackermann's functions

Throughout this article we will frequently compare functions to Ackermann's functions and will find the following relationships useful.

Lemma 2.1. For integers k, l, m, n, the following relations hold within the given domains:

$$
\begin{align*}
A_{k}\left(A_{k+1}(n)\right) & =A_{k+1}(n+1), & & k, n \geq 0, \tag{4}\\
A_{k}(1) & =2, & & k \geq 1, \tag{5}\\
A_{k}(2) & =4, & & k \geq 0, \tag{6}\\
A_{k}(n) & \leq A_{k+1}(n), & & k \geq 1 ; n \geq 0, \tag{7}\\
A_{k}(n) & <A_{k}(n+1), & & k, n \geq 0, \tag{8}\\
n & \leq A_{k}(n), & & k, n \geq 0, \tag{9}
\end{align*}
$$

(with equality holding in (9) if and only if $(k, n)=(1,0)$)

$$
\begin{align*}
m A_{k}(n) & \leq A_{k}(n m), & & k, n \geq 1 ; m \geq 0, \tag{10}\\
m A_{k}^{(l)}(n) & \leq A_{k}^{(l+m)}(n), & & k \geq 1 ; l, m, n \geq 0, \tag{11}\\
A_{k}(n)+A_{k}(m) & \leq A_{k}(n+m), & & k, n, m \geq 1, \tag{12}\\
A_{k}(n)+m & \leq A_{k}(n+m), & & k, n, m \geq 0, \tag{13}\\
\left(A_{k}(n)\right)^{m} & \leq A_{k}(n m), & & k \geq 2 ; n, m \geq 0 . \tag{14}
\end{align*}
$$

Proof. Equation (4) follows immediately from the definition of the Ackermann functions. Equations (5) and (6) follow from (4) by an easy induction on k.

Before proving (7), (8) and (9), we first prove that non-strict versions of these inequalities hold. The proof is by induction on k and n. It is easy to check that (7) holds if $k=1$ or if $n=0$ and that (8) and (9) hold if $k=0$, if $k=1$ or if $n=0$. Now let $k^{\prime}>1$ and $n^{\prime}>0$ and suppose, as an inductive hypothesis, that (7), (8) and (9) hold (not necessarily strictly) if $k<k^{\prime}$ or if $k=k^{\prime}$ and $n<n^{\prime}$. We prove that the inequalities hold if $k=k^{\prime}$ and $n=n^{\prime}$. For (7), we calculate that $A_{k^{\prime}}\left(n^{\prime}\right)=A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(n^{\prime}-1\right)\right) \leq A_{k^{\prime}-1}\left(A_{k^{\prime}+1}\left(n^{\prime}-1\right)\right) \leq A_{k^{\prime}}\left(A_{k^{\prime}+1}\left(n^{\prime}-1\right)\right)=$ $A_{k^{\prime}+1}\left(n^{\prime}\right)$, where we have applied (4) and the inductive hypothesis versions of (7) and (8). For (8), we calculate that $A_{k^{\prime}}\left(n^{\prime}\right) \leq A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(n^{\prime}\right)\right)=A_{k^{\prime}}\left(n^{\prime}+1\right)$, where we have used (4) and the inductive hypothesis version of (9). For (9), we calculate that $n^{\prime} \leq 2 n^{\prime}=A_{1}\left(n^{\prime}\right) \leq A_{k^{\prime}}\left(n^{\prime}\right)$, where we have used the inductive hypothesis version of (7). This completes the proof that (7), (8) and (9) hold in non-strict form. Now observe that equality in (9) at (k, n) $=\left(k^{\prime}, n^{\prime}\right)$ requires $n^{\prime}=2 n^{\prime}$, whence $n^{\prime}=0$. Since $A_{k}(0)=1$ for all $k \geq 2$, equality in (9) holds if and only if $(k, n)=(1,0)$. It follows that equality in (8) at $(k, n)=\left(k^{\prime}, n^{\prime}\right)$ would require that $A_{k^{\prime}}\left(n^{\prime}\right)=0$ and $k^{\prime}-1=1$, whence $A_{2}\left(n^{\prime}\right)=0$. But $A_{2}(n)=2^{n}>0$ for all n and so the inequality (8) is strict.

We now prove inequality (10). This clearly holds if $m=0$, so suppose that $m \geq 1$. The proof is by induction on k and n. It is clear that (10) holds if $k=1$. The inequality also holds if $n=1$ since, applying (5) and (7), we calculate that
$m A_{k}(1)=2 m=A_{1}(m) \leq A_{k}(m)$. Now let $k^{\prime}, n^{\prime}>1$ and suppose, as an inductive hypothesis, that (10) holds if $k<k^{\prime}$ or if $k=k^{\prime}$ and $n<n^{\prime}$. We calculate that

$$
\begin{aligned}
m A_{k^{\prime}}\left(n^{\prime}\right) & =m A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(n^{\prime}-1\right)\right) \leq A_{k^{\prime}-1}\left(m A_{k^{\prime}}\left(n^{\prime}-1\right)\right) \\
& \leq A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(m n^{\prime}-m\right)\right) \leq A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(m n^{\prime}-1\right)\right)=A_{k^{\prime}}\left(m n^{\prime}\right)
\end{aligned}
$$

where we have used (4) and (8). Thus the inequality holds if $(k, n)=\left(k^{\prime}, n^{\prime}\right)$, completing the proof of (10).

For inequality (11) observe that, by (9), $m A_{k}{ }^{(l)}(n) \leq A_{k+1}(m) A_{k}{ }^{(l)}(n)=$ $A_{k}{ }^{(m)}(1) A_{k}{ }^{(l)}(n)$. It also follows from (9) that $A_{k}{ }^{(i)}(1) \geq 1$ for all $i \geq 0$. We can thus apply (10), together with (8), to show that

$$
A_{k}^{(m)}(1) A_{k}^{(l)}(n) \leq A_{k}^{(m)}\left(A_{k}^{(l)}(n)\right)=A_{k}^{(l+m)}(n)
$$

We prove (12) by induction on k. We will make repeated use of the identity $A_{k}(m)=A_{k-1}{ }^{(m)}(1)$. It is clear that the inequality holds if $k=1$, so suppose that $k>1$ and that the result is true for smaller values of k. Without loss of generality suppose that $n \leq m$. It follows from (9) that $A_{k-1}{ }^{(i)} \geq 1$ for all $i \geq 0$, and so we can apply the induction hypothesis to calculate that $A_{k}(n)+A_{k}(m)=A_{k-1}{ }^{(n)}(1)+$ $A_{k-1}{ }^{(m)}(1) \leq A_{k-1}{ }^{(n)}\left(1+A_{k-1}{ }^{(m-n)}(1)\right)=A_{k-1}{ }^{(n)}\left(1+A_{k}(m-n)\right)$. Applying (8) gives that this quantity is at most $A_{k-1}{ }^{(n)}\left(A_{k}(m-n+1)\right)=A_{k}(m+1) \leq A_{k}(m+n)$.

We now prove inequality (13). This clearly holds if $k=0, k=1$ or $m=0$. If $k \geq 2$ and $n=0$, then $A_{k}(n)+m=m+1 \leq A_{k}(m)=A_{k}(n+m)$ by (9). It remains to prove (13) if $k, n, m \geq 1$. But in this case $A_{k}(n)+m \leq A_{k}(n)+A_{k}(m) \leq$ $A_{k}(n+m)$ by (9) and (12).

Finally, we prove (14) by induction on k. It is clear that the inequality holds if $k=2$, so suppose that $k \geq 3$ and that the result holds for smaller values of k. It is also clear that the inequality holds if $n=0$ or if $m=0$; suppose that $n, m \geq 1$. Applying the induction hypothesis, together with (4), we calculate that $A_{k}(n)^{m}=$ $A_{k-1}\left(A_{k}(n-1)\right)^{m} \leq A_{k-1}\left(m A_{k}(n-1)\right)$. Applying (4), (8) and (10), we see that this quantity is at most $A_{k-1}\left(A_{k}(n m-m)\right) \leq A_{k-1}\left(A_{k}(n m-1)\right)=A_{k}(n m)$.

3. Comparing the hydra functions to Ackermann's functions

In this section we prove Proposition 1.2 comparing Ackermann's functions to the hydra functions. The proof will proceed via a third family of functions ϕ_{k}. In this section $\phi_{k}(n)$ will be defined for $n \geq 0$; subsequently we will give a more general definition with an expanded domain.

For integers $k \geq 1$ and $n \geq 0$, define $\phi_{k}(n):=\mathscr{H}\left(\theta^{n}\left(a_{k}\right)\right)$. The functions \mathscr{H}_{k} satisfy

$$
\begin{equation*}
\mathscr{H}_{k}(n+1)=\mathscr{H}_{k}(n)+\phi_{k}\left(\mathscr{H}_{k}(n)\right) \tag{15}
\end{equation*}
$$

since after $\mathscr{H}_{k}(n)$ strikes the word $a_{k}{ }^{n+1}$ has become $\theta^{\mathscr{H}_{k}(n)}\left(a_{k}\right)$. We will need the following elementary properties of the functions ϕ_{k}.

Lemma 3.1. For integers $k \geq 1$ and $n \geq 0$,

$$
\begin{align*}
\phi_{k}(0) & =1, \tag{16}\\
\phi_{2}(n) & =n+1, \tag{17}\\
\phi_{k}(n) & \geq 1, \tag{18}\\
\phi_{k+1}(n+1) & =\phi_{k+1}(n)+\phi_{k}\left(\phi_{k+1}(n)+n\right) . \tag{19}
\end{align*}
$$

For integers $k \geq 2$ and $n \geq 0$,

$$
\begin{align*}
& \phi_{k}(n)<\phi_{k}(n+1), \tag{20}\\
& \phi_{k}(n) \geq n . \tag{21}
\end{align*}
$$

Proof. Assertions (16), (17), (18) are straightforward. For (19), note that, by induction on $n, \theta^{n+1}\left(a_{k+1}\right)=a_{k+1} a_{k} \theta\left(a_{k}\right) \ldots \theta^{n}\left(a_{k}\right)$ and hence

$$
\theta^{n+1}\left(a_{k+1}\right)=\theta^{n}\left(a_{k+1}\right) \theta^{n}\left(a_{k}\right)
$$

Thus, after $\phi_{k+1}(n)$ strikes, $\theta^{n+1}\left(a_{k+1}\right)$ has become

$$
\theta^{\phi_{k+1}(n)}\left(\theta^{n}\left(a_{k}\right)\right)=\theta^{\phi_{k+1}(n)+n}\left(a_{k}\right) .
$$

Inequality (20) follows immediately from (18) and (19) and inequality (21) follows from (18) and (20).

It is easy to check that $\phi_{1} \simeq A_{0}$ and $\phi_{2} \simeq A_{1}$. As such, the next result is sufficient to establish that $\phi_{k} \simeq A_{k-1}$ for $k \geq 1$.

Lemma 3.2. (i) For integers $k \geq 3$ and $n \geq 0, \phi_{k}(n) \geq A_{k-1}(n)$.
(ii) For integers $k \geq 2$ and $n \geq 0, \phi_{k}(n) \leq A_{k-1}(n+k)-n-k$.

Proof. We prove (i) by simultaneous induction on k and n. It is immediate from (16) that the inequality holds if $n=0$. By (17) and (19), $\phi_{3}(n)=2 \phi_{3}(n-1)+n$, which, combined with (16), gives $\phi_{3}(n)=3\left(2^{n}\right)-n-2$. Since $A_{2}(n)=2^{n}$, it is easy to check that (i) holds if $k=3$. Now let $k^{\prime}>3$ and $n^{\prime}>0$ and suppose, as an inductive hypothesis, that the result is true if $k<k^{\prime}$ or if $k=k^{\prime}$ and $n<n^{\prime}$. Applying (4), (18) and (20), we calculate that $\phi_{k^{\prime}}\left(n^{\prime}\right)=\phi_{k^{\prime}}\left(n^{\prime}-1\right)+\phi_{k^{\prime}-1}\left(\phi_{k^{\prime}}\left(n^{\prime}-1\right)+n^{\prime}-1\right) \geq$ $\phi_{k^{\prime}-1}\left(\phi_{k^{\prime}}\left(n^{\prime}-1\right)\right) \geq \phi_{k^{\prime}-1}\left(A_{k^{\prime}-1}\left(n^{\prime}-1\right)\right) \geq A_{k^{\prime}-2}\left(A_{k^{\prime}-1}\left(n^{\prime}-1\right)\right)=A_{k^{\prime}-1}\left(n^{\prime}\right)$. Thus the result holds at (k, n) $=\left(k^{\prime}, n^{\prime}\right)$, completing the proof of (i).

We now make the following claim: for all $k \geq 2, n \geq 0$ and $c \geq k$,

$$
\begin{equation*}
\phi_{k}(n) \leq A_{k-1}(n+c)-n+k-2 c . \tag{22}
\end{equation*}
$$

Assertion (ii) will follow by setting $c=k$. The proof of this inequality is by simultaneous induction on k and n. Since $A_{1}(n)=2 n$ and, by (17), $\phi_{2}(n)=n+1$, it is straightforward to check that (22) holds if $k=2$. The inequality also holds for $n=0$ since, by (7) and (16), $\phi_{k}(0)=1 \leq k=A_{1}(c)+k-2 c \leq A_{k-1}(c)+k-2 c$. Now let $c \geq k^{\prime}>2$ and $n^{\prime}>0$ and suppose, as an induction hypothesis, that (22) holds if $k<k^{\prime}$ or if $k=k^{\prime}$ and $n<n^{\prime}$. We calculate that

$$
\begin{align*}
\phi_{k^{\prime}}\left(n^{\prime}\right)= & \phi_{k^{\prime}}\left(n^{\prime}-1\right)+\phi_{k^{\prime}-1}\left(\phi_{k^{\prime}}\left(n^{\prime}-1\right)+n^{\prime}-1\right) \tag{19}\\
\leq & \phi_{k^{\prime}}\left(n^{\prime}-1\right)+A_{k^{\prime}-2}\left(\phi_{k^{\prime}}\left(n^{\prime}-1\right)+n^{\prime}+c-1\right) \\
& \quad-\phi_{k^{\prime}}\left(n^{\prime}-1\right)-n^{\prime}+k^{\prime}-2 c \\
= & A_{k^{\prime}-2}\left(\phi_{k^{\prime}}\left(n^{\prime}-1\right)+n^{\prime}+c-1\right)-n^{\prime}+k^{\prime}-2 c \\
\leq & A_{k^{\prime}-2}\left(A_{k^{\prime}-1}\left(n^{\prime}+c-1\right)+k^{\prime}-c\right)-n^{\prime}+k^{\prime}-2 c \tag{8}\\
\leq & A_{k^{\prime}-2}\left(A_{k^{\prime}-1}\left(n^{\prime}+c-1\right)\right)-n^{\prime}+k^{\prime}-2 c \tag{8}\\
= & A_{k^{\prime}-1}\left(n^{\prime}+c\right)-n^{\prime}+k^{\prime}-2 c . \tag{4}
\end{align*}
$$

Thus the inequality holds if $(k, n)=\left(k^{\prime}, n^{\prime}\right)$, completing the proof of (22).
Since $A_{1}(n)=2 n, \mathscr{H}_{1}(n)=n, A_{2}(n)=2^{n}$ and $H_{2}(n)=2^{n}-1$, the next result is sufficient to establish Proposition 1.2.

Proposition 3.3. (i) For integers $k \geq 3$ and $n \geq 2, \mathscr{H}_{k}(n) \geq A_{k}(n)$.
(ii) For integers $k \geq 1$ and $n \geq 0, \mathscr{H}_{k}(n) \leq A_{k}(n+k)$.

Proof. We prove (i) by induction on n. The inequality certainly holds for $n=2$ since, by (6), $\mathscr{H}_{k}(2)=\mathscr{H}\left(a_{k} a_{k-1} a_{k-1} a_{k-2}\right) \geq 4=A_{k}(2)$. Now let $n^{\prime}>2$ and suppose that (i) holds for $n<n^{\prime}$. Applying (4), (15) and (20), together with Lemma 3.2 (i), we calculate that $\mathscr{H}_{k}\left(n^{\prime}\right)=\mathscr{H}_{k}\left(n^{\prime}-1\right)+\phi_{k}\left(\mathscr{H}_{k}\left(n^{\prime}-1\right)\right) \geq \phi_{k}\left(\mathscr{H}_{k}\left(n^{\prime}-1\right)\right) \geq$ $\phi_{k}\left(A_{k}\left(n^{\prime}-1\right)\right) \geq A_{k-1}\left(A_{k}\left(n^{\prime}-1\right)\right)=A_{k}\left(n^{\prime}\right)$. Thus the inequality holds for $n=n^{\prime}$, completing the proof of (i).

For (ii), we prove the stronger claim that, for all $k \geq 1, n \geq 0$,

$$
\begin{equation*}
\mathscr{H}_{k}(n) \leq A_{k}(n+k)-k . \tag{23}
\end{equation*}
$$

The proof is by simultaneous induction on k and n. Since $A_{1}(n)=2 n$ and $\mathscr{H}_{1}(n)=n$, it is straightforward to check that (23) holds if $k=1$. The inequality holds if $n=0$ since, by (7), $\mathscr{H}_{k}(0)=0 \leq k=A_{1}(k)-k \leq A_{k}(k)-k$. Now let $k^{\prime}>1$ and $n^{\prime}>0$ and suppose, as an inductive hypothesis, that (23) holds if $k<k^{\prime}$ or if $k=k^{\prime}$ and $n<n^{\prime}$. We calculate that

$$
\begin{array}{rlr}
\mathscr{H}_{k^{\prime}}\left(n^{\prime}\right)= & \mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)+\phi_{k^{\prime}}\left(\mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)\right) & \text { by }(15) \\
\leq & \mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)+A_{k^{\prime}-1}\left(\mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)+k^{\prime}\right) & \\
& \quad-\mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)-k^{\prime} & \text { by Lemma } 3.2 \text { (ii) }
\end{array}
$$

$$
\begin{array}{ll}
=A_{k^{\prime}-1}\left(\mathscr{H}_{k^{\prime}}\left(n^{\prime}-1\right)+k^{\prime}\right)-k^{\prime} & \\
\leq A_{k^{\prime}-1}\left(A_{k^{\prime}}\left(n^{\prime}+k^{\prime}-1\right)\right)-k^{\prime} & \text { by }(8) \\
=A_{k^{\prime}}\left(n^{\prime}+k^{\prime}\right)-k^{\prime} & \text { by }(4)
\end{array}
$$

Thus the inequality holds if $(k, n)=\left(k^{\prime}, n^{\prime}\right)$, completing the proof of (23).

4. Freeness of the subgroups \boldsymbol{H} and $\boldsymbol{H}_{\boldsymbol{k}}$

In this section we prove:
Proposition 4.1. The subgroup H_{k} of G_{k} is free with free basis $a_{1} t, \ldots, a_{k} t$, and the subg roup H of G is free with free basis $a_{1} t, a_{2} t, \ldots$.

To facilitate an induction argument, we will prove the following more elaborate proposition. Proposition 4.1 will follow because if $w=w\left(a_{1} t, \ldots, a_{k} t\right)$ is freely reduced and represents 1 in G_{k} (or, equivalently, in G), then $w=\varepsilon$ by conclusion (i), and so $a_{1} t, \ldots, a_{k} t$ are each not the identity and satisfy no non-trivial relations.

Proposition 4.2. Let $u=u\left(a_{1} t, \ldots, a_{k} t\right)$ be a freely reduced word with free-bycyclic normal form $v t^{r}$ - that is, $u=v t^{r}$ in $G_{k}, v=v\left(a_{1}, \ldots, a_{k}\right)$ is reduced, and $r \in \mathbb{Z}$.
(i) If $v=\varepsilon$, then $u=\varepsilon$.
(ii) If $v=\theta\left(a_{k+1}{ }^{-1}\right) \theta^{1-r}\left(a_{k+1}\right)$ in $F\left(a_{1}, a_{2}, \ldots\right)$, then $u=\varepsilon$.
(iii) If v is positive, then u is positive.

We emphasise that we are considering u as a word on the $a_{i} t-i$ is freely reduced if and only if it contains no subword $\left(a_{i} t\right)^{ \pm 1}\left(a_{i} t\right)^{\mp 1}$.

Proof of Proposition 4.2. We first show that for all fixed $k \geq 1$, if (iii) holds, then so do (i) and (ii).

For (i), note that if $u=t^{r}$ in G, then $u^{-1}=t^{-r}$. Thus (iii) implies that both of the freely reduced words u and u^{-1} are positive. Hence $u=\varepsilon$.

For (ii), we will separately consider the cases $r=0, r<0$, and $r>0$. If $r=0$, then $u=1$ in G and hence $u=\varepsilon$ by (i). If $r<0$, then $1-r \geq 1$ and so $\theta^{1-r}\left(a_{k+1}\right)=$ $a_{k+1} a_{k} w$ in $F\left(a_{1}, a_{2}, \ldots\right)$ for some positive word $w=w\left(a_{1}, \ldots, a_{k}\right)$. It follows that v is positive and therefore (iii) implies that u is positive. Thus $r \geq 0$, giving a contradiction. If $r>0$, one calculates that $u^{-1}=t^{-r} \theta^{1-r}\left(a_{k+1}{ }^{-1}\right) \theta\left(a_{k+1}\right)=$ $\theta\left(a_{k+1}^{-1}\right) \theta^{1+r}\left(a_{k+1}\right) t^{-r}$ in $F\left(a_{1}, a_{2}, \ldots\right)$. Since $1+r \geq 1$, the reduced form of $\theta\left(a_{k+1}^{-1}\right) \theta^{1+r}\left(a_{k+1}\right)$ is positive, and so (iii) implies that u^{-1} is positive. Thus $-r \geq 0$, giving a contradiction.

We now prove (iii) by induction on k. Since G_{1} is free abelian with basis a_{1}, t, it is easy to check that (iii) holds in the case $k=1$. As an inductive hypothesis, assume that assertions (i), (ii) and (iii) all hold for smaller values of k. If u contains no occurrence of an $\left(a_{k} t\right)^{ \pm 1}$, then we are done. Otherwise, write $u=\sigma_{0}\left(a_{k} t\right)^{\epsilon_{1}} \sigma_{1}\left(a_{k} t\right)^{\epsilon_{2}} \ldots\left(a_{k} t\right)^{\epsilon_{m}} \sigma_{m}$, where each $\sigma_{i}=\sigma_{i}\left(a_{1} t, \ldots, a_{k-1} t\right)$ and each $\epsilon_{i} \in\{ \pm 1\}$.

Each σ_{i} has free-by-cyclic normal form $\tau_{i} t^{s_{i}}$ for some $\tau_{i}=\tau_{i}\left(a_{1}, \ldots, a_{k-1}\right)$ and some $s_{i} \in \mathbb{Z}$. Direct calculation of the normal form of u - moving all the $t^{ \pm 1}$ to the right-hand end and applying the automorphism $\theta^{\mp 1}$ whenever a $t^{ \pm 1}$ is moved past a letter a_{i}-gives that v freely equals

$$
v^{\prime}:=\tau_{0} \theta^{\lambda_{1}}\left(a_{k}^{\epsilon_{1}}\right) \theta^{\mu_{1}}\left(\tau_{1}\right) \theta^{\lambda_{2}}\left(a_{k}{ }^{\epsilon_{2}}\right) \ldots \theta^{\lambda_{m}}\left(a_{k}{ }^{\epsilon_{m}}\right) \theta^{\mu_{m}}\left(\tau_{m}\right)
$$

where

$$
\begin{aligned}
& \lambda_{i}= \begin{cases}-\left(s_{0}+\ldots+s_{i-1}+\epsilon_{1}+\ldots+\epsilon_{i-1}\right) & \text { if } \epsilon_{i}=1 \\
-\left(s_{0}+\ldots+s_{i-1}+\epsilon_{1}+\ldots+\epsilon_{i}\right) & \text { if } \epsilon_{i}=-1\end{cases} \\
& \mu_{i}=-\left(s_{0}+\ldots+s_{i-1}+\epsilon_{1}+\ldots+\epsilon_{i}\right) .
\end{aligned}
$$

We claim that $\epsilon_{i}=1$ for all i. For a contradiction, suppose otherwise. Observe that, for each $s \in \mathbb{Z}$, there are words $w_{s}=w_{s}\left(a_{1}, \ldots, a_{k-1}\right)$ and $w_{s}^{\prime}=$ $w_{s}^{\prime}\left(a_{1}, \ldots, a_{k-1}\right)$ such that $\theta^{s}\left(a_{k}\right)=a_{k} w_{s}$ and $\theta^{s}\left(a_{k}^{-1}\right)=w_{s}^{\prime} a_{k}^{-1}$. Since v is positive, there must be a subword $a_{k}^{ \pm 1} \chi a_{k}{ }^{\mp 1}$ in v^{\prime} which freely equals the empty word and in which $\chi=\chi\left(a_{1}, \ldots, a_{k-1}\right)$. The way this subword must arise is that for some i, either
(a) $\epsilon_{i}=-1, \epsilon_{i+1}=1$ and $\theta^{\mu_{i}}\left(\tau_{i}\right)=1$, or
(b) $\epsilon_{i}=1, \epsilon_{i+1}=-1$ and $\theta^{\lambda_{i}}\left(a_{k}\right) \theta^{\mu_{i}}\left(\tau_{i}\right) \theta^{\lambda_{i+1}}\left(a_{k}^{-1}\right)=1$.

In the first case $\tau_{i}=1$ and hence the induction hypothesis (assertion (i)) gives that $\sigma_{i}=\varepsilon$. But this contradicts the supposition that u is freely reduced. In the second case, one calculates that $\lambda_{i}-\mu_{i}=1$ and $\lambda_{i+1}-\mu_{i}=1-s_{i}$, and so $\tau_{i}=$ $\theta\left(a_{k}^{-1}\right) \theta^{1-s_{i}}\left(a_{k}\right)$. The induction hypothesis (assertion (ii)) implies that $\sigma_{i}=\varepsilon$, but again this contradicts the supposition that u is freely reduced.

To complete our proof of (iii), we will show that all the σ_{i} are positive. Since v is positive and each $\epsilon_{i}=1$, we have that τ_{0} is positive and each $\theta^{\lambda_{i}}\left(a_{k}\right) \theta^{\mu_{i}}\left(\tau_{i}\right)$ is positive. The inductive hypothesis (assertion (iii)) immediately gives that σ_{0} is positive. Suppose we have shown that $\sigma_{0}, \ldots, \sigma_{j-1}$ are positive, for some j. It follows that $s_{0}, \ldots, s_{j-1} \geq 0$, whence $\lambda_{j} \leq 0$. Note that if $w=w\left(a_{1}, \ldots, a_{k}\right)$ is positive and $s \geq 0$, then $\theta^{s}(w)$ is positive. Hence $a_{k} \theta^{\mu_{j}-\lambda_{j}}\left(\tau_{j}\right)=a_{k} \theta^{-1}\left(\tau_{j}\right)$ is positive. Since $\theta^{-1}\left(\tau_{j}\right)$ is a word on $a_{1}{ }^{ \pm 1}, \ldots, a_{k-1}^{ \pm 1}$, it follows that $\theta^{-1}\left(\tau_{j}\right)$ is positive, and hence that τ_{j} is positive. Applying the induction hypothesis (assertion (iii)) gives that σ_{j} is positive.

5. A lower bound on the distortion of H_{k} in G_{k}

In the following lemma we see the battle between Hercules and the hydra manifest in G_{k}.

Lemma 5.1. For all $k, n \geq 1$, there is a positive word $u_{k, n}=u_{k, n}\left(a_{1} t, \ldots, a_{k} t\right)$ of length $\mathscr{H}_{k}(n)$ that equals $a_{k}{ }^{n} t^{\mathscr{H}_{k}(n)}$ in G_{k}.

Proof. Consider the following calculation in which successive t are moved to the front and paired off with the a_{i}. [We illustrate the calculation in the case $k \geq 3$ and $n \geq 2-$ for $k=2$, the letters a_{k-2} would not appear and for $k=1$, neither would the a_{k-1}.]

$$
\begin{aligned}
a_{k}{ }^{n} t^{\mathscr{H}_{k}(n)} & =\left(a_{k} t\right) t^{-1} a_{k}^{n-1} t t^{\mathscr{H}_{k}(n)-1} \\
& =\left(a_{k} t\right)\left(a_{k} a_{k-1}\right)^{n-1} t^{\mathscr{H}_{k}(n)-1} \\
& =\left(a_{k} t\right)\left(a_{k} t\right) t^{-1} a_{k-1}\left(a_{k} a_{k-1}\right)^{n-2} t t^{\mathscr{H}_{k}(n)-2} \\
& =\left(a_{k} t\right)\left(a_{k} t\right) a_{k-1} a_{k-2}\left(a_{k} a_{k-1} a_{k-1} a_{k-2}\right)^{n-2} t^{\mathscr{H}_{k}(n)-2}
\end{aligned}
$$

A van Kampen diagram displaying this calculation in the case $k=2$ and $n=4$ is shown in Figure 1.

Figure 1. A van Kampen diagram showing that $a_{2}{ }^{4} t^{15}=u_{2,4}$ in G_{2} where $u_{2,4}=$ $a_{2} t a_{2} t a_{1} t a_{2} t\left(a_{1} t\right)^{3} a_{2} t\left(a_{1} t\right)^{7}$.

One sees the Hercules-versus-the-hydra battle

$$
a_{k}^{n} \rightarrow\left(a_{k} a_{k-1}\right)^{n-1} \rightarrow a_{k-1} a_{k-2}\left(a_{k} a_{k-1} a_{k-1} a_{k-2}\right)^{n-2} \rightarrow \cdots
$$

being played out in this calculation. The pairing off of a t with an a_{i} corresponds to a decapitation, and the conjugation by t that moves that t into place from the right-hand end causes a hydra-regeneration for the intervening subword. So by Proposition 1.1, after $\mathscr{H}_{k}(n)$ steps we have a positive word on $u_{k, n}=u_{k, n}\left(a_{1} t, \ldots, a_{k} t\right)$, and its length is $\mathscr{H}_{k}(n)$.

Our next proposition establishes that $\operatorname{Dist}_{H_{k}}^{G_{k}} \succeq \mathscr{H}_{k}$ for all $k \geq 2$. The case $k=1$ is straightforward: $H_{1} \cong \mathbb{Z}$ is undistorted in $G_{1} \cong \mathbb{Z}^{2}$ and $\mathscr{H}_{1}(n)=n$. The calculation in the proof of the proposition is illustrated by a van Kampen diagram in Figure 2 in the case $k=2$ and $n=4$ - the idea is that a copy of the diagram from Figure 1 fits together with its mirror image along intervening a_{1} - and a_{2}-corridors to make a diagram demonstrating the equality of a freely reduced word of extreme length on $a_{1} t, \ldots, a_{k} t$ with a short word on a_{1}, \ldots, a_{k}, t.

Proposition 5.2. For all $k \geq 2$ and $n \geq 1$, there is a reduced word of length $2 \mathscr{H}_{k}(n)+3$ on the free basis $a_{1} t, \ldots, a_{k} t$ for H_{k} which, in G_{k}, equals a word of length $2 n+4$ on a_{1}, \ldots, a_{k}, t.

Proof. As t commutes with a_{1} in G_{k}, it also commutes with $a_{2} t a_{1} a_{2}^{-1}$. So

$$
t^{-\mathscr{H}_{k}(n)} a_{2} t a_{1} a_{2}^{-1} t^{\mathscr{H}_{k}(n)}=a_{2} t a_{1} a_{2}^{-1}=\left(a_{2} t\right)\left(a_{1} t\right)\left(a_{2} t\right)^{-1},
$$

and then by Lemma 5.1,

$$
a_{k}^{n} a_{2} t a_{1} a_{2}^{-1} a_{k}^{-n}=u_{k, n}\left(a_{2} t\right)\left(a_{1} t\right)\left(a_{2} t\right)^{-1} u_{k, n}^{-1} .
$$

The word on the left has length $2 n+4$. The word on the right, viewed as a word on $a_{1} t, \ldots, a_{k} t$, is freely reduced and has length $2 \mathscr{H}_{k}(n)+3$, since $u_{k, n}$ is a positive word.

Figure 2. A van Kampen diagram demonstrating the equality $a_{2}{ }^{4} a_{2} t a_{1} a_{2}{ }^{-1} a_{2}{ }^{-4}=$ $u_{2,4}\left(a_{2} t\right)\left(a_{1} t\right)\left(a_{2} t\right)^{-1} u_{2,4}{ }^{-1}$ in G_{2}.

6. Recursive structure of words

This section contains preliminaries that will feed into the proof, presented in Section 8, that $\operatorname{Dist}_{H_{k}}^{G_{k}} \preceq A_{k}$. Here is an outline of how we will bound the distortion of H_{k} in G_{k}. We will first suppose $u=u\left(t, a_{1}, \ldots, a_{k}\right)$ represents an element of H_{k}. We will shuffle all the $t^{ \pm 1}$ in u to the start, with the effect of applying $\theta^{ \pm 1}$ to each $a_{i}{ }^{ \pm 1}$ they pass. After freely reducing, we will have a word $t^{r} w$ where $w=w\left(a_{1}, \ldots, a_{k}\right)$. We will then look to carry the t^{r} back through w from left to right, converting all it passes to a word on $a_{1} t, \ldots, a_{k} t$. Estimating the length of this word will give an upper bound on Dist ${ }_{H_{k}}^{G_{k}}$.

For convenience, we work with the group G and its subgroup H defined in Section 1.2.

When carrying the power of t through w we will face the problem of whether a word $t^{r} w$, where $w=w\left(a_{1}, a_{2}, \ldots\right)$, represents an element of a coset $H t^{s}$ in G for some $s \in \mathbb{Z}$. We will see that the answer is not always affirmative - these cosets do not cover G. However, if $t^{r} w=\sigma t^{s}$ for some $\sigma=\sigma\left(a_{1} t, a_{2} t, \ldots\right)$ and some $s \in \mathbb{Z}$, then σ is unique up to free-equivalence since H is free (Proposition 4.1) and s is unique by our next lemma. Indeed, we learn that $H t^{s_{1}}$ and $H t^{s_{2}}$ are equal precisely when $s_{1}=s_{2}$.

Lemma 6.1. If $\ell \in \mathbb{Z}$ and $t^{\ell} \in H$, then $\ell=0$.
Proof. Were $t^{\ell} \in H$ for some integer $\ell \neq 0$, then $\mathbb{Z}^{2} \cong\left\langle a_{1} t, t^{\ell}\right\rangle$ would be a subgroup of H contrary to the freeness of H established in Proposition 4.1.

Our next lemma will be the crux of our method for establishing an upper bound on distortion. It identifies recursive structure that will allow us to analyse the process of passing a power of t through a word $w=w\left(a_{1}, a_{2}, \ldots\right)$, so as to leave behind a word on $a_{1} t, a_{2} t, \ldots$.

For a non-empty freely-reduced word $w=w\left(a_{1}, a_{2}, \ldots\right)$, define the rank of w to be the highest k such that $a_{k}{ }^{ \pm 1}$ occurs in w. We define the empty word to have rank 0 . For an integer $k \geq 1$, define a piece of rank k to be a freely-reduced word $a_{k}^{\epsilon_{1}} \pi a_{k}^{-\epsilon_{2}}$ where $\pi=\pi\left(a_{1}, \ldots, a_{k-1}\right)$ and $\epsilon_{1}, \epsilon_{2} \in\{0,1\}$. Notice that a piece of rank k will always also be a piece of rank $k+1$ and that the empty word is a piece of $\operatorname{rank} k$ for every k.

For a non-empty freely-reduced word w of rank k, define the number of pieces in w to be the least integer m such that w can be expressed as a concatenation $w_{1} \ldots w_{m}$ of subwords w_{i} each of which is a piece of rank k. (We say the empty word is composed of 0 pieces.) Observe that
(i) each a_{k} and $a_{k}{ }^{-1}$ in w is the first or last letter of some w_{i}, respectively;
(ii) for $i=1, \ldots, m-1$, either the final letter of w_{i} is a_{k}^{-1} or the first of w_{i+1} is a_{k}, but never both; and
(iii) if $a_{k}^{-1} \chi a_{k}$ is a subword of w and $\chi=\chi\left(a_{1}, \ldots, a_{k-1}\right)$, then $\chi=w_{i}$ for some i.
In particular, w_{1}, \ldots, w_{m} are uniquely determined by the locations of the $a_{k}{ }^{ \pm 1}$ in w, and so we call the list of subwords w_{1}, \ldots, w_{m} the partition of w into pieces.

For example, $w:=a_{3}^{-1} a_{1} a_{2} a_{3} a_{2}^{-1} a_{3} a_{1}^{-1} a_{3}^{-1}$ has rank 3 and its partition into pieces is $w=w_{1} w_{2} w_{3} w_{4}$ where $w_{1}=a_{3}^{-1}, w_{2}=a_{1} a_{2}, w_{3}=a_{3} a_{2}^{-1}$, and $w_{4}=a_{3} a_{1}^{-1} a_{3}^{-1}$.

Lemma 6.2. Suppose $w=w\left(a_{1}, \ldots, a_{k}\right)$ is a non-empty freely-reduced word of rank k and r and s are integers such that $t^{r} w \in H t^{s}$. Let $w=w_{1} \ldots w_{n}$ be the partition of w into pieces. Then there exist integers $r=r_{0}, r_{1}, \ldots, r_{n}=s$ such that $t^{r_{i}} w_{i+1} \in H t^{r_{i+1}}$ for each i.

Proof. As $t^{r} w \in H t^{s}$, there is some reduced word $v=v\left(a_{1} t, \ldots, a_{k} t\right)$ such that $t^{r} w=v t^{s}$. Form the analogue of a partition into pieces for v-that is, express v as a concatenation $v_{1} \ldots v_{m}$ of subwords v_{i} each of the form $\left(a_{k} t\right)^{\epsilon_{1}} \tau\left(a_{k} t\right)^{-\epsilon_{2}}$ where $\tau=\tau\left(a_{1} t, \ldots, a_{k-1} t\right)$ and $\epsilon_{1}, \epsilon_{2} \in\{0,1\}$ and m is minimal.

Note that v is non-empty as otherwise w would equal t^{s-r} in G and so be the empty word by the free-by-cyclic structure of G. Note also that no v_{i} is the empty word since m is minimal.

One can obtain $t^{r} w$ from $v t^{s}$ by carrying all the $t^{ \pm 1}$ to the left and freely reducing. More particularly, the t^{s} at the end of $v t^{s}$ and all the $t^{ \pm 1}$ in v_{m} can be collected immediately to the left of v_{m}, and then those $t^{ \pm 1}$ and the $t^{ \pm 1}$ in v_{m-1} can be carried to the left of v_{m-1}, and so on. Accordingly, inductively define $w_{m}^{\prime}, \ldots, w_{1}^{\prime}$ and r_{m}, \ldots, r_{0} by setting $r_{m}:=s$ and then, for $i=m, \ldots, 1$, taking r_{i-1} and $w_{i}^{\prime}=$ $w_{i}^{\prime}\left(a_{1}, \ldots, a_{k}\right)$ to be the unique integer and reduced word such that $v_{i} t^{r_{i}}=t^{r_{i-1}} w_{i}^{\prime}$. Then $r_{0}=r$ and w is (a priori) the freely reduced form of $w_{1}^{\prime} \ldots w_{m}^{\prime}$. We claim that, in fact, $w_{1}^{\prime} \ldots w_{m}^{\prime}$ is the partition of w into pieces of rank $k-$ that is, $m=n$ and $w_{i}^{\prime}=w_{i}$ for all i. This will suffice to establish the lemma.

To prove this claim, we will show that for all i, if $v_{i}=\left(a_{k} t\right)^{\epsilon_{1}} \tau\left(a_{k} t\right)^{-\epsilon_{2}}$ where $\tau=\tau\left(a_{1} t, \ldots, a_{k-1} t\right)$ and $\epsilon_{1}, \epsilon_{2} \in\{0,1\}$, then w_{i}^{\prime} is a reduced word $a_{k} \epsilon_{1} \pi a_{k}{ }^{-\epsilon_{2}}$ for some $\pi=\pi\left(a_{1}, \ldots, a_{k-1}\right)$. Moreover, if $\epsilon_{1}=\epsilon_{2}=0$, then π is not the empty word. In particular, no w_{i}^{\prime} is the empty word.

Well, $v_{i} t^{r_{i}}=t^{r_{i-1}} w_{i}^{\prime}$. Consider the process of carrying each $t^{ \pm 1}$ in $v_{i} t^{r_{i}}$ to the front of the word, applying $\theta^{ \pm 1}$ to each a_{j} they pass and then freely reducing, to give $t^{r_{i-1}} w_{i}^{\prime}$. Throughout this process, no new $a_{k}{ }^{ \pm 1}$ are produced and, such is θ, no a_{l} appears to the left of the a_{k} in v_{i} (if present) or to the right of the $a_{k}{ }^{-1}$ (if present) see (2) and Lemma 7.1. This means that the only way w_{i}^{\prime} could fail to be a reduced word of the form $a_{k}{ }^{\epsilon_{1}} \pi a_{k}{ }^{-\epsilon_{2}}$ where $\pi=\pi\left(a_{1}, \ldots, a_{k-1}\right)$, would be for ϵ_{1} and ϵ_{2} to both be 1 and π be the empty word. But in that case, w_{i}^{\prime} would be the empty word and so v_{i} would equal $t^{r_{i-1}-r_{i}}$ in G_{k} and $r_{i-1}-r_{i}$ would be 0 by Lemma 6.1. But then v_{i} would be the empty word by Proposition 4.1 which, as we observed, is not the
case. Likewise, when $\epsilon_{1}=\epsilon_{2}=0$, it cannot be the case that $\pi=w_{i}^{\prime}$ is the empty word, as otherwise v_{i} would again be the empty word.

So properties (i), (ii) and (iii) all apply to $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$ as they are inherited the corresponding properties for v_{1}, \ldots, v_{m}. It follows from these properties together with the fact that each w_{i}^{\prime} is reduced, that $w_{1}^{\prime} \ldots w_{m}^{\prime}$ is reduced and is the partition of w into pieces of rank k.

7. Passing powers of t through $\theta^{n}\left(a_{k}{ }^{ \pm 1}\right)$

The words $\theta^{n}\left(a_{k}{ }^{ \pm 1}\right)$ will play a crucial role in our proof that Dist ${ }_{H_{k}}^{G_{k}} \preceq A_{k}$. The next lemma reveals their recursive structure. The first part is proved by an induction on n. The second part is then an immediate consequence.

Lemma 7.1.

$$
\begin{gathered}
\theta^{n}\left(a_{k}\right)= \begin{cases}a_{k} \theta^{0}\left(a_{k-1}\right) \theta^{1}\left(a_{k-1}\right) \ldots \theta^{n-1}\left(a_{k-1}\right), & n>0, \\
a_{k}, & n=0, \\
a_{k} \theta^{-1}\left(a_{k-1}^{-1}\right) \theta^{-2}\left(a_{k-1}{ }^{-1}\right) \ldots \theta^{n}\left(a_{k-1}^{-1}\right), & n<0,\end{cases} \\
\theta^{n}\left(a_{k}^{-1}\right)= \begin{cases}\theta^{n-1}\left(a_{k-1}{ }^{-1}\right) \theta^{n-2}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right) a_{k}^{-1}, & n>0, \\
a_{k}-1, & n=0, \\
\theta^{n}\left(a_{k-1}\right) \theta^{n+1}\left(a_{k-1}\right) \ldots \theta^{-1}\left(a_{k-1}\right) a_{k}^{-1}, & n<0 .\end{cases}
\end{gathered}
$$

When attempting to carry a power of t through a word $w=w\left(a_{1}, a_{2}, \ldots\right)$, we will frequently be faced with the special case where w is of the form $\theta^{n}\left(a_{k}{ }^{ \pm 1}\right)$. We now focus on this situation.

Definition 7.2. Define

$$
\Lambda=\bigcup_{i \in \mathbb{Z}} H t^{i}
$$

For each integer $k \geq 1$, define

$$
S_{k}=\left\{n \in \mathbb{Z}: \theta^{n}\left(a_{k}\right) \in \Lambda\right\}
$$

and define the function $\phi_{k}: S_{k} \rightarrow \mathbb{Z}$ by setting $\phi_{k}(n)$ to be the unique integer satisfying

$$
\theta^{n}\left(a_{k}\right) t^{\phi_{k}(n)} \in H .
$$

Note that this extends the previous definition of the functions ϕ_{k} given in Section 3 since $\phi_{k}(n)=\mathscr{H}\left(\theta^{n}\left(a_{k}\right)\right)$ for $n \geq 0$.

Lemma 7.3. (i) $S_{1}=\mathbb{Z}$ and $\phi_{1}(n)=1$ for all $n \in S_{1}$.
(ii) $S_{2}=\mathbb{Z}$ and $\phi_{2}(n)=n+1$ for all $n \in S_{2}$.
(iii) If $k \geq 3$, then $S_{k}=\mathbb{N}$.

Proof. It is easy to check that $S_{1}=S_{2}=\mathbb{Z}, \phi_{1}(n)=1, \phi_{2}(n)=n+1$ and that $\mathbb{N} \subseteq S_{k}$ for all k.

Let $k \geq 3$ and suppose that $n<0$ lies in S_{k}. Since $\theta^{n}\left(a_{k}\right) t^{\phi_{k}(n)}$ lies in H, so does $\left(a_{k} t\right)^{-1} \theta^{n}\left(a_{k}\right) t^{\phi_{k}(n)}=a_{k-1}^{-1} \theta^{-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{n+1}\left(a_{k-1}{ }^{-1}\right) t^{\phi_{k}(n)-1}$, and hence, by Lemma 6.2, $a_{k-1}{ }^{-1}$ lies in $H t^{r}$ for some r. It follows that $\theta^{-r}\left(a_{k-1}\right) t^{r} \in H$ and so $r=\phi_{k-1}(-r)$. If $k=3$, this is a contradiction, since it implies $r=-r+1$. If $k>3$, then $-r \in S_{k-1}$, and so, by the induction hypothesis, $r \leq 0$. But then $\phi_{k-1}(-r) \geq 1$, by (18), and hence $r \geq 1$, a contradiction.

Let d_{H} denote the word metric on H with respect to the generating set $a_{1} t, a_{2} t, \ldots$
Lemma 7.4. If $n \in S_{k}$ and $h=\theta^{n}\left(a_{k}\right) t^{\phi_{k}(n)}$, then $d_{H}(1, h)=\phi_{k}(|n|)$.
Proof. If $k=1$, then the result is obvious. If $k=2$, then $h=a_{2} a_{1}{ }^{n} t^{n+1}=$ $\left(a_{2} t\right)\left(a_{1} t\right)^{n}$ so $d_{H}(1, h)=1+|n|=\phi_{k}(|n|)$. If $k \geq 3$, then $n \geq 0$. Thus the word $\theta^{n}\left(a_{k}\right)$ is positive and hence $d_{H}(1, h)=\phi_{k}(n)=\phi_{k}(|n|)$.

Lemma 7.5. (i) Let $h=t^{r} \theta^{i}\left(a_{k}\right) t^{-s}$. Then $h \in H$ if and only if $i-r \in S_{k}$ and $s=r-\phi_{k}(i-r)$.
(ii) Let $h=t^{r} \theta^{i}\left(a_{k}{ }^{-1}\right) t^{-s}$. Then $h \in H$ if and only if $i-s \in S_{k}$ and $r=$ $s-\phi_{k}(i-s)$.

Proof. For (i), note that $h=\theta^{i-r}\left(a_{k}\right) t^{r-s}$ and apply Definition 7.2. For (ii), note that $h^{-1}=t^{s} \theta^{i}\left(a_{k}\right) t^{-r}$ and apply (i).

Lemma 7.6. If $k \geq 3$ and $t^{r} \theta^{i}\left(a_{k}{ }^{-1}\right) \in \Lambda$, then $r<i$.
Proof. If $t^{r} \theta^{i}\left(a_{k}{ }^{-1}\right) \in H t^{s}$, then Lemmas 7.3 and 7.5 give that $i-s \geq 0$ and $s-r=\phi_{k}(i-s) \geq 1$. Thus $i-r \geq 1$.

The exceptional nature of S_{1} and S_{2} highlighted by Lemma 7.3 means that small values of k will have to be treated separately in our proof. This motivates the inclusion of the following result, a special case of Lemma 7.5. Note in particular that (ii) implies that $t^{r} \theta^{i}\left(a_{2}{ }^{-1}\right) \in \Lambda$ if and only if $r+i$ is odd.

Lemma 7.7. (i) Let $h=t^{r} \theta^{i}\left(a_{2}\right) t^{-s}$. Then $h \in H$ if and only if $s=2 r-i-1$.
(ii) Let $h=t^{r} \theta^{i}\left(a_{2}{ }^{-1}\right) t^{-s}$. Then $h \in H$ if and only if $s=\frac{1}{2}(r+i+1)$.

Proof. This follows immediately from Lemma 7.5 and the fact, given in Lemma 7.3, that $\phi_{2}(n)=n+1$.

The following result concerns passing a power of t through a sequence of terms of the form $\theta^{i}\left(a_{2}{ }^{ \pm 1}\right)$. The statement is made neater by the use of the following formula, which is a consequence of Lemma 7.1:

$$
\theta^{a}\left(a_{3}^{-1}\right) \theta^{b}\left(a_{3}\right)= \begin{cases}\theta^{a}\left(a_{2}\right) \ldots \theta^{b-1}\left(a_{2}\right), & a<b \\ 1, & a=b \\ \theta^{a-1}\left(a_{2}^{-1}\right) \ldots \theta^{b}\left(a_{2}^{-1}\right), & a>b\end{cases}
$$

Lemma 7.8. Let $\sigma=t^{r} \theta^{a}\left(a_{3}{ }^{-1}\right) \theta^{b}\left(a_{3}\right)$ and $s=2^{b-a}(r-a-2)+b+2$ for some integers r, a, b. Then $\sigma \in \Lambda$ if and only if s is an integer. Furthermore, in this case, $\sigma \in H t^{s}$.

Proof. We split the proof into two claims. The first claim is that if $\sigma \in H t^{s^{\prime}}$ for some integer s^{\prime}, then $s=s^{\prime}$. In particular, this implies that if $\sigma \in \Lambda$, then s is an integer. If $a=b$, then clearly $s^{\prime}=r=s$. If $a<b$, then $\theta^{a}\left(a_{3}{ }^{-1}\right) \theta^{b}\left(a_{3}\right)=$ $\theta^{a}\left(a_{2}\right) \ldots \theta^{b-1}\left(a_{2}\right)$. By the Lemma 6.2, there exist integers $r=r_{0}, r_{1}, \ldots, r_{b-a}=$ s^{\prime} such that $t^{r_{i}} \theta^{a+i}\left(a_{2}\right) \in H t^{r_{i+1}}$. By Lemma 7.7, $r_{i+1}=2 r_{i}-a-i-1$, which solves to give $r_{i}=2^{i}(r-a-2)+i+a+2$. Substituting $i=b-a$ gives $s^{\prime}=s$. On the other hand, suppose that $a>b$. Note that $t^{r} \theta^{a}\left(a_{3}^{-1}\right) \theta^{b}\left(a_{3}\right) \in H t^{s^{\prime}}$ implies that $t^{s^{\prime}} \theta^{b}\left(a_{3}^{-1}\right) \theta^{a}\left(a_{3}\right) \in H t^{r}$. Since $b<a$, we can substitute into the above solution to obtain $r=2^{a-b}\left(s^{\prime}-b-2\right)+a+2$, which rearranges to give $s^{\prime}=s$. This completes the proof of our first claim.

The second claim is that if s is an integer, then $\sigma \in H t^{s}$. If $a=b$, then this clearly holds. Suppose that $a<b$. Then $\sigma=t^{r} \theta^{a}\left(a_{2}\right) \ldots \theta^{b-1}\left(a_{2}\right)$, so certainly $\sigma \in \Lambda$ since all the letters $a_{2}{ }^{ \pm 1}$ that appear are positive. Therefore $\sigma \in H t^{s}$ by the first claim. Now suppose that $a>b$. Since s is an integer, we can define $\tau=t^{s} \theta^{b}\left(a_{3}^{-1}\right) \theta^{a}\left(a_{3}\right)=t^{s} \theta^{b}\left(a_{2}\right) \ldots \theta^{a-1}\left(a_{2}\right)$. Then certainly $\tau \in \Lambda$ - say $\tau \in H t^{r^{\prime}}$. By the first claim, $r^{\prime}=2^{a-b}(s-b-2)+a+2=r$. Therefore $t^{s} \theta^{b}\left(a_{3}{ }^{-1}\right) \theta^{a}\left(a_{3}\right) \in t^{r}$, whence $t^{r} \theta^{a}\left(a_{3}{ }^{-1}\right) \theta^{b}\left(a_{3}\right) \in H t^{s}$, and the second claim is proved.

8. An upper bound on the distortion of H_{k} in G_{k}

Next we turn to estimates associated with pushing a power of t from left to right through a word $w=w\left(a_{1}, \ldots, a_{k}\right)$ or through a piece of w, so as to leave a word on $a_{1} t, \ldots, a_{k} t$ times a power of t. We will need to keep track of both the length of that word on the $a_{1} t, \ldots, a_{k} t$ and the power of t that emerges to its right. Accordingly, let us define four families of functions, $\psi_{k, l}(n), \Psi_{k, l, p}(n), \kappa_{k, l}(n), K_{k, l, p}(n)$ for integers $k \geq 1$ and $l, p, n \geq 0$.

- $\psi_{k, l}(n)$ is the least integer N such that if $h \in H$ is represented by a word $t^{r} \pi t^{-s}$ with π a piece of $\operatorname{rank} k$, with $\ell(\pi) \leq l$, and with $|r| \leq n$, then $d_{H}(1, h) \leq N$.
- $\Psi_{k, l, p}(n)$ is the least integer N such that if $h \in H$ is represented by a word $t^{r} w t^{-s}$ with $w=w\left(a_{1}, \ldots, a_{k}\right)$ a word of at most p pieces, with $\ell(w) \leq l$, and with $|r| \leq n$, then $d_{H}(1, h) \leq N$.
- $\kappa_{k, l}(n)$ is the least integer N such that if π is a piece of rank k with $\ell(\pi) \leq l$ and r is an integer with $|r| \leq n$ and $t^{r} \pi \in \Lambda$, then $t^{r} \pi \in H t^{s}$ for some s with $|s| \leq N$.
- $K_{k, l, p}(n)$ is the least integer N such that if w is a word of rank at most k with at most p pieces and with $\ell(w) \leq l$ and r is an integer with $|r| \leq n$ and $t^{r} w \in \Lambda$, then $t^{r} w \in H t^{s}$ for some s with $|s| \leq N$.
We will frequently make use, without further comment, of the fact that each of these functions is increasing in k, l, p and n.

The main technical result of this section is the following proposition. In the corollary that follows it we explain how the upper bound it gives on $\Psi_{k, l, p}(n)$ leads to our desired bound Dist ${ }_{H_{k}}^{G_{k}} \preceq A_{k}$.

Proposition 8.1. For all $k \geq 1$, there exist integers $C_{k} \geq 1$ such that for all $l, p, n \geq 0$,

$$
\begin{aligned}
\kappa_{k, l}(n) & \leq A_{k-1}\left(C_{k} n+C_{k} l\right) \\
K_{k, l, p}(n) & \leq A_{k-1}{ }^{(p)}\left(C_{k} n+C_{k} l\right), \\
\psi_{k, l}(n) & \leq A_{k-1}\left(C_{k} n+C_{k} l\right), \\
\Psi_{k, l, p}(n) & \leq A_{k-1}{ }^{(3 p)}\left(C_{k} n+C_{k} l\right) .
\end{aligned}
$$

Corollary 8.2. For all $k \geq 1$, the distortion function of H_{k} in G_{k} satisfies

$$
\mathrm{Dist}_{H_{k}}^{G_{k}} \preceq A_{k} .
$$

Proof of Corollary 8.2. Since $G_{1} \cong \mathbb{Z}^{2}$ and $H_{1} \cong \mathbb{Z}, H_{1}$ is undistorted in G_{1} and Dist ${ }_{H_{1}}^{G_{1}} \preceq A_{1}$. Now suppose that $k \geq 2$ and that $u=u\left(a_{1}, \ldots, a_{k}, t\right)$ is a word of length at most n representing an element of H. By carrying each $t^{ \pm 1}$ to the front, we see that u is equal in G_{k} to $t^{r} w$ for some integer r and some freely reduced word $w=w\left(a_{1}, \ldots a_{k}\right)$. These satisfy $|r| \leq n$ and $\ell(w) \leq C n^{k}$ for some integer $C>0$ depending only on $k-$ see, for example, Section 3.3 of [12].

We first show that the number of pieces of w is at most $n+1$. Indeed, the process of carrying each $t^{ \pm 1}$ to the front of u has the effect of applying $\theta^{ \pm 1}$ to each a_{i} it passes.

The form of the automorphism θ ensures that no new $a_{k}{ }^{ \pm 1}$ are created by this process. The number of occurrences of $a_{k}{ }^{ \pm 1}$ in w, which we denote by $\ell_{k}(w)$, is therefore at $\operatorname{most} n$. Let $w=w_{1} \ldots w_{p}$ be the partition of w into pieces. Say $w_{i}=a_{k} \epsilon_{i}^{-} \pi_{i} a_{k}{ }^{-\epsilon_{i}^{+}}$ where $\epsilon_{i}^{-}, \epsilon_{i}^{+} \in\{0,1\}$ and $\pi_{i}=\pi_{i}\left(a_{1}, \ldots, a_{k-1}\right)$. Observe that, for each i, precisely one of ϵ_{i}^{+}and ϵ_{i+1}^{-}is equal to 1 . Indeed, if $\epsilon_{i}^{+}=\epsilon_{i+1}^{-}=0$, then the pieces w_{i} and w_{i+1} could be concatenated to form a single piece, contradicting the minimality of p, and if $\epsilon_{i}^{+}=\epsilon_{i+1}^{-}=1$, then w would not be freely reduced. So

$$
\ell_{k}(w)=\sum_{i=1}^{p}\left(\epsilon_{i}^{-}+\epsilon_{i}^{+}\right)=\epsilon_{1}^{-}+\sum_{i=1}^{p-1}\left(\epsilon_{i}^{+}+\epsilon_{i+1}^{-}\right)+\epsilon_{n}^{+}=\epsilon_{1}^{-}+p-1+\epsilon_{n}^{+},
$$

whence $p \leq \ell_{k}(w)+1 \leq n+1$.
Now,

$$
d_{H}(1, u)=d_{H}\left(1, t^{r} w\right) \leq \Psi_{k, \ell(w), p}(|r|) \leq \Psi_{k, C n^{k}, n+1}(n),
$$

which is at most

$$
A_{k-1}{ }^{(3 n+3)}\left(C_{k} C n^{k}+C_{k} n\right)
$$

by Proposition 8.1. Choose an integer N large enough that $n^{k} \leq 2^{n}$ for $n \geq N$. Then, for $n \geq \max \{N, 1\}$,

$$
\begin{aligned}
d_{H}(1, u) & \leq A_{k-1}{ }^{(3 n+3)}\left(C_{k} C A_{2}(n)+C_{k} n\right) & & \text { by }(8) \\
& \leq A_{k-1}{ }^{(3 n+3)}\left(C_{k} C A_{k}(n)+C_{k} n\right) & & \text { by }(7),(8) \\
& \leq A_{k-1}{ }^{(3 n+3)}\left(A_{k}\left(C_{k} C n\right)+C_{k} n\right) & & \text { by }(8),(10) \\
& \leq A_{k-1}{ }^{(3 n+3)}\left(A_{k}\left(\left(C_{k} C+C_{k}\right) n\right)\right) & & \text { by }(8),(13) \\
& =A_{k}\left(\left(C_{k} C+C_{k}+3\right) n+3\right) & & \text { by }(4) .
\end{aligned}
$$

Proposition 8.1 will follow from the relationships between $\psi_{k, l}(n), \Psi_{k, l, p}(n)$, $\kappa_{k, l}(n)$ and $K_{k, l, p}(n)$ set out in the next proposition. Of its claims, (26) and (29) are the most challenging to establish; we postpone their proof to Proposition 8.4, which itself will draw on Lemmas 8.5, 8.6 and 8.7.

Proposition 8.3. For integers $k \geq 1$ and $l, p, n \geq 0$,

$$
\begin{align*}
\kappa_{1, l}(n) & \leq n+1, \tag{24}\\
K_{k, l, p}(n) & \leq \max _{\substack{q \leq p \\
l_{1}+\ldots+l_{q} \leq l}}\left\{\kappa_{k, l_{1}}\left(\ldots \kappa_{k, l_{q-1}}\left(\kappa_{k, l_{q}}(n)\right) \ldots\right)\right\}, \tag{25}\\
\kappa_{k+1, l}(n) & \leq 2 K_{k, l, l}\left(2 \phi_{k+1}(n)\right), \tag{26}\\
\psi_{1, l}(n) & \leq 1, \tag{27}\\
\Psi_{k, l, p}(n) & \leq p \psi_{k, l}\left(K_{k, l, p}(n)\right), \tag{28}\\
\psi_{k+1, l}(n) & \leq 3 K_{k, l, l}\left(2 \phi_{k+1}(n)\right)+\Psi_{k, l, l}\left(2 \phi_{k+1}(n)\right) . \tag{29}
\end{align*}
$$

Proof. We first establish (24) and (27). Consideration of the empty word gives that $\kappa_{k, 0}(n)=n$ and $\psi_{k, 0}=0$. Now suppose that $l \geq 1$ and note that the only pieces of rank 1 are $a_{1}{ }^{ \pm 1}$. If $h=t^{r} a_{1}{ }^{ \pm 1} t^{-s}$ lies in H, then $d_{H}(1, h)=1$ and $r-s= \pm 1$, whence $|s| \leq|r|+1$. Thus $\kappa_{1, l}(n) \leq n+1$ and $\psi_{1, l}(n)=1$.

For (25) and (28), let $h=t^{r} w t^{-s}$ where $w=w\left(a_{1}, \ldots, a_{k}\right)$ is a word of length at most l with at most p pieces and $|r| \leq n$. Let $w=w_{1} \ldots w_{q}$ be the partition of w into pieces, where $q \leq p$. If $h \in H$, then Lemma 6.2 implies that there exist integers $r=r_{0}, r_{1}, \ldots, r_{q}=s$ and elements h_{1}, \ldots, h_{q} in H such that $t^{r_{i-1}} w_{i}=h_{i} t^{r_{i}}$. Thus $\left|r_{i}\right| \leq \kappa_{k, \ell\left(w_{i}\right)}\left(\left|r_{i-1}\right|\right)$, whence

$$
|s| \leq \kappa_{k, \ell\left(w_{q}\right)}\left(\ldots\left(\kappa_{k, \ell\left(w_{1}\right)}(|r|)\right) \ldots\right) \leq \kappa_{k, \ell\left(w_{q}\right)}\left(\ldots\left(\kappa_{k, \ell\left(w_{1}\right)}(n)\right) \ldots\right)
$$

and we obtain inequality (25). For inequality (28), note that

$$
\left|r_{i}\right| \leq K_{k, \ell\left(w_{1} \ldots w_{i}\right), i}(|r|) \leq K_{k, l, p}(n)
$$

whence

$$
d_{H}(1, h) \leq \sum_{i=1}^{q} d_{H}\left(1, h_{i}\right) \leq \sum_{i=1}^{q} \psi_{k, \ell\left(w_{i}\right)}\left(\left|r_{i-1}\right|\right) \leq p \psi_{k, l}\left(K_{k, l, p}(n)\right)
$$

Finally, (26) and (29) will follow from Proposition 8.4.
We now derive Proposition 8.1 from Proposition 8.3. We first use (24), (25) and (26) to obtain bounds on $\kappa_{k, l}(n)$ and $K_{k, l, p}(n)$ in terms of Ackermann's functions. We then derive bounds on $\psi_{k, l}(n)$ and $\Psi_{k, l, p}(n)$ from (27), (28) and (29), having fed in our bounds on $\kappa_{k, l}(n)$ and $K_{k, l, p}(n)$.
Proof of Proposition 8.1. We will need the inequality, established in Lemma 3.2, that for $n \geq 0$ and $k \geq 2$,

$$
\begin{equation*}
\phi_{k}(n) \leq A_{k-1}(n+k) \tag{30}
\end{equation*}
$$

We first prove that there exist integers $D_{k} \geq 1$ such that

$$
\begin{align*}
\kappa_{k, l}(n) & \leq A_{k-1}\left(D_{k} n+D_{k} l\right) \tag{31}\\
K_{k, l, p}(n) & \leq A_{k-1}{ }^{(p)}\left(D_{k} n+D_{k} l\right) \tag{32}
\end{align*}
$$

Inequalities (24) and (25) together imply that $K_{1, l, p}(n) \leq n+p$. Thus (31) and (32) hold in the case $k=1$ with $D_{1}=1$. Now suppose that $k \geq 2$ and that (31) and (32) hold for smaller values of k. If $l=0$, then, using (9), we calculate that $\kappa_{k, l}(n)=n \leq A_{k-1}(n)$. If $l \geq 1$, then

$$
\begin{array}{rlrl}
\kappa_{k, l}(n) & \leq 2 K_{k-1, l, l}\left(2 \phi_{k}(n)\right) & & \text { by }(26) \\
& \leq 2 K_{k-1, l, l}\left(2 A_{k-1}(n+k)\right) & & \text { by }(30) \\
& \leq 2 A_{k-2}(l)\left(2 D_{k-1} A_{k-1}(n+k)+D_{k-1} l\right) &
\end{array}
$$

$$
\begin{array}{ll}
\leq 2 A_{k-2}^{(l)}\left(A_{k-1}\left(2 D_{k-1} n+D_{k-1} l+2 D_{k-1} k\right)\right) & \text { by }(8),(10),(13) \\
=2 A_{k-1}\left(2 D_{k-1} n+\left(D_{k-1}+1\right) l+2 D_{k-1} k\right) & \text { by }(4) \\
\leq A_{k-1}\left(4 D_{k-1} n+2\left(D_{k-1}+1\right) l+4 D_{k-1} k\right) & \text { by }(10) \\
\leq A_{k-1}\left(4 D_{k-1} n+\left[2\left(D_{k-1}+1\right)+4 D_{k-1} k\right] l\right) & \text { by }(8) .
\end{array}
$$

Taking $D_{k}=\max \left\{2\left(D_{k-1}+1\right)+4 D_{k-1} k, 1\right\}$, we obtain (31).
For (32) we calculate that

$$
\begin{array}{rlr}
K_{k, l, p}(n) & \leq \max _{\substack{q \leq p \\
l_{1}+\ldots+l_{q} \leq l}}\left\{\kappa_{k, l_{1}}\left(\ldots \kappa_{k, l_{q-1}}\left(\kappa_{k, l_{q}}(n)\right) \ldots\right)\right\} & \text { by (25) } \\
& \leq \max _{\substack{q \leq p \\
l_{1}+\ldots+l_{q} \leq l}}\left\{A_{k-1}\left(\ldots A_{k-1}\left(A_{k-1}\left(D_{k} n+D_{k} l_{q}\right)+D_{k} l_{q-1}\right) \ldots\right)\right\} \\
& \leq \max _{\substack{q \leq p \\
l_{1}+\ldots+l_{q} \leq l}}\left\{A_{k-1}^{(q)}\left(D_{k} n+D_{k} \sum_{i=1}^{q} l_{i}\right)\right\} & \text { by (8) } \\
& \leq \max _{q \leq p}\left\{A_{k-1}(q)\left(D_{k} n+D_{k} l\right)\right\} & \text { by (8), (13) } \\
& \leq A_{k-1}^{(p)}\left(D_{k} n+D_{k} l\right) & \text { by (8) } \\
& \text { by (9). }
\end{array}
$$

Next, we combine (27), (28) and (29) with (31) and (32) to deduce that there exist integers $E_{k}, F_{k} \geq 1$ such that

$$
\begin{align*}
\psi_{k, l}(n) & \leq A_{k-1}\left(E_{k} n+E_{k} l\right) \tag{33}\\
\Psi_{k, l, p}(n) & \leq A_{k-1}{ }^{(3 p)}\left(F_{k} n+F_{k} l\right) \tag{34}
\end{align*}
$$

It follows from (27) and (28) that $\Psi_{1, l, p}(n) \leq p$. Thus (33) and (34) hold in the case $k=1$ with $E_{k}=F_{k}=1$. Now suppose that $k \geq 2$ and that (33) and (34) hold for smaller values of k. If $l=0$, then $\psi_{k, l}(n)=0 \leq A_{k-1}(0)$. If $l \geq 1$, then

$$
\begin{array}{rlrl}
\psi_{k, l}(n) & \leq 3 K_{k-1, l, l}\left(2 \phi_{k}(n)\right)+\Psi_{k-1, l, l}\left(2 \phi_{k}(n)\right) & \text { by (29) } \\
\leq & 3 K_{k-1, l, l}\left(2 A_{k-1}(n+k)\right)+\Psi_{k-1, l, l}\left(2 A_{k-1}(n+k)\right) & & \text { by (30) } \\
\leq & 3 A_{k-2}{ }^{(l)}\left(2 D_{k-1} A_{k-1}(n+k)+D_{k-1} l\right) & \\
& \quad+A_{k-2}{ }^{(3 l)}\left(2 F_{k-1} A_{k-1}(n+k)+F_{k-1} l\right) & \text { by (32) } \\
& \leq 3 A_{k-2}{ }^{(l)}\left(A_{k-1}\left(2 D_{k-1}(n+k)+D_{k-1} l\right)\right) & \\
& +A_{k-2}{ }^{(3 l)}\left(A_{k-1}\left(2 F_{k-1}(n+k)+F_{k-1} l\right)\right) & \text { by }(8),(10), \tag{13}
\end{array}
$$

$$
\begin{array}{lll}
= & 3 A_{k-1}\left(2 D_{k-1}(n+k)+\left(D_{k-1}+1\right) l\right) & \\
& \quad+A_{k-1}\left(2 F_{k-1}(n+k)+\left(F_{k-1}+3\right) l\right) & \text { by }(4) \\
\leq & A_{k-1}\left(6 D_{k-1}(n+k)+3\left(D_{k-1}+1\right) l\right) & \\
& \quad+A_{k-1}\left(2 F_{k-1}(n+k)+\left(F_{k-1}+3\right) l\right) & \text { by }(10) \\
\leq & A_{k-1}\left(2\left(3 D_{k-1}+F_{k-1}\right)(n+k)+\left(3 D_{k-1}+F_{k-1}+4\right) l\right) & \text { by }(12) \\
\leq & A_{k-1}\left(2\left(3 D_{k-1}+F_{k-1}\right) n+\left(3(2 k+1) D_{k-1}+(2 k+1) F_{k-1}+4\right) l\right) .
\end{array}
$$

Taking $E_{k}=3(2 k+1) D_{k-1}+(2 k+1) F_{k-1}+4$, we obtain (33).
If $p=0$ or $l=0$, then, using (9), we calculate that $\Psi_{k, l, p}(n)=0 \leq A_{k-1}{ }^{(3 p)}(0)$. If $l, p \geq 1$, then

$$
\begin{aligned}
\Psi_{k, l, p}(n) & \leq p \psi_{k, l}\left(K_{k, l, p}(n)\right) & & \text { by (28) } \\
& \leq p \psi_{k, l}\left(A_{k-1}{ }^{(p)}\left(D_{k} n+D_{k} l\right)\right) & & \text { by (32) } \\
& \leq p A_{k-1}\left(E_{k} A_{k-1}{ }^{(p)}\left(D_{k} n+D_{k} l\right)+E_{k} l\right) & & \\
& \leq p A_{k-1}{ }^{(p+1)}\left(D_{k} E_{k} n+\left(D_{k}+1\right) E_{k} l\right) & & \text { by }(8),(9),(10),(13) \\
& \leq A_{k-1}{ }^{(2 p+1)}\left(D_{k} E_{k} n+\left(D_{k}+1\right) E_{k} l\right) & & \text { by (11), } \\
& \leq A_{k-1}{ }^{(3 p)}\left(D_{k} E_{k} n+\left(D_{k}+1\right) E_{k} l\right) & & \text { by (9). }
\end{aligned}
$$

Taking $F_{k}=\left(D_{k}+1\right) E_{k}$, we obtain (34).
Finally, the proof is completed by taking $C_{k}=\max \left\{D_{k}, E_{k}, F_{k}\right\}$ and applying (8).

The remainder of this section is devoted to establishing (26) and (29). This is done in Proposition 8.4, which draws on Lemmas 8.5, 8.6 and 8.7 that follow. We now outline our strategy.

Suppose that $t^{r} a_{k}{ }^{\epsilon_{1}} w a_{k}{ }^{-\epsilon_{2}} t^{-s}$, where $r, s \in \mathbb{Z}, \epsilon_{1}, \epsilon_{2} \in\{0,1\}$ and $w=$ $w\left(a_{1}, \ldots, a_{k-1}\right)$, represents an element $h \in H$. Our approach will be to find elements $h_{1}, h_{2} \in H$, integers r^{\prime}, s^{\prime} and a word $w^{\prime}=w^{\prime}\left(a_{1}, \ldots, a_{k-1}\right)$ such that h is represented by $h_{1} t^{r^{\prime}} w^{\prime} t^{-s^{\prime}} h_{2}$. The functions $K_{k-1, *, *}$ and $\Psi_{k-1, *, *}$ will then control the behaviour of the subword $t^{r^{\prime}} w^{\prime} t^{-s^{\prime}}$. Together with estimates for $d_{H}\left(1, h_{i}\right),\left|r^{\prime}\right|$, $\left|s^{\prime}\right|$ and $\ell\left(w^{\prime}\right)$, this will allow us to derive bounds on $|s|$ and $d_{H}(1, h)$.

As indicated by Lemma 7.3, the case $k=2$ is exceptional and so will be treated separately. For $k \geq 3$, the $h_{1}, h_{2} r^{\prime}, s^{\prime}$ and w will be produced by Lemma 8.5. This lemma takes integers k, n and ϵ, with $k \geq 3$ and $\epsilon \in\{0,1\}$, and gives an integer n^{\prime}, an element $h \in H$ and a word $u=u\left(a_{1}, \ldots, a_{k-1}\right)$ such that $t^{n} a_{k}{ }^{\epsilon}=h t^{n^{\prime}} u$ in G. Applying Lemma 8.5 to k, r and ϵ_{1} will produce r^{\prime}, h_{1} and a word u_{1}. Applying Lemma 8.5 to k, s and ϵ_{2} will produce s^{\prime}, h_{2}^{-1} and a word u_{2}. The word w^{\prime} will then be defined to be the free reduction of $\tilde{w}:=u_{1} w u_{2}{ }^{-1}$.

The relationship between the input and output of Lemma 8.5 is determined by which of the following holds:
(i) $\epsilon=0$,
(ii) $\epsilon=1$ and $n \leq 0$, or
(iii) $\epsilon=1$ and $n>0$.

A priori, this would lead to us having to consider nine distinct cases, depending on the values of ϵ_{1} and ϵ_{2} and the signs of r and s. To streamline the process, Lemma 8.5 packages (i) and (ii) together: it considers the cases that either $n \epsilon \leq 0$ or $n \epsilon>0$. As such, we need now only consider four cases, depending on the signs of $r \epsilon_{1}$ and $s \epsilon_{2}$.

The form of \tilde{w} will depend on which of (i), (ii) or (iii) applies to r and ϵ_{1} and to s and ϵ_{2}. Lemmas 8.6 and 8.7 will be brought to bear to ensure that enough cancellation occurs to obtain a sufficiently strong bound on $\ell\left(w^{\prime}\right)$.

Proposition 8.4. Let $h=t^{r} a_{k}{ }^{\epsilon_{1}} w a_{k}{ }^{-\epsilon_{2}} t^{-s}$ where $k \geq 2, \epsilon_{1}, \epsilon_{2} \in\{0,1\}$, and $w=w\left(a_{1}, \ldots, a_{k-1}\right)$. Let n and l be integers with $|r| \leq n$ and $\ell(w) \leq l$. If $h \in H$, then

$$
\begin{aligned}
|s| & \leq 2 K_{k-1, l, l}\left(2 \phi_{k}(n)\right), \\
d_{H}(1, h) & \leq 3 K_{k-1, l, l}\left(2 \phi_{k}(n)\right)+\Psi_{k-1, l, l}\left(2 \phi_{k}(n)\right) .
\end{aligned}
$$

Proof. We claim that there exist $h_{1}, h_{2} \in H, r^{\prime}, s^{\prime} \in \mathbb{Z}$ and $w^{\prime}=w^{\prime}\left(a_{1}, \ldots, a_{k-1}\right)$ such that $h=h_{1} t^{r^{\prime}} w^{\prime} t^{-s^{\prime}} h_{2}$ in G and

$$
\begin{align*}
\left|r^{\prime}\right| & \leq 2 \phi_{k}(n), \tag{35}\\
|s| & \leq\left|s^{\prime}\right|+1, \tag{36}\\
d_{H}\left(1, h_{1}\right) & \leq\left|r^{\prime}\right|+1, \tag{3}\\
d_{H}\left(1, h_{2}\right) & \leq\left|s^{\prime}\right|+1, \tag{38}\\
\ell\left(w^{\prime}\right) & \leq l . \tag{39}
\end{align*}
$$

The result follows from the claim by direct calculation. Indeed, since the number of pieces of a word is bounded by its length,

$$
\begin{align*}
\left|s^{\prime}\right| & \leq K_{k-1, \ell\left(w^{\prime}\right), \ell\left(w^{\prime}\right)}\left(\left|r^{\prime}\right|\right), \tag{40}\\
d_{H}\left(1, t^{r^{\prime}} w^{\prime} t^{-s^{\prime}}\right) & \leq \Psi_{k-1, \ell\left(w^{\prime}\right), \ell\left(w^{\prime}\right)}\left(\left|r^{\prime}\right|\right) . \tag{41}
\end{align*}
$$

We will also need the inequality

$$
\begin{equation*}
K_{k, l, p}(n) \geq n, \tag{42}
\end{equation*}
$$

which follows immediately from consideration of the empty word. We can now calculate that

$$
\begin{aligned}
|s| & \leq\left|s^{\prime}\right|+1 & & \text { by }(36) \\
& \leq K_{k-1, \ell\left(w^{\prime}\right) \ell\left(w^{\prime}\right)}\left(\left|r^{\prime}\right|\right)+1 & & \text { by }(40) \\
& \leq K_{k-1, l, l}\left(2 \phi_{k}(n)\right)+1 & & \text { by (35),(39) } \\
& \leq 2 K_{k-1, l, l}\left(2 \phi_{k}(n)\right) & & \text { by }(18),(42)
\end{aligned}
$$

and

$$
\begin{array}{rlr}
d_{H}(1, h) & \leq d_{H}\left(1, h_{1}\right)+d_{H}\left(1, t^{r^{\prime}} w^{\prime} t^{-s^{\prime}}\right)+d_{H}\left(1, h_{2}\right) \\
& \leq\left|r^{\prime}\right|+1+\Psi_{k-1, \ell\left(w^{\prime}\right), \ell\left(w^{\prime}\right)\left(\left|r^{\prime}\right|\right)+\left|s^{\prime}\right|+1} & \text { by }(37),(38),(41) \\
& \leq 2 \phi_{k}(n)+1+\Psi_{k-1, l, l}\left(2 \phi_{k}(n)\right)+K_{k-1, \ell\left(w^{\prime}\right), \ell\left(w^{\prime}\right)}\left(\left|r^{\prime}\right|\right)+1 \\
& \leq 4 \phi_{k}(n)+\Psi_{k-1, l, l}\left(2 \phi_{k}(n)\right)+K_{k-1, l, l}\left(2 \phi_{k}(n)\right) & \text { by }(35),(39),(40) \\
& \leq 3 K_{k-1, l, l}\left(2 \phi_{k}(n)\right)+\Psi_{k-1, l, l}\left(2 \phi_{k}(n)\right) & \text { by }(35),(39) \\
& & \text { by }(42) .
\end{array}
$$

We first prove the claim for $k=2$. Since $t^{q} a_{2}=\left(a_{2} t\right)\left(a_{1} t\right)^{-q} t^{2 q-1}$, we can take w^{\prime} to be w and define h_{1}, h_{2}, r^{\prime} and s^{\prime} by

$$
\begin{aligned}
& h_{1}=\left\{\begin{array}{ll}
1, & \epsilon_{1}=0, \\
\left(a_{2} t\right)\left(a_{1} t\right)^{-r}, & \epsilon_{1}=1,
\end{array} \quad r^{\prime}= \begin{cases}r, & \epsilon_{1}=0, \\
2 r-1, & \epsilon_{1}=1,\end{cases} \right. \\
& h_{2}=\left\{\begin{array}{ll}
1, & \epsilon_{2}=0, \\
\left(a_{1} t\right)^{-s}\left(a_{2} t\right)^{-1}, & \epsilon_{2}=1,
\end{array} \quad s^{\prime}= \begin{cases}s, & \epsilon_{2}=0, \\
2 s-1, & \epsilon_{2}=1 .\end{cases} \right.
\end{aligned}
$$

Inequalities (36) and (39) are immediate. For (35), use the fact, from Lemma 7.3, that $\phi_{2}(n)=n+1$. Inequality (37) is immediate if $\epsilon_{1}=0$. If $\epsilon_{1}=1$, then $r=\frac{1}{2}\left(r^{\prime}+1\right)$, whence $|r| \leq \frac{1}{2}\left(\left|r^{\prime}\right|+1\right)$. But $r^{\prime} \neq 0$, so $|r| \leq\left|r^{\prime}\right|$ and $d_{H}\left(1, h_{1}\right)=|r|+1 \leq\left|r^{\prime}\right|+1$. Inequality (38) is derived similarly.

We now prove the claim for $k \geq 3$. First apply Lemma 8.5 to k, r, ϵ_{1} to produce r^{\prime}, h_{1} and a word u_{1}. Then apply it to k, s, ϵ_{2} to produce s^{\prime}, h_{2}^{-1} and a word u_{2}. Defining $\tilde{w}:=u_{1} w u_{2}^{-1}$, we have that h is represented by $h_{1} t^{r^{\prime}} \tilde{w} t^{-s^{\prime}} h_{2}$ and hence that $t^{r^{\prime}} \tilde{w} t^{-s^{\prime}} \in H$. It is immediate from the bounds given in Lemma 8.5 that (35)(38) hold. Finally, we define w^{\prime} to be the free reduction of \tilde{w}. To establish (39), we consider four cases.

Case $r \epsilon_{1} \leq 0, s \epsilon_{2} \leq 0$. We have that $\tilde{w}=w$ and so it is immediate that $\ell\left(w^{\prime}\right) \leq \ell(w)$.

Case $r \epsilon_{1}>0, s \epsilon_{2} \leq 0$. We have that $\tilde{w}=\theta^{r-1}\left(a_{k-1}{ }^{-1}\right) \ldots \theta^{0}\left(a_{k-1}{ }^{-1}\right) w$. Since $t^{r^{\prime}} \theta^{r-1}\left(a_{k-1}^{-1}\right)$ does not lie in Λ, applying Lemma 6.2 to $t^{r^{\prime}} \tilde{w} t^{-s^{\prime}}$ shows that, when \tilde{w} is freely reduced, each a_{k-1}^{-1} in $\theta^{r-1}\left(a_{k-1}{ }^{-1}\right) \ldots \theta^{0}\left(a_{k-1}{ }^{-1}\right)$ cancels into w. It follows from Lemma 8.7 that $\ell\left(w^{\prime}\right) \leq \ell(w)$.

Case $r \epsilon_{1} \leq 0, s \epsilon_{2}>0$. We have that $\tilde{w}=w \theta^{0}\left(a_{k-1}\right) \ldots \theta^{s-1}\left(a_{k-1}\right)$. Since $t^{s^{\prime}} \theta^{s-1}\left(a_{k-1}{ }^{-1}\right)$ does not lie in Λ, applying Lemma 6.2 to $t^{s^{\prime}} \tilde{w}^{-1} t^{-r^{\prime}} \in H$ shows that, when \tilde{w} is freely reduced, each a_{k-1} in $\theta^{0}\left(a_{k-1}\right) \ldots \theta^{s-1}\left(a_{k-1}\right)$ cancels into w. It follows from Lemma 8.7 that $\ell\left(w^{\prime}\right) \leq \ell(w)$.

Case $r \epsilon_{1}>0, s \epsilon_{2}>0$. We have that

$$
\tilde{w}=\theta^{r-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right) w \theta^{0}\left(a_{k-1}\right) \ldots \theta^{s-1}\left(a_{k-1}\right)
$$

Neither $t^{r^{\prime}} \theta^{r-1}\left(a_{k-1}{ }^{-1}\right)$ nor $t^{s^{\prime}} \theta^{s-1}\left(a_{k-1}^{-1}\right)$ lies in Λ, so we are in a position to apply Lemma 8.6. If case (i) of Lemma 8.6 occurs, then, when \tilde{w} is freely reduced, each a_{k-1}^{-1} in $\theta^{r-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right)$ and each a_{k-1} in $\theta^{0}\left(a_{k-1}\right) \ldots \theta^{s-1}\left(a_{k-1}\right)$ cancels into w. Applying Lemma 8.7 gives that $\ell\left(w^{\prime}\right) \leq \ell(w)$. On the other hand, suppose that case (ii) of Lemma 8.6 occurs, so w^{\prime} is the free reduction of $\theta^{r-1}\left(a_{k-1}^{-1}\right) \theta^{s-1}\left(a_{k-1}\right)$. We will show that $r=s$, whence w^{\prime} is the empty word and trivially $\ell\left(w^{\prime}\right) \leq l$. If $k=3$, then $t^{r^{\prime}} w^{\prime} t^{-s^{\prime}}=t^{r-1} \theta^{r-1}\left(a_{2}^{-1}\right) \theta^{s-1}\left(a_{2}\right) t^{1-s}=$ $t^{r-s} a_{1}{ }^{s-r}$ in G. Since this element lies in $H, r-s=s-r$, whence $r=s$. If $k=4$, then $t^{r^{\prime}} w^{\prime} t^{-s^{\prime}}$ is freely equal to $t^{r-1} \theta^{r-1}\left(a_{3}{ }^{-1}\right) \theta^{s-1}\left(a_{3}\right) t^{1-s}$. Since this lies in H, applying Lemma 7.8 and solving the resulting equation gives $r=s$. Finally, suppose that $k>4$. Lemma 7.1 gives that

$$
t^{r^{\prime}} w^{\prime} t^{-s^{\prime}} \stackrel{\mathrm{fr}}{=} \begin{cases}t^{r-1} \theta^{r-1}\left(a_{k-2}\right) \ldots \theta^{s-2}\left(a_{k-2}\right) t^{1-s}, & r<s \\ t^{r-s}, & r=s \\ t^{r-1} \theta^{r-2}\left(a_{k-2}^{-1}\right) \ldots \theta^{s-1}\left(a_{k-2}-1\right) t^{1-s}, & r>s\end{cases}
$$

By Lemma 7.6, neither $t^{r-1} \theta^{r-2}\left(a_{k-2}^{-1}\right)$ nor $t^{s-1} \theta^{s-2}\left(a_{k-2}^{-1}\right)$ lies in Λ, since $k-2 \geq 3$. Thus, by Lemma 6.2, both $r<s$ and $s>r$ lead to a contradiction. Hence $r=s$ as required.

Lemma 8.5. Given integers k, n, ϵ, with $k \geq 3$ and $\epsilon \in\{0,1\}$, there exists an integer n^{\prime}, an element $h \in H$ and a word $u=u\left(a_{1}, \ldots, a_{k-1}\right)$ such that $t^{n} a_{k}{ }^{\epsilon}=h t^{n^{\prime}} u$ in G,

$$
|n|-1 \leq\left|n^{\prime}\right| \leq 2 \phi_{k}(|n|) \quad \text { and } \quad d_{H}(1, h) \leq \max \left\{\left|n^{\prime}\right|, 1\right\} .
$$

Furthermore,

(i) if $n \epsilon \leq 0$, then u is the empty word;
(ii) if $n \epsilon>0$, then $n^{\prime}=n-1$,

$$
u=\theta^{n-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right) \quad \text { and } t^{n^{\prime}} \theta^{n-1}\left(a_{k-1}^{-1}\right) \notin \Lambda .
$$

Proof. We consider three cases.
Case $\epsilon=0$. We trivially obtain an instance of conclusion (i) by taking $n^{\prime}=n$, $h=1$ and u to be the empty word. The upper bound on $\left|n^{\prime}\right|$ follows from (18) and (21).

Case $\epsilon=1$ and $n \leq 0$. Following the calculation

$$
t^{n} a_{k}=\theta^{-n}\left(a_{k}\right) t^{n}=\theta^{-n}\left(a_{k}\right) t^{\phi_{k}(|n|)} t^{n-\phi_{k}(|n|)}
$$

we obtain an instance of conclusion (i) by taking $n^{\prime}=n-\phi_{k}(|n|), h=\theta^{-n}\left(a_{k}\right) t^{\phi_{k}(|n|)}$ and u to be the empty word. It follows immediately from the definition of the function
ϕ_{k} that $h \in H$ and from Lemma 7.4 that $d_{H}(1, h)=\phi_{k}(|n|)$. By $(18), \phi_{k}(|n|)$ is positive whence $\left|n^{\prime}\right|=|n|+\phi_{k}(|n|)$ and $d_{h}(1, h) \leq\left|n^{\prime}\right|$. Applying (18) and (21) gives $|n|+1 \leq\left|n^{\prime}\right| \leq 2 \phi_{k}(|n|)$.

Case $\epsilon=1$ and $n>0$. Following the calculation
$t^{n} a_{k}=a_{k} a_{k}^{-1} t^{n} a_{k}=a_{k} t^{n} \theta^{n}\left(a_{k}^{-1}\right) a_{k}=\left(a_{k} t\right) t^{n-1} \theta^{n-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right)$ we obtain an instance of conclusion (ii) by taking $n^{\prime}=n-1, h=\left(a_{k} t\right)$ and

$$
u=\theta^{n-1}\left(a_{k-1}^{-1}\right) \ldots \theta^{0}\left(a_{k-1}^{-1}\right)
$$

The upper bound on $\left|n^{\prime}\right|$ follows from (18) and (21). The fact that $t^{n^{\prime}} \theta^{n-1}\left(a_{k-1}^{-1}\right)$ does not lie in Λ follows from Lemmas 7.6 and 7.7.

Lemma 8.6. Let $\sigma=t^{r} \theta^{a}\left(a_{k}^{-1}\right) \ldots \theta^{0}\left(a_{k}^{-1}\right) w \theta^{0}\left(a_{k}\right) \ldots \theta^{b}\left(a_{k}\right) t^{-s}$ where $w=$ $w\left(a_{1}, \ldots, a_{k}\right)$ is freely reduced and $a, b \geq 0$. Suppose σ represents an element of H but $t^{r} \theta^{a}\left(a_{k}{ }^{-1}\right) \notin \Lambda$ and $t^{s} \theta^{b}\left(a_{k}{ }^{-1}\right) \notin \Lambda$. Then either
(i) w has a prefix $\theta^{0}\left(a_{k}\right) \ldots \theta^{a-1}\left(a_{k}\right) a_{k}$ and suffix $a_{k}^{-1} \theta^{b-1}\left(a_{k}^{-1}\right) \ldots \theta^{0}\left(a_{k}^{-1}\right)$, or
(ii) $w=\theta^{0}\left(a_{k}\right) \ldots \theta^{a-1}\left(a_{k}\right) \theta^{b-1}\left(a_{k}^{-1}\right) \ldots \theta^{0}\left(a_{k}^{-1}\right)$.

Proof. Write l_{1} for the letter $a_{k}{ }^{-1}$ of the term $\theta^{a}\left(a_{k}{ }^{-1}\right)$ of σ and write l_{2} for the letter a_{k} of the term $\theta^{b}\left(a_{k}\right)$ of σ. Lemma 6.2 implies that, when σ is freely reduced, both l_{1} and l_{2} cancel. Let l^{\prime} be the letter a_{k} that cancels with l_{1}

If l^{\prime} lies in w, then l_{2} must cancel with a letter to the right of l^{\prime} in w, and we have case (i).

On the other hand, suppose that l^{\prime} lies in the subword $\theta^{0}\left(a_{k}\right) \ldots \theta^{b}\left(a_{k}\right)$. If l^{\prime} is distinct from l_{2}, then l_{2} must cancel with an $a_{k}{ }^{-1}$ lying to the right of l^{\prime}. But this is a contradiction, since all the occurrences of $a_{k}^{ \pm 1}$ in $\theta^{0}\left(a_{k}\right) \ldots \theta^{b}\left(a_{k}\right)$ are positive. Thus $l^{\prime}=l_{2}$. Now $\theta^{a-1}\left(a_{k}^{-1}\right) \ldots \theta^{0}\left(a_{k}{ }^{-1}\right) w \theta^{0}\left(a_{k}\right) \ldots \theta^{b-1}\left(a_{k}\right)$ must be freely trivial and we have case (ii).

Lemma 8.7. Let $w=\theta^{0}\left(a_{k}\right) \ldots \theta^{r}\left(a_{k}\right)$ where $r \geq 0$. Let l be the last a_{k} appearing in w and partition w as $w=u v$ where u is the prefix of w ending with l and v is the suffix of w coming after l. Then $\ell(u) \geq \ell(v)$.

Proof. Note that $u=\theta^{0}\left(a_{k}\right) \ldots \theta^{r-1}\left(a_{k}\right) a_{k}$, and $v=\theta^{0}\left(a_{k-1}\right) \ldots \theta^{r-1}\left(a_{k-1}\right)$ by Lemma 7.1. It thus suffices to prove that $\ell\left(\theta^{i}\left(a_{k}\right)\right) \geq \ell\left(\theta^{i}\left(a_{k-1}\right)\right)$ for $i \geq 0$. But this follows by an easy induction on k from the structures of $\theta^{i}\left(a_{k}\right)$ and $\theta^{i}\left(a_{k-1}\right)$ respectively given by Lemma 7.1.

9. Groups with Ackermannian Dehn functions

Recall that Γ_{k} is the HNN extension of G_{k} over H_{k} in which the stable letter commutes with all elements of H_{k} :

$$
\begin{gathered}
\Gamma_{k}:=\left\langle a_{1}, \ldots, a_{k}, t, p\right| t^{-1} a_{1} t=a_{1}, t^{-1} a_{i} t=a_{i} a_{i-1}(i>1) \\
\left.\left[p, a_{i} t\right]=1(i>0)\right\rangle .
\end{gathered}
$$

Proposition 9.1. The group Γ_{1} has Dehn function \simeq-equivalent to $n \mapsto n^{2}$.

Proof. Making the substitution $\alpha=a_{1} t$ shows that Γ_{1} is a right-angled Artin group with presentation $\langle\alpha, t, p \mid[t, \alpha],[p, \alpha]\rangle$. It follows that Γ_{1} is $\operatorname{CAT}(0)$ [16] whence it has Dehn function \simeq-equivalent to n^{2} by [13], Proposition 1.6.III.Г.

Proposition 9.2. For all $k \geq 2$, the group Γ_{k} has Dehn function \simeq-equivalent to A_{k}.
Proof. Let $k \geq 2$. The Dehn function of a $\mathrm{CAT}(0)$ group is either linear or quadratic [11], Theorem 6.2.1, with the linear case occurring precisely when the group is hyperbolic [11], Theorem 6.1.5. By Theorem 1.3, the group G_{k} is $\operatorname{CAT}(0)$. However, since it contains an embedded copy of \mathbb{Z}^{2} it is not hyperbolic [11], Theorem 6.1.10. The Dehn function of G_{k} is therefore quadratic. By Theorem 1.3, the distortion function of H_{k} in G_{k} is \simeq-equivalent to A_{k}. Plugging these two functions into Theorem 6.20.III. Γ of [13] gives lower and upper bounds for the Dehn function of Γ_{k} of $\max \left\{n^{2}, n A_{k}(n)\right\}$ and $n A_{k}(n)^{2}$ respectively, up to \simeq-equivalence. So, by (9), the Dehn function of Γ_{k} is between $A_{k}(n)$ and $A_{k}(n)^{3}$. But (14) implies that, for any $C \geq 1$, the function $n \mapsto A_{k}(n)^{C}$ is \simeq-equivalent to A_{k}.

The ideas behind [13], Theorem 6.20.III. , used here are most transparent via the tools of van Kampen diagrams and corridors. For example, towards the lower bound, consider the words

$$
v_{k, n}:=a_{k}^{n} a_{2} t a_{1} a_{2}^{-1} a_{k}^{-n}
$$

of Section 5, which equal

$$
w_{k, n}:=u_{k, n}\left(a_{2} t\right)\left(a_{1} t\right)\left(a_{2} t\right)^{-1} u_{k, n}^{-1}
$$

in G_{k}. Observe that $\left[v_{k, n}, p\right]=1$ in Γ_{k} and that in any van Kampen diagram for [$\left.v_{k, n}, p\right]$, there must be a p-corridor connecting the two boundary edges labelled by p. (Figure 3 is an example of such a diagram when $k=2$ and $n=4$.) The word on $a_{1} t, \ldots, a_{k} t$ written along each side of this corridor must equal $v_{k, n}$ in G_{k} and so freely equals $w_{k, n}$. It follows that any van Kampen diagram for $\left[v_{k, n}, p\right]$ has area at least the length of $w_{k, n}$, which is $2 \mathscr{H}_{k}(n)+3$. So, as the length of $\left[v_{k, n}, p\right]$ is $4 n+10$, this leads to a lower bound of $A_{k}(n) \simeq \mathscr{H}_{k}$ on the Dehn function of G_{k}.

Figure 3. A van Kampen diagram for $\left[v_{2,4}, p\right]$ - an example of a word which represents the identity in Γ_{k} but can only be filled by a large area diagram.

References

[1] G. Arzhantseva and D. Osin, Solvable groups with polynomial Dehn functions. Trans. Amer. Math. Soc. 354 (2002), no. 8, 3329-3348. Zbl 0998.20040 MR 1897402
[2] J. Barnard, N. Brady, and P. Dani, Super-exponential distortion of subgroups of CAT(-1) groups. Algebr. Geom. Topol. 7 (2007), 301-308. Zbl 1187.20055 MR 2308946
[3] G. Baumslag, A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austral. Math. Soc. 10 (1969), 497-498. Zbl 0214.27402 MR 0254127
[4] G. Baumslag, Recognizing powers in nilpotent groups and nilpotent images of free groups. J. Austal. Math. Soc. 83 (2007), no. 2,149-155. Zbl 1146.20030 MR 2396860
[5] G. Baumslag, M. R. Bridson, C. F. Miller, and H. Short, Finitely presented subgroups of automatic groups and their isoperimetric functions. J. London Math. Soc. (2) 56 (1997), no. 2, 292-304. Zbl 0910.20023 MR 1489138
[6] G. Baumslag, M. R. Bridson, C. F. Miller, III, and H. Short, Fibre products, non-positive curvature, and decision problems. Comment. Math. Helv. 75 (2000), no. 3, 457-477. Zbl 0973.20034 MR 1793798
[7] L. D. Beklemishev, The worm principle. In Logic Colloquium '02, Lect. Notes Log. 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, 75-95. Zbl 1108.03055 MR 2258703
[8] A. A. Bernasconi, On HNN-extensions and the complexity of the word problem for onerelator groups. PhD thesis, University of Utah, 1994.
www.math.utah.edu/ sg/Papers/bernasconi-thesis.pdf.
[9] M. Bestvina, M. Feighn, and M. Handel, The Tits alternative for $\operatorname{Out}\left(F_{n}\right)$. II. A Kolchin type theorem. Ann. of Math. (2) 161 (2005), no. 1, 1-59. Zbl 1139.20026 MR 2150382
[10] N. Brady, W. Dison, and T. R. Riley, Hyperbolic hydra. Groups Geom. Dyn., to appear; preprint arXiv:1105.1535.
[11] M. R. Bridson, The geometry of the word problem. In Invitations to geometry and topology, M. R. Bridson and S. M. Salamon, eds., Oxf. Grad. Texts Math. 7, Oxford University Press, Oxford 2002, 29-91. Zbl 0996.54507 MR 1967746
[12] M. R. Bridson, Polynomial Dehn functions and the length of asynchronously automatic structures. Proc. London Math. Soc. 85 (2002), no. 2, 441-465. Zbl 1046.20027 MR 1912057
[13] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin 1999. Zbl 0988.53001 MR 1744486
[14] W. Buchholz, An independence result for ($\left.\mathrm{II}_{1}^{1}-\mathrm{CA}\right)+$ BI. Ann. Pure Appl. Logic 33 (1987), no. 2, 131-155. Zbl 0636.03052 MR 0874022
[15] C. H. Cashen and N. Macura, Line patterns in free groups. Geom. Topol. 15 (2011), no. 3, 1419-1475. Zbl 05934844 MR 2825316
[16] R. Charney and M. W. Davis, Finite $K(\pi, 1)$ s for Artin groups. In Prospects in topology (Princeton, NJ, 1994), Ann. of Math. Stud. 138, Princeton University Press, Princeton, NJ, 1995, 110-124. Zbl 0930.55006 MR 1368655
[17] D. E. Cohen, The mathematician who had little wisdom: a story and some mathematics. In Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser. 204, Cambridge University Press, Cambridge 1995, 56-62. Zbl 0962.20500 MR 1320274
[18] D. E. Cohen, K. Madlener, and F. Otto, Separating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups. Math. Logic Quart. 39 (1993), no. 2, 143-157. Zbl 0799.03049 MR 1269904
[19] B. Farb, The extrinsic geometry of subgroups and the generalised word problem. Proc. London Math. Soc. (3) 68 (1994), no. 3, 577-593. Zbl 0816.20032 MR 1262309
[20] S. M. Gersten, Isodiametric and isoperimetric inequalities in group extensions. Preprint, University of Utah, 1991.
[21] S. M. Gersten, Isoperimetric and isodiametric functions of finite presentations. In Geometric group theory I, G. Niblo and M. Roller, eds., London Math. Soc. Lecture Note Ser. 181, Cambridge University Press, Cambridge 1993, 79-96. Zbl 0829.20054 MR 1238517
[22] S. M. Gersten, Quadratic divergence of geodesics in CAT(0) spaces. Geom. Funct. Anal. 4 (1994), no. 1, 37-51. Zbl 0809.53054 MR 1254309
[23] S. M. Gersten and H. Short, Small cancellation theory and automatic groups. Invent. Math. 102 (1990), no. 2, 305-334. Zbl 0714.20016 MR 1074477
[24] M. Gromov, Asymptotic invariants of infinite groups. In Geometric group theory II, G. Niblo and M. Roller, eds., London Math. Soc. Lecture Note Ser. 182, Cambridge University Press, Cambridge 1993, 1-295. Zbl 0841.20039 MR 1253544
[25] M. Hamano and M. Okada, A relationship among Gentzen's proof-reduction, Kirby-Paris' hydra game and Buchholz's hydra game. Math. Logic Quart. 43 (1997), no. 1, 103-120. Zbl 0872.03038 MR 1429324
[26] P. Jolissaint, Rapidly decreasing functions in reduced C^{*}-algebras of groups. Trans. Amer. Math. Soc. 317 (1990), no. 1, 167-196. Zbl 0711.46054 MR 0943303
[27] L. Kirby and J. Paris, Accessible independence results for Peano arithmetic. Bull. London Math. Soc. 14 (1982), no. 4, 285-293. Zbl 0501.03017 MR 0663480
[28] N. Macura, CAT(0) spaces with polynomial divergence of geodesics. Geom. Dedicata 163 (2013), no. 1, 361-378. MR 3032700
[29] N. Macura, Quadratic isoperimetric inequality for mapping tori of polynomially growing automorphisms of free groups. Geom. Funct. Anal. 10 (2000), no. 4, 874-901. Zbl 0980.20031 MR 1791144
[30] N. Macura, Detour functions and quasi-isometries. Q. J. Math. 53 (2002), no. 2, 207-239. Zbl 1036.20033 MR 1909513
[31] K. Madlener and F. Otto, Pseudonatural algorithms for the word problem for finitely presented monoids and groups. J. Symbolic Comput. 1 (1985), no. 4, 383-418. Zbl 0591.20038 MR 0849044
[32] M. Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces. J. Differential Geom. 48 (1998), no. 1, 135-164. Zbl 0906.20023 MR 1622603
[33] G. A. Niblo and L. D. Reeves, The geometry of cube complexes and the complexity of their fundamental groups. Topology 37 (1998), no. 3, 621-633. Zbl 0911.57002 MR 1604899
[34] A. Yu. Ol'shanskii and M. V. Sapir, Length and area functions on groups and quasiisometric Higman embeddings. Internat. J. Algebra Comput. 11 (2001), no. 2, 137-170. Zbl 1025.20030 MR 1829048
[35] Ch. Pittet, Géométrie des groupes, inégalités isopérimétriques de dimension 2 et distorsions. PhD thesis, Université de Genève, 1992.
[36] A. N. Platonov, An isoperimetric function of the Baumslag-Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, no. 3, 12-17, 70; English trans. Moscow Univ. Math. Bull. 59 (2004), no. 3, 12-17 (2005). Zbl 1084.20022 MR 2127449
[37] H. E. Rose, Subrecursion: functions and hierarchies. Oxford Logic Guides 9, The Clarendon Press/Oxford University Press, New York 1984. Zbl 0539.03018 MR 0752696
[38] P. Samuelson, On CAT(0) structures for free-by-cyclic groups. Topology Appl. 153 (2006), no. 15, 2823-2833. Zbl 1140.20034 MR 2248386

Received May 14, 2010

Will Dison, Department of Mathematics, University Walk, Bristol, BS8 1TW, U.K.
E-mail: w.dison@bristol.ac.uk
http://www.maths.bris.ac.uk/~mawjd/
Timothy R. Riley, Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, NY 14853, U.S.A.
E-mail: tim.riley@math.cornell.edu http://www.math.cornell.edu/~riley/

[^0]: ${ }^{1}$ Added in proof: Baumslag adds that Mikhailov should also be credited for this result and a proof is in their recent article On residual properties of generalized Hydra groups, arXiv:1301.4629 [math.GR].

