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Immersions associated with holomorphic germs BIBLI OTH EK

Andräs Nemethi* and Gergö Pinter**

Abstract. A holomorphic germ <t> : (C2,0) — (C3,0), singular only at the origin, induces at
the links level an immersion of S3 into S5. The regular homotopy type of immersions S3 4» 5s
are determined by their Smale invariant, defined up to a sign ambiguity. In this paper we fix a

sign of the Smale invariant and we show that for immersions induced by holomorphic gems
the sign-rehned Smale invariant ß is the negative of the number of cross caps appearing in
a generic perturbation of 0 Using the algebraic method we calculate £2 for some families of
singularities, among others the A-D-E quotient singularities. As a corollary, we obtain that the

regular homotopy classes which admit holomorphic representatives are exactly those, which
have non-positive sign-refined Smale invariant. This answers a question of Mumford regarding
exactly this correspondence. We also determine the sign ambiguity in the topological formulae
of Hughes-Melvin and Ekholm-Szücs connecting the Smale invariant with (singular) Seifert
surfaces. In the case ol holomorphic lealizations ol Seiferl suilaces, we also determine their
involved invariants in terms of holomoiphic geometry.
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1. Introduction

1.1. Let S" denote the /i-sphere, the boundary of the unit ball in M"+1. The

regular homotopy classes of immersions / : S3 S5, denoted by Imm(S3, S5),
are identified with the elements of ^(^(Rs)) tt3(SO(5)) Z by the Hirsch-
Sniale theory [9, 22], The correspondence is given by the Smale invariant Q(f)
°f an immersion / Besides the original definition of Smale |22], there are several

equivalent definitions of /') (see [9, 10, 25]). Usually, in all these constructions
'here is no identification of a distinguished generator of jr3(S0(5)), hence the Smale

•nvariant is well-defined only up to a sign.

*The first author is partially supported by OTKA Giant 100796
*The second author is supported by 'Lendulet' and ERC program 'LTDBud' at Renyi Institute
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The subgroup EmbfS3, 5s) of Imm(5'3, 5s) consists of the regular homotopy
classes which admit embedding representatives. By 110] this is the subgroup 24-Z C
Z ImmfS3, S5). For embeddings the Smale invariant has the following alternative

definition too, given by Hughes and Melvin. Let be a 'Seifert surface' in S5 of
f(S3), then 2Q(f)/3 is the signature of F (up to a sign), cf. [10]. (This and similar
identities will be reviewed in Section 8.)

Our goal is to analyse the complex analytic realizations of the elements of the

above two groups. Let 4> : (C2,0) -» (C3,0) be a holomorphic germ. We

assume that <t> is singular only at the origin, that is {z : rank(c/<t>z < 2} C {0}
in a small representative of (C2,0). Such a germ, at the level of links of the

spacegerms (C2,0) and (C3,0), provides an immersion f : S3 °r> S5 (see 2.1).

If an element of Imm(S3, S5), or Emb(5'3, 5s) respectively, can be realized (up to

regular homotopy) by such an immersion, we call it holomorphic. The corresponding
subsets will be denoted by Imm/!0/(S'3, S5) and Emb/,0/(53, S5) respectively.

As we will see, Imm/,0/(S3, S5) is not symmetric with respect to a sign change
of Z, hence, in order to identify the subset Imm^0/(S'3, 5s) without any sign-

ambiguity, we will fix a 'canonical' generator of ^3(50(5)). This will be done via
the ismorphisms 7r3(f/(3)) -> 7t3(SO{6)) —r 7r3(S0(5)) and by fixing a canonical

generator in zr3(L/(3)) (see 4.2). Sometimes, to emphasize that we work with the

Smale invariant with this fixed sign convention, we refer to it as the sign-refined
Smale invariant. Our second goal is to determine the correct signs (compatibly with
the above choice of generators) in the existing topological formulas, which were
stated only up to a sign-ambiguity.

1.2. The set Imm/,0/(53. S5). One expects that the analytic geometry of holomorphic

realization imposes some rigidity restrictions, and also provides some further
connections with the properties of complex analytic spaces. Mumford already in
1961 in his seminal article [201 asked for the characterization of the Smale invariant

of a holomorphic (algebraic) immersion in terms of the analytic/algebraic geometry.
This article provides a complete answer to his question. A more precise formulation
of our guiding questions are:

Question 1.2.1.

(a) Which are the regular homotopy classes Imm/,0/(S3, S5) and Emb/,0/(.S3, S5)

represented by holomorphic germs?

(b) How can a certain regular homotopy class be identified via complex singularity
theory, that is, via algebraic or analytic invariants of the involved analytic
spaces? Furthermore, ifsome <t> realizes some Smale invariant (e.g., if its Smale

invariant is zero), then what kind of specific analytic properties O must have?

The main results of this paper provide the following answer in the case of
immersions.
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Theorem 1.2.2.

(a) Imm/IO/(S3, S5) is identified via the sign-refined Sinale invariant Q(f) by the

set of non-positive integers.

(b) If the immersion f is induced by the holomorphic germ <t>, then Q(f)
—C(O), where C(O) is the number of cross cap points (complex Whitney
umbrellas, or pinch points) of a generic perturbation of C(<t>) can be

calculated in an algebraic way, as the codimension of the ideal generated by
the determinants of the 2 x 2-minors of the Jacobian matrix of <t>.

The main tool of the proof of Theorem 1.2.2 is the concept of complex Smale

invariant of the germ O. We introduce it in Section 3 and then we prove that it
agrees with C(<t>). Next, in Section 6 we identify the complex Smale invariant of a

germ <t> with the (classical) Smale invariant of the link of <J>. The proof of the part
(b) of Theorem 1.2.2 is then ready up to sign. In 4.2 we fix explicit generators of the

groups njiU) and 7r3(SO) and calculate the homomorphism between them. With
this convention the complex Smale invariant of 4> is equal to C(O) and is opposite
to the sign-refined Smale invariant.

Part (b) of Theorem 1.2.2 implies that the sign-refined Smale invariant of a

complex analytic realization is always non-positive. The proof of part (a) is then

completed by Example 7.1.1, which provides analytic representatives for all non-
positive Q(f).

Note that in the present literature the known (C°°) realizations of certain Smale

invariants Q(f are rather involved (similarly, as the computation of £2(/) for

any concrete /), see e.g. [11, 2]. Here we provide very simple polynomial maps

realizing all non-positive Smale invariants. Furthermore, the computation of C(O)
for any <f> is extremely simple.

Moreover, precomposing the above complex realizations with the C°° reflection

(s.t) i-> (s. t), we get explicit representatives for all positive Smale numbers as well,

compare |2, Lemma 3.4.2.].

1.3. The set Emb/;o/(S3, S5). Recall that Emb/lo/(S3, S5) consists of regular
homotopy classes (that is, sign-refined Smale invariants in Z) represented by
holomorphic germs <J) whose induced immersions S3 9-> S5 might not be embeddings,
but are regular homotopic with embeddings.

A more restrictive subset consists of those regular homotopy classes (Smale
invariants), which can be represented by holomorphic gems, whose restrictions off
origin are embeddings.

Theorem 1.3.1.

(a) Emb/10/(S3, 5s) (24 • Z) n Z<0.

(b) Assume that the immersion f is the restriction at links level of a holomorphic
germ O as above, f <J>|s3. Then the following facts are equivalent:
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(1) rank r/4>o 2 (hence <t> is not singular),

(2) Q(J) 0,

(3) / : 53 S5 is an embedding,

(4) / ' 53 <—> S5 is the trivial embedding.

Again, we wish to emphasize that the previous construction of the generator of
24 • Z Emb(53, S5) (that is, of a smooth embedding with Q(f) ±24) is

complicated, it is more existential than constructive [10], On the other hand, by

our complex realizations, tor any given Q(f) 24 Z we provide several easily
defined germs, which are immersions, and are regular homotopic with embeddings.
Moreover, part (b) says that it is impossible to find holomorphic representatives O

such that <t>|sr is already embedding (except for Q(f) 0).

The essential parts of Theorem 1.3.1 (b) are the implications (2) => (1) and (3) =>

(1), which conclude an analytic statement from topological ones. The proof (2) =A

(1) is based on Theorem 1 2.2, which recovers the vanishing of the analytic invariant

C(4>) from the 'topological vanishing' £2(/) 0.

A possible proof of ($(51 embedding) => (rankr/cf>0 2) is based on a deep
theorem of Mumford, which says that if the link of a complex normal surface

singularity is S3 then the germ should be non-singular [20]. We will provide two
other possible proofs too: one of them is based on Mond's Theorem 2.2.1, the

other on a theorem of Ekholm-Szucs [3] (a generalization of the already mentioned

Hughes-Melvin resuls [10]). These theorems will be discussed in connection with

properties of Seifert surfaces in Section 8 as well.

1.4. The literature of singular analytic germs <t> : (C2,0) -» (C3,0) is huge with
several deep and interesting results and invariants, see e.g. the articles of D. Mond
and V. Goryunov [6, 7, 8, 16, 17, 18] and the references therein. In singularity
classifications finitely determined or finite codimensional germs are central (with
respect to some equivalence relation). For germs <f> : (C2,0) —» (C3,0) Mond
proved that the hniteness of the (holomorphic) right-left codimension is equivalent
with the hniteness of three invariants: the number of (virtual) cross caps C(<J>),

the numbei of (virtual) ordinary triple points r(<t>), and an other invariant N(<t>)

measuring the non-transverse selfintersections [17]. This is more restrictive than

our assumption [z rank(r/T>z) < 2} {0}, which requires the finiteness of C(<£>)

only.
However, it is advantageous to consider this larger class, since there are many key

families of germs with infinite right-left codimension, but with finite C(<t>), and they

produce interesting connections with other areas as well (see e.g. the next example).

Example 1.4.1. Consider a simple hypersurface singularity (X, 0) C (C3,0) (that

is, of type A-D-E). They are quotient singularities, that is (X, 0) ~ (C2,0)/G
for certain finite subgroup G C GL(2,C). Let K be the link of (X, 0) (e.g.,
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it is a lens space for A-type), and consider the regular G-covering S3 —»• K.
This composed with the inclusion K 5s provides an immersion S3 S-> S5.

Hence, the universal cover of each A-D-E singularity automatically provides an

element of Imm/,0/(S3, S5), which usually have infinite right-left codimension. The

corresponding Smale invariants are given in Section 7. E.g., —£2(T„_i) n2 — 1,

hence A4 represents (up to regular homotopy) a generator of 24 Z Emb(S3, 5s).
Recently Kinjo, using the plumbing graphs of the links of A-D singularities

and C°°-techniques, constructed immersions with the same Smale invariants as our
—C(O) [ 13]. Hence, the natural complex analytic maps (C2,0) -» (X, 0) C (C3,0)
provide analytic realizations of the C°° constructions of [13], and emphasize their

distinguished nature.

1.5. Smale invariants and the geometry of Seifert surfaces. In Section 8 we
review three major topological theorems, which recover the classical Smale invariant
in terms of the geometry of their Seifert surfaces (namely the Hughes-Malvin
theorem 110], and two theorems of Ekholm-Szucs [3]). All of them carry the sign

ambiguity of the Smale invariant (which sometimes is also caused by the nature of
their proofs).

Section 9 has two goals. First, we will indicate the correct sign in all these

formulae, whenever the Smale invariant is replaced by the sign-refined Smale

invariant. Moreover, we also determine the Seifert type invariants in terms of C(O)
and 7(0), whenever the immersion is induced by a holomorphic germ O.

When f is a generic immersion, the invariant L(f) of generic immersions
introduced by Ekholm [2] is also expressed in terms of C(O) and 7XO), namely

1(f) C(0)-37X0).

1.6. C00-characterisation of C(O) and T(O). The formulae connecting the

holomorphic invariants C(O) and T(O) with C°°-invariants £!(/) and L(f) have

the following consequence.

Theorem 1.6.1. Assume that the analytic germs O and O' : (C2,0) -» (C3,0) are
C°° left-right equivalent (that is, O' A o O o 1// holdsfor some germs oforientation

preserving dijfeomorphisms f : (R4,0) (R4.0) and A : (M6,0) —» (R6,0)J.
Then

(a) C(O) C(O').

(b) If additionally the immersion f associated with O is a generic immersion, then

T(O) < 00 mir/7(0) 7(0').
Part (a) of Theorem 1.6.1 is proved as Corollary 6.1.2, while part (b) in

Remark 9.1.5.

We thank the anonymous referee for suggesting to us that such a consequence
flight follow from our characterisations of C and T in terms of Q(f) and L( f).
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In fact, one might even ask for the topological analogue of Theorem 1.6.1: is

it true that if d>' A o O o ift holds for some germs of orientation preserving
homeomorphisms ift : (M4,0) -» (M4,0) and A : (M6,0) -» (M6,0), then C(<t>)

C(d>') and 7(<t>) 7"(In Remark 9.1.5 we show the following.

Corollary 1.6.2. In the presence of a topological left-right equivalence as above,

if f and f are generic immersions then L{j) L(f'), hence C(<t>) — 37(0)
C(<t>') - 3T(4>').

The full extension of Theorem 1.6.1 from C00 to topological category is obstructed

by the following facts. Though we identify the analytic invariant C(<$) with the

smooth Smale invariant £2(/), it is not known if Q(/) is stable with respect
to topological left-right equivalence. A possible way to prove this requires the

extension ot the formulae from Section 8 from smooth to more general Seifert

surfaces, which exceeds the aims of the present note. We plan to return back to
this point later in a diflerent article. Also, we do not know how the topological left-
right equivalence behaves with respect to analytic deformations used in Sections 8

and 9.

Acknowledgements. The authors are very grateful to Andräs Szucs for several

very helpful conversations regarding different definitions and properties of the Smale

invariant. Without his advises this works would not be completed. We also thank
Tantas Terpai and Guillermo Penafort Sanchis for several discussions and advices

regarding topological invariants of singular maps.

2. Basic definitions and preliminary properties

2.1. The immersion associated with <t>. If (A, 0) is a complex analytic germ with
an isolated singularity 0 e A then its link K can be defined as follows. Set a real

analytic map p : X -+ [0, oo) such that p~'(0) {0}. Then, for e > 0 sufficiently
small, K := p-1(e) is an oriented manifold, whose isotopy class (in A \ {0}) is

independent of the choices, cf. Lemma (2.2) and Proposition (2.5) of [15], e.g., if
(A,0) is a subset of (C^.O), then one can take the restriction of p(z) \z\ (the

norm of r). In this way, the link of (C^.O) is the sphere S3N~l. Nevertheless, the

general definition is very convenient even if (A, 0) (C^,0).
Let 4> : (C2. 0) -> (C3, 0) be a holomorphic germ singular only at 0 (as in the

introduction) Define p : (C2, 0) -> [0, oo) by p(z) |0(z)|. Since <t>-1 (0) {0}
(if d>"'(0) would be a positive dimensional germ, then along it the rank of r/Oz
would be < 2). Hence p-1(0) {0} (in a small representative).

Lemma 2.1.1. There exists an > 0 sufficiently small such that 93e := «L-1 ({z :

-| < e}) is a non-metric C°° closed ball around the origin of C2. Its boundary,
0_1(.S'e5) is canonicaily diffeomorphic to S3 for any < q. In fact, for I with
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0 < f <g; e, any standard metric sphere .S'| sits in 93e, and it is isotopic with
<&_1(S65)f/i 53e \ 0.

In the sequel 4>_1(5e5) and S~ C C2 will be identified. When it is important to
differentiate them we will use the notation 63 := 4>_1 (5e5). We write also 53 S~

and S5 S*.

Definition 2.1.2. We call the restriction / : 63 3-> 5s the immersion
associated with <f>. (It's regular homotopy class is independent of all the choices.)

2.2. The number of cross caps. Let O : (C2,0) —> (C3,0) be a holomorphic germ
singular only at 0. Consider a generic holomorphic deformation of <t> <t>o-

The singular points of are cross caps (or complex Whitney umbrellas), i.e.

they have the local form (s,t) (s2,st.t) in some local holomorphic coordinates.
Their number does not depend on the deformation <t^, it is an invariant of <J>, cf.
L16, 17], We denote it by C(dt>).

C(O) can be computed in an algebraic way as well. Let Mj : Hom(C2, C3) -»
C denote the determinants of the three 2x2 minors (j 1.2,3). Let J be the
ideal of the local ring OC2 0 generated by the elements Mj o c/<E>, where d<f> is the

complex Jacobian matrix. J has finite codimension exactly when <J> is immersion
off the origin.

Theorem 2.2.1. [ 16, Proposition 1] C(O) dime (ÖC2 0/7).

2.3. The number of triple points. If is a generic deformation as above, then the

singular points of the image of might have the following types: self-transversal
double points, cross caps and triple points, cf. [ 16, 17], The double point set has

complex dimension 1, while triple points are isolated. If the codimension of the

second fitting ideal of 0*(C>C2) is finite, say T(<t>), then the number of triple points
0f cf>A_^0 is independent of the deformation and A, it is exactly T(<&) (cf.

H9, 16|).

2.4. The Smale-invariant. Let / : 53 3^ M5 be an immersion. Instead of the

original definition of Smale [22] we adopt the construction of Hughes and Melvin
lor the Smale invariant of /', see [ 1()|, compare also with [25|. Let U be a tubular
neighborhood of the standard S3 C M5, and let F : U T+ K5 be an orientation

preserving immersion extending / i.e. F\$s j Let TU be the tangent bundle
°f U It inherits a global trivialization from the natural trivialization of TR5. In
Particular, there is a map (the Jacobian matrix)

dF\u : U -> GL+(5,R).

'fs homotopy class is the Smale invariant of j :

Q(f) [dF\s>]enASO(5)) (2.4.1)

(via the homotopy equivalence induced by the inclusion 50(5) C GL+(5,IR)).
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Remark 2.4.2. If G is a connected Lie group, or a factor of it by a closed connected

subgroup, then nn(G) can be identified with the homotopy classes of the continuous

maps / : S" -> G without any base point. Furthermore, for Lie groups, the group
operation of nn(G) agrees with that induced by the pointwise multiplication in G;
cf. [24, p. 88 and 89],

Proposition 2.4.3. Q(f) does not depend on the choice of LJ and F, it depends

only on the regular homotopy class of f, and Ü2 : Imm(53, M5) —> jt3(50(5)) is a

bijection.

Indeed, Smale proved that his original invariant gives a bijection between

Imm(53,R5) and 7r3(V^jlR5)), cf. (22], where L3(R5) denotes the real Stiefel
manifold (the space of linear independent 3-frames of R5). Hughes and Melvin
proved that their alternative definition (2.4.1) of the Smale invariant does not depend

on the choice of F and agrees with the original Smale invariant through the natural

group isomorphism 7r3(50(5)) —* 7r3(L3(R5)).
Note that the standard embedding SO(5) SO induces a group isomorphism

between 7r3(50(5)) and 7r3(50). These groups are (a priori non-canonically)
isomorphic to Z.

We wish to emphasize the following facts regarding orientations of 53 and R5

and their effects on the above definition. (This might serve also as a small guide for
the next sections.)

Let us think about 5 3
as the subset of R4, the boundary of the 4—ball B4 in R4, or

via embedding R4 C R5, as a subset of R5. We do not wish to fix any orientation on
it as the orientation of dB4 (that would depend on the convention how one defines

the orientation of the boundary of an oriented manifold — called, say, 'boundary
convention').

Note that in the above definition of the Smale invariant, not the orientation
of S3 is used, but the orientation of the tubular neighborhood U C R5 and the

orientation of the target R5. Moreover, £2(/) is unsensitive to the orientation change

simultaneously in both R5. In this way we get an element £2(/) e [53,50(5)],
which is independent of the orientation of R5 and does not use any orientation of
53. Furthermore, if we define (this will done in 4.2) a generator [L] in [53. 50(5)],
using again only the embedding 53 C R5 (and no other orientation data), then

£2( /') identifies with an element of Z, such that its definition is independent of any
orientations of 53 and R5, hence also of the 'boundary convention'.

All our discussions are in this spirit (except Sections 8 and 9, where oriented
Seifert surfaces are treated): we run orientation and 'boundary convention' free

definitions and statements (associated with 53, regarded as a subset of R5, and

immersions 53 4-> R5).

However, if we fix a 'boundary convention', then 53 (in R5) will get an

orientation (as dB4). Then, for any oriented abstract 53, let us denote it by S3,

and immersion S3 T-> R5, we can define the Smale invariant Qa(f) <E Z (here 'a'
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refers to the 'abstract' S3) by identifying S3 with the embedded S3 C R5 by an
orientation preserving diffeomorphism and taking Q(S3 -> S3 0-> M5). This £2a(f)
depends on the 'boundary convention', since the identification S3 —>• S3 depends on
it: changing the convention we change Q.a(f) by a sign.

This point of view should be adapted when S3 will be the (oriented) boundary of
an oriented Seifert surface. But till Section 8 we will focus on the first version, £2(/).

Next, in the definition of £2(/), one can replace M5 by S5, where S5 is the

boundary of the ball in M6, and 5 3 is embedded naturally in S5. By taking a generic
point P £ S5 we identify S5 \ {P} with M5, and U will be replaced by a tubular

neighborhood of S3 in S5. Then the previous definition of Q(f) can be repeated
for any immersion S3 3^ 5s (where S3 C 5s) providing an element [53, 50(5)],
which becomes an integer once a generator [L] is constructed from the embedding
53 c S5. Again, this Smale invariant £2(/) will be independent of the orientations
of 5 3 and S5, hence of the 'boundary convention' as well.

For immersions defined in Subsection 2.1, 63 evidently sits naturally in C2 M4

(hence also in a certain 65 5s C C3 M6, cf. 6.1). This together
with definition 2.4.1 provide £2(/) (which becomes an integer once [L] will be

constructed in 4.2).

3. The complex Smale invariant

3.1. In this section we define the complex Smale invariant f2r(4>) for a holomorphic

germ <t> : (C2,0) -» (C3,0), singular only at 0. It will be the bridge between

C(4>) and £2(/).
Definition 3.1.1. Consider the map (with target the complex Stiefel variety F2(C3)):

</<D|sJ : 53 K2(C3)

defined via the natural trivialization of the complex tangent bundles TC2 and TC3.

By definition, the complex Smale invariant of O is the homotopy class:

^c(^) l^\s>] e ^sC^CC3)).

By the connectivity of the group of local coordinate transformations, ftcW is

independent of the choice of local coordinates in (C2,0) and (C3,0).

Remark 3.1.2. The projection U(3) -* ^(C3) induces an isomorphism between

^(^(C3)) and jt3(C/(3)) nj(U) (see e.g. [ 12]). Hence, if we choose a complex
normal vector field A<j> of 4>, then the map

(</<&, AMIsa : 53 ^ GL(3,C)

represents £2C(4>) in ^3(GL(3, Q) n3(U(3)) n3(U).
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A canonical choice of could be the complex conjugate of the cross product of
the partial derivatives of <£>•

N$(s, t) t) x 9f<E>(.?, t)

Remark 3.1.3. jt3(U) Z and in 4.2 we identify them through a fixed

isomorphism. In this way fT^O) becomes a well-defined integer without any sign-
ambiguity.

4. Distinguished generators and sign conventions

4.1. There is a natural map x : U(3) —> 50(6), which replaces any entry

M,j a + hi ot a matrix M e 0(3) by the real 2 x 2-matrix ^ A

map F : C3 —» C3 can be regarded as a map F : M6 —> M6: if we denote by

ij aj + ivj (j 1.2, 3) the coordinates of C3, then for the components of F
and F one has

/r7(r1.r2,r3) F2j-i (x i. Vi.a2, P2.-V3.V3) + i F2j (.v,, yt, x2, y2--v3, ^3).

Then x(dcF) (IrF holds for the complex Jacobian of F and the real Jacobian

of F.
Let j : 50(5) 50(6) denote the inclusion. It is well known (see e.g. [ 12])

that

7r3(y) : tx3(SO(5)) -» 7r3(50(6)) (4.1.1)

is an isomorphism.

Lemma 4.1.2. The homomorphism n3(x) : tt3(U(3)) —> nj(S0(6)) is an

isomorphism too.

Proof. First, we provide a more conceptual proof, which does not identify
distinguished generators. Both sides are in the stable range (see (12|), hence we can switch
to the homomorphism tx3(U) -> n3(0) induced by the embedding x : U 0.
By (a proof of) Bott periodicity, the factor 0/U is homotopically equivalent to the

loopspace QO of 0, cf. [1]. Hence n,(0/U) jt,(Q0) 7rl + l(0) 0 for
i 3 and 4. Then the isomorphism follows from the homotopy exact sequence of
the fibration 0 -» 0/ U with fibre U.

In 4.2 we will give another, more computational proof, where we will be able to
fix distinguished generators for jx3(U(3)) and 7r3(50(6)), and via these generators
we identify 7r3(r) with multiplication by —1.
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4.2. Conventions and identifications. First, we identify H and R4 and C2 in the

obvious way: we identify the quaternion q a + bi + cj + dk z + wj HI

with (a,b,c,d) e R4 and with the complex pair (z.w) C2, where z a + bi
and w c + di. Also, we identify 5 3 with the quaternions of unit length: 53

{q a +hi + cj + dk eM \ a2 + b2 + c2 + d2 1}.

Notation 4.2.1. We define the following maps. Set

where q z + wj. uq is the (complex) matrix of the right (quaternionic)
multiplication with q, that is, of the map H —>• H, p h» pq. Note that the left

multiplication by q is not a complex unitary transformation, in general. Next, set

where q a + bi + cj + dk. Lq is the (real) matrix of the left multiplication with
<7 (i.e., of the map H H, p h>- qp).

Let R : S3 -> 50(4) be the map which assigns for a q e 53 the (real) matrix
Rq of the righ multiplication with q (i.e., of the map HI -» H, p i->- pq).

Let p : 53 -> 50(4) be the map which assigns for a q S3 the (real) matrix pq
of the conjugation with q (i.e., of the map HI -»• H, p qpq~l).

We use the same notation for the compositions of these maps with the inclusions

50(4) 50 and 0(2) 0. Note that these inclusions commute with r.

Proposition 4.2.2. LI2, Section 7, Subsection 12]

(a) *3(0(2)) *3(0) Z([w]).

(b) rr3(50(4)) Z{[L]) ® Z([p]).

(c) jt3(50) Z([L]) and [p] 2[L] in n3(SO).

In the sequel, using these base choices [w] and [L] we identify the groups tr3(0)
a"d n3(SO) with 1. Now we can state the explicit version of Proposition 4.1.2.

Proposition 4.2.3. jr3(r)([i/]) —[L] tt3(50) holds for [u] e n3(U).

Proof. From definitions r o u — R and pR L, thus ^3(r)([tt]) [7?] [L] -
[p] —[L] by part (c) of Proposition 4.2.2.

Remark 4.2.4. Let p : 0(2) - 53 be the projection (choosing the first or the

second column of the matrix). Then [w] e ^3(0(2)) is the unique generator for
which deg(M o p) 1.

(a —b —c —d \
L : S3 50(4), Lq —

h
a. ~d \' c d a —b

\ d —c b a J
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Proposition 4.2.5. Let $ : C2 -> C3 be the cross cap, i.e. 4>(s,t) (s2,st,t).
Then ["]

Proof. The map t/153 : S3 -» T^OC3) represents We should compose
this with K2(C3) —> U(3), then with the inverse of the inclusion U(2) —> U(3), and

finally with the projection U(2) -> 53; and then calculate the degree of the resulting

map S3 -> S3. In fact, along these compositions we will use (the homotopically
equivalent groups) GL(2,C) and GL(3,C) instead of (7(2) and f/(3). Therefore,

we will arrive in C2 \ {0} instead of S3.

2J 0\
0 1 j

The first composition gives the map

I 2s 0 N\ \
S3 - GL(3,C), (sj)^ t s N2 J

\ 0 1 N3 /
where Ni t, N2 —2s and N3 2s2 are the coordinates of the normal vector
/V<j> (see Remark 3.1.2). This is modified by the homotopy

/ 2s 0 TVi \
S3 x [0, 1] -> GL(3, C), (s,t,/z)i-+ t hs N2

\ 0 1 hN3 J

which maps (.s\/,0) intoGL(2,C) C GL(3,C). [Note that the determinant is |t|2 +
4|s|2 + 4/i21.v14 7^ 0, thus the image is indeed in GL(3,C).] Hence, we obtain the

map

S3^GL(2.C), (s, t) ^ 2St

which composes with the projection (first column) provides S3 —> C2 \ {0}, (s, t)
(2.?, /). After a normalisation, the degree of the resulting map is 1.

Remark 4.2.6. The proof of Proposition 4.2.5 works for all germs of the form

$(s,0 (gi(s,t),g2(s,t),t) (4.2.7)

and implies that

new deg (s> - 0.0 «
V \(dsg[(s,t),dsg2(s,t))\J

d<t>\S3 : S3 V2(C3), (s,t)
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This degree agrees with the intersection multiplicity in (C2, 0) of dsgi and dsg2, i-e.

Oq 2 o
<3C(0) dimc L'° (4.2.8)

This also equals C(<t>) by Theorem 2.2.1. This proves C(<F) for maps of
corank 1. (All germs which satisfy rank(r/<t>0) 1 are right-left equivalent with

germs of type (4.2.7)). This identity will be proved in the general case in Section 5.

Conversely, the identity f2c(T>) C(O) is proved in Section 5 independently of
Theorem 2.2.1, therefore (4.2.8) together with Theorem 5.1.1 give a new proof for
Mond's Theorem 2.2.1 in the case of germs which satisfy rank(r/4>0) 1.

Remark 4.2.9. The conventions we use are not universal. For example, Kirby and

Melvin in [14] have chosen the same generators of n^iU) and n-i(SO) (these are

[»] and [L] with our notations), but they identified R4 and C2 differently than us.

Namely, they identified the quaternion q a + bi + cj + dk z + jw H
with (a,h,c,d) e R4 and the complex pair (z, id) C2, where z — a + bi and

w c — di. With that identification uq becomes the (complex) matrix of the

quaternionic left multiplication with q. In that identification ^3(r)[n] would be equal
to —[7?], since that is the homotopy class of the map 53 50(4) given by the

composition rouor, where k is the reflection k(z, w) (z, w).

5. The identity f^cf^) C(O).

5.1. Next we identify the complex Smale invariant with the number of cross caps.

Theorem 5.1.1. ^2c(et>) C(<F).

Proof Consider the following diagram:

d<$> : C2 —> Hom(C2,C3)
U U

£/<t>lc2\{0} : C2 \ {0} —> Hom(C2X3)\T> V2{C3)

where V {M e Hom{C2,C3) | rank(M) < 2}. V is an irreducible algebraic

variety of complex codimension 2, its Zariski open set V] {M 6 V \ rank(M) 1}

is smooth.

First we prove that ^('F) is equal to the linking number of and T> in

Ho)n(C2,C3). This is defined as follows. If g : S3 —> Hom(C2,C3) \ T> is a

smooth map, and g is a smooth extension defined on the ball such that g|53 g
and g intersects V transversally along V1, then the linking number of g and V is the

algebraic number of the intersection points of g and V. By standard argument it is a

homotopy invariant of maps 53 Hom(C2, C3) \ V.
The linking number gives a group homomorphism lk : ^(^(C3)) -»• Z. Next

lemma shows that this homomorphism is surjective.
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Lemma 5.1.2. Let 0(.s\/) (s2,st,t) be the cross cap. If g r/0|53 and

g c/$|ß4, then £(0) e V is the only intersection point and the intersection is

transversal at that point.

Proof. This is a straightforward local computation left to the reader. The transver-

sality follows also from the conceptual fact that the cross cap is a stable map.

The sign of the intersection multiplicity at the intersection point of two complex
submanifolds is always positive. For g described in 5.1.2 the linking number of
g(S3) and V is 1. This shows not only that the homomorphism given by the linking
number is surjective (hence an isomorphism too), but also that this isomorphism

agrees with the chosen one in 4.2. This follows from the fact that the complex Smale

invariant of the cross cap is exactly the chosen generator, see Proposition 4.2.5.

Hence, the homomorphisms £2c and Ik coincide.

Next, we show that lkWoOT(C2 C.i)(c/0|53(5'3),iD) C(<1>). Take a generic

perturbation of 0. r/Oe|53 is homotopic to hence their linking numbers

are the same. <£>e has only cross cap singularities, their number is C(0). This means

that d$>(\B4 intersects transversally V in C(<t>) points. Intersection of complex
manifolds provides positive signs.

Corollary 5.1.3. f2c(d>) > 0.

6. The proof of Theorems 1.2.2 and 1.3.1

6.1. Theorem 1.2.2 follows from Theorem 5.1.1, Proposition 4.2.3 and the next

identity.

Proposition 6.1.1. ^3(r)(ßc(cI))) TT?(j)(Q(f)).

Proof. By the definition of the Smale invariant, one has to extend / to a neigbour-
hood of the standard embedding of 63 in an M5 (cf. 2.4). On the other hand
4> extends / in the C2 direction. We will compare these two extensions using a

common extension F : W ^ C3, where W is a suitable neighborhood of ©3 in C3.

Let us consider a fixed c which satisfies the properties of Corollary 2.1.1. We

also write B3 {z : \z\ <(|C C3, S3 9ße6, := 0~'(ße6) for the C°°
ball in C2, and 63 := 0~'(53) for its boundary. (Late we will drop some of the

e's.) For positive ei, e2 sufficiently closed to e, e\ < e < and for 0 < p <<C e

one defines F(s,t.r) — <t>(M) + r N$(s,t), where (s,t,r) e W := <T>—
1

(z :

< \z\ < e2) x Ö2, Dj is the p-disc in C, and N® is the complex normal vector

of <J>, see Remark 3.1.2 Since the normal bundle of / in S3 is trivial (and since the

transversality is an open property), we get that F-1(S3) is diffeomorphic to 63xD2.
In fact, if p : C2 x D2 -> Z)2 is the natural projection, then for any r e D2 we

can define 63 r := F_1(S3) Fl p_1(r). Then each 63
r is a C°° 3-sphere, being
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the boundary of the C°° 4-ball 93^ r C p~x{r). Then F~1(S6) Ure£)26^.
Moreover, 936 := UrgD293g r C C2 x C is a thickened tubular neighbourhood of

23^ C C2 x 0, homeomorphic to the real 6-ball. Its corners can be smoothed, hence

we think about it as a C°° ball. Its boundary 6s := 9936 (diffeomorphic to the

5-sphere) is the union of F~l(S6) (diffeomorphic to S3 x D2) and Ur69D2^Bf,.

(diffeomorphic to B4 x S:).
In a point (s, t, 0) 6 6f3 x {0} the differential of F is

clF(sJ, 0) (dsF(s, 1,0), 9, F(s. t, 0), dr F(s, t, 0))

Thus, the homotopy class of dF |e3 equals ^c(<t>) (cf. 3.1.2). Therefore, taking
the real function F : W ->• R6 (cf. 4.1), its real Jacobian satisfies [<7F|63]
rr3(r)(ßc(0))

On the other hand we show that [c/F|63] n^(j){Q(f)). In order to recover
the Smale invariant £2(/) of / : 63 S-> S5, first we need to fix a global
coordinate system in a contractible neighbourhood of the source 63 in @5 and also
in R5 % S6 \ {a point} containing im(/). Let us introduce the 'outward normal at
the end' convention to orient compatibly a manifold and its boundary. In this way
we fix an orientation of 6s 9536 and S5 dB6. (According to 2.4, the output of
the proof is independent of the convention choice.)

In the first case we introduce a coordinate system in ©5 \ {Q} ~ M5 compatibly
with the orientation, where Q e 65 \ 63 is an arbitrary point (e.g. (0,0, p)). Let v'
denote the framing of T(65 \ {Ö}) — TR5 induced by this coordinate system. We

can extend the outward normal frame v6 of 63 in C2 to the rest of 65 \ {Q} (as the

outward normal vector of 65). This framing can be extended to a neighbourhood V
of 65 \ {Q} in c3. Let v : V -> GL+(6,M) denote this framing (or more precisely,
v is the transition function from the standard framing inherited from R6 to the one
just constructed).

The target is the standard 5s C R6. We can choose a point P e S5 \ f(63) and
a coordinate system on S5 \{P} compatibly with the orientation. The coordinate

system induces a framing rj' of the tangent bundle T(S5 \ {P}) of S5 \ {P}. In
the points of the target of F the vectors of >]' and d F(v6) are linearly independent,
that is, d F(v6) behaves like a normal framing (this follows from the transversality

Property of 2.1). We can extend it to a normal framing i]6 of S5 \ {P} in R6. In
this way we get a framing of the tangent bundle ol a neighbourhood V of S5 \ {P}
in R6. Let r) : V -» GL+(6,R) denote the transition from the framing on V'
inherited from R6 to the framing just defined.

The Smale invariant £2(/) is constructed in the following way, cf. 2.4. Take

the Jacobian of F restricted to T F~l{S6) prescribed in the framings v' and r(.
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The homotopy class of this matrix restricted to 63 (as a map 63 —>• GL+(6, R))
equals to Q(f). (Since F preserves the orientation, F|<j does as well.)

J(v,ri)(F)h j(J(v',ii'){Fh))

because d F(v6) r]6, thus the homotopy class of equals 7T3(j)(Q(f)).
On the other hand J(v<ri)(F) (r/-1 o F) dF v. As maps 63 -> GL+(6, R),

(77"1 o F)\&3 and v|63 are nullhomotopic because the vector fields are defined on
the contractible spaces 65 \ {Q} and S5 \ {P}. Therefore (cf. Remark 2.4.2)

[Of1 ° F)\&3] + [rfF|63] + [v\e3] [dF\63]

The left hand side of this identity is 7t3(j)(Q(f)), while the right hand side

^(rH^c^)). n

Corollary 6.1.2. Assume that the analytic germs 0 and <P' : (C2, 0) -> (C3,0) are
C°° left-right equivalent, that is, <J>' A o cp o ijr holdsfor some germs oforientation

preserving diffeomorphisms \jr : (R4,0) —» (E4,0) and A : (R6,0) -> (R6,0).
Then C(<P) C(O').

Proof. For a sufficiently small e take 6'3 (0')_1(^e) 53 and let /' : 6'3 5s

be the immersion associated with the germ O' (cf. 2.1).

As in the proof of Proposition 6.1.1, let F : W -> R6 be the extension of $
viewed as a real function. Then, by that proof, [r/F|@3] e

n^{GL+{6, R)), which is —C(<P) under the above identification.
Let us define 4> : (R6,0) ->• (R6,0) by

V(X1,X2..X3.X4,X5,X6) (f(Xi,X2,X3,X4),XS,X6).

"T is a germ of orientation preserving diffeomorphism extending /.
Then A o <P o vp restricted on some neighborhood W' of (5'plays the role of a real

extension of /'. One can verify that the proof of Proposition 6.1.1 works
for this extension as well, since it sends the normal vector of &5 into a non-tangent
vector of A5. Therefore,

[d(A o cp o 4/)|e,3] 7r30')(ß(/')).

Finally, note that [c/(A o cp o vp)|6,3] [c/F|63]. This follows from the fact
that the functions dA o <P o 4> and dT1 (with images in (GL+(6, R)) extend to the

ball <8*

6.2. Proof of Theorem 1.3.1. Part (a) follows from Theorem 1.2.2 and [10|. In

part (b), the implications (1) => (2,3,4), and (4) => (3) are clear.
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Proof of (2) => (1): (2) implies C(0) 0 by Theorem 1.2.2, while this vanishing
implies (1) via Mond's Theorem 2.2.1. For (3) => (1) we provide three proofs, each

of them emphasize a different geometrical/topological aspect.
(A) (Based on Mumford's Theorem.) II" / is an embedding then the image (X, 0)

of $ is an isolated hypersurface singularity in (C3.0). Moreover, its link is S3,
hence by Mumford's theorem [20] (X. 0) is smooth. Flence its normalization 0 is an

isomorphism.
(B) (Based on Mond's Theorem.) Let us take the generic deformation 0A, and

consider the closure D of the preimage of the the set of double values. It is a 1-
dimensional closed complex analytic subspace of the disc in C2. The preimages of
cross cap and triple points are interior points of the closure of D, while its boundary
is D fl S3 is the preimage of the double points of the immersion of / : S3 9-> S5.

If / is an embedding then dD 0, hence D is a compact analytic curve in (the disc

of) C2, hence it should be empty. This shows that 0A has no cross cap and triple
points either. Hence C(0) 0, which implies (1) by 2.2.1 as before.

(C) (Based on Ekholm-Szucs Theorem.) As above, we get that 0/ is an

embedding. Since 0|S3 is an embedding, this embedding is regular homotopic
to 0A|S3, hence they have the same Smale invariant. In the second case it can be

determined by an Ekholm-Szucs formula [3] (recalled as Theorem 8.1.9 here): since

im(0A) is an embedded Seifert surface with signature zero we get Q(f) 0. This
basically proves (3) => (2). Then we continue with the already shown (2) =A (1).

In fact, the main point of this last proof is already coded in Hughes-Melvin
Theorem [10] (8.1.1 here), but in that statement the Seifert surface is in R5 and not
in R^_ (or in the 6—ball). But 8.1.9 shows that that Hughes-Melvin Theorem is true
even if the 4-manifold M4 with boundary in R5 is embedded in R+ (instead of R5).

7. Examples

7.1. This section contains the first list of the promised examples.

Example 7.1.1, Fix A: e Z>0. 0_*(.v, f) (.v. t2. t3 + skt). The ideal J (cf. 2.2) is

generated by (2/, 3/2 + sk. -2kt1sk~i) (/,/). Hence Q(f) -C(0) - —k.

This family gives representatives for every regular homotopy class with non-
Positive sign-refined Smale invariant. Furthermore, we can represent any regular
homotopy class with Smale invariant k in the form 0_A °k, where k is the reflection
k(z, w) (z, w) (c.f. [2, Lemma 3.4.2.]).

Example 7.1.2 (Singularities of type A). These are quotient singularities of the form
(A,0) (C2,0)/Zk, where Zk e C | £* 1} denotes the cyclic group
of order k, and the action is £ * (s.t) (£.v,£_10 for £ e Zk. (A\0) is the

"nage of a map 0, whose components are the generators of the invariant algebra
t }z*, see 123, page 95], namely 0(.v. /) (sk.tk. si). One can easily compute
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that J (sk ,tk ,sk~ltk~i) and Q(f) —C(cD) -(k2 - 1). ((*.0) is the

/4jt_ l —singularity.)

Example 7.1.3 (Singularities of type D These are the quotient singularities of form

(C2,0)/D„ where Dn denotes the binary dihedral group, [23, page 89J. 0(.s\?)
(s2t2.s2n + t2n.st(s2n - t2")) [23, page 95]. By a computation J (st(s2n -
t2n),s2t2(s2n + t2"), (s2" — t2n)2 — 4us2nt2n). In singularity theory the quotient
is known as the D„+2-singularity.

A possible computation of dim (OC20f J) is based on the following facts.

Lemma 7.1.4.

(a) Take f\. f2.l1 £ öC2,o Sllc'h ^K,t J1J2 an(l h are relative primes. Then one has

the following exact sequence:

0^OC2fi/(f2,h) -* OC2i0/(/i/2,ä) ^ Oc2fi/{fuh) ^0.

(b) Take f\, J2.g. h £ OC20 such that the ideal (f\f2, g, h) has finite codimension,
and h f\h' for some h' e Oc 2 0. Then one has the following exact sequence:

0 Oci.o/ih'g-h') -> 0C2fi/(f\f2.g,h) -> OC2t0/(fi,g) -> 0.

Proof Part (a) is well known as the additivity property of the local intersection
number of plane curves, see e.g. [5 [. The proof of part (b) is similar.

Using these lemmas the codimension of J can be calculated, and it is 4n2+ 12/7 —

1. Hence, the Smale invariant of the covering S3 —» [link of the D„+2-singularity}
is —(4//2 + 12/7 - 1).

Example 7.1.5. Assume that the three components of 0 are weighted homogeneous
of weights u> 1 and w2 and degree d 1, d2 and d2. Then, cf. [18J,

C(0) {d\d2 + d2d2 -\-d2di — (u>\ + w2){d\ +d2 + d2 — W{ — w2) — W\ ui2\/w\ w2.

Mond proved this identity for germs with finite right-left codimension, but the same

proof works for germs with finite OC2<0/ J.
For example, if 0 : (C2,0) (C2,0)/G (C3,0) is as in Example 1.4.1,

then all three components are homogeneous (uq w2 1). In the case of A^i
and Dn+2 the degrees are (k.k. 2) and (4,2/i, 2/7 + 2) respectively. Hence the values

C(0) from Examples 7.1.2 and 7.1.3 follow in this way as well.
For E6. Ej and E$ singularities the degrees are (6,8, 12), (8, 12, 18) and

(12,20,30) respectively, see [23, 4.5.3-4.5.5], hence the corresponding values

—fi( / are 167,383, 1079.
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8. Smale invariant via Seifert surfaces

8.1. In this section we review three important topological formulae targeting the
Smale invariant in terms of the geometry of oriented Seifert surfaces. They are stated
and proved only up to a sign ambiguity. In the next section we will show that the

sign-refined Smale invariant appears in all these expressions with a unique well-
defined sign, and we determine it simultaneously for all formulae. The discussion
has an extra output as well: the topological ingredients in the formulae below
will get reinterpretations in terms of complex analytic invariants, provided that the
immersion is induced by a holomorphic germ 4>.

In the spirit of the discussion of Subsection 2.4, in this section we will write S3

for an 'oriented abstract S3'. £l(f) will denote the Smale invariant (given by any
of its definitions, still having its sign-ambiguity). Note that in the next statements
we need to fix a 'boundary convention', in order to have the notion of oriented dM.
(Nevertheless, the sign-corrected formulae will be 'boundary convention' free, cf.
Theorem 9.1.6.)

Theorem 8.1.1 (Hughes, Melvin |10J). Let f : S3 R5 be an embedding and

f : M4 M5 be a Seifert surface of f, i.e. M4 is a compact oriented 4-manifold
with boundary dM4 S3 and f is an embedding such that /1aAf4 /. Leto(M4)
be the signature of M4. Then

Q(f) ±^o(M4). (8.1.2)

For arbitrary immersions Ekholm and Szücs generalized the formula via generic
singular Seifert surfaces, and in two different ways: mapped either in R5 or in
[3], see also [4,21],

If M4 is a compact oriented 4-manifold and g : M4 ->• R5 is a generic C°° map,
then g has isolated E1,1 -points (cusps), each endowed with a well-defined sign. Let
ftS1'1),?) be their 'algebraic' number (cf. 131).

Theorem 8.1.3 (Ekholm, Szücs [3]). Let f : S3 S-+ R5 be an immersion and M4 be

« compact oriented 4-manifold with boundary S3. Let f : M4 -> R5 be a generic
map such that f\;)M4 is regular homotopic to f and f has no singular points near
the boundary. Then

J2(/) ±l-(3a(M4) +#Em(/)). (8.1.4)

The last formula, the most important from the point of view of this note, uses

generic C°° maps g : M4 -> R6 defined on compact oriented 4-manifolds M4.
It involves three topological invariants associated with such a map. Next we review
their definitions. They will be computed for two concrete holomorphic maps in order
to identify the missing sign.
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If g is as above, then it has isolated triple values (three local sheets of M4
intersecting in general position). Such a point is endowed with a well-defined sign
[3, 2.3]).

Definition 8.1.5 ([3]). t (g) denotes the algebraic number of the triple values of g.

Next, assume that dM4 S3 and g : (M4, dM4) -* (R+, 9R+) is generic, it

is nonsingular near the boundary, and /_1(9M^_) dM4. Here is the closed

half-space of R6. The set of double values of g is an immersed oriented 2-manifold,
denoted by D(g). Its oriented boundary consists of two parts, the intersection of
D(g) fl 9K+, and the other, disjoint with 9M® is the set of singular values £(g)
of g. Let X/(g) be a copy of £(g) shifted slightly along the outward normal vector
field of E(g) in D(g). Then X/(g) PI g(M4) 0.

Definition 8.1.6 ([3]). 1(g) denotes the linking number of g(M4) and E'(g) in
(M® 9R+).

For a generic (self-transverse) immersion / : S3 3-> R5 one defines an integer

L(f) as follows [3, 2.2], [21, 2.2], / has a normal framing (iq, V2) which is unique

up to homotopy. In any double value y f(xi) f(x2) set N(y) i>i(xi) +
iq(x2). Let D'(f) be a copy of the set of double values D(f) of / shifted slightly
along the vector field N. D(f) (hence D'(f) too) is a 1-manifold and D'(f) D

/(S3) 0.

Definition 8.1.7 ([2, 3, 21]). L(f) is a the linking number of /(S3) and D'(f)
in R5.

Remark 8.1.8. One can define L(f) without any reference to V2 in the following
way. Take an arbitrary normal vector field w of /, and in a double value y
f(x 1) f(x2) one defines N(y) w(x\) + w(x2) and D'(f) and L(f) as

above. Then L( f) does not depend on the choice of w. Indeed, take two normal

vector fields w0 and 101. In a certain trivialisation of the normal bundle of / they
are represented by two maps wq.wi : S3 —» S1, thus there is a homotopy w,
connecting them (wt : S3 —> S1, / e [0, 1]). We can define in a continuous way
A't(y) and D't(f) using the normal vector field wt and the compactness of [0, 1],

Then D't(f) n /(S3) 0, thus the linking number of /(S3) and D't(f) in R5 is the

same for all t e [0, 1],

Theorem 8.1.9 (Ekholm, Szücs [3]). Let f : S3 T-> R5 be an immersion and
M4 be a compact oriented 4-manifold with boundary dM4 S3. Let f :

(A/4, dM4) —> (E^, 9M^_) be a generic map nonsingular near the boundary, such

that / (9M^_) dM4 and /j-)W4 is regular homotopic to f. Then

Ü (/) ±~(3a(M4) + 3t(f) - 31(f) + L(J\M4)). (8.1.10)
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9. Ekholm-Szucs formulae for holomorphic germs O

In this section, from a holomorphic deformation of <J> we construct a singular
Seifert surface, and we express the topological summands of (8.1.10) in terms of
holomorphic invariants. As a corollary we specify the sign in the formulae (8.1.2),
(8.1.4) and (8.1.10).

9.1, Singular Seifert surface associated with an analytic deformation.
Let O : (C2,0) —> (C3,0) be a holomorphic germ singular only at the origin

and let / : S3 3-> S5 be the immersion associated with 4>. We take an e as in

Corollary 2.1.1, that is, we fix in the target a ball BWe also consider a holomorphic
generic deformation of 4>o O, and we fix A sufficiently small, 0 < |A| e,
such that the cross caps and (if T(4>) < oo) the triple points of sit in BWe
set 23^ A := it is a C°° non-metric ball in C2. Its boundary is x :=
4>^'(53), it is canonically diffeomorphic to S3.

The map is generic as a holomorphic map, but it is not generic as a C00 map.
The C°° genericity is obstructed by its cross cap points. We will modify in the

neighborhood of these points according to the following local model.
Let us fix local holomorphic coordinate systems in the source and the target such

that in the neighborhood of across cap has local equation &loc(s, t) — (s2,st, t).
We consider its real smooth deformation (with 0 < r |A|):

<&lT0C(s,t) (s2 + 2rs,sf + rs,t). (9.1.1)

Since the restriction of 0/oc near the boundary of the local 4-ball is stable, by a

C°° bump function the local deformation can be glued to the trivial deformation
of outside of local neighborhoods of the cross caps. This gives a C°° global
deformation of and <P. The map / 4>A,r : (93^A,63 A) -> (Bf,S*)
is the singular Seiferl surface we will consider. Its restriction, fx

is the immersion associated with <I>^.
°6,A

Proposition 9.1.2.

(a) / : 23^ x
C3 is a generic smooth map, nonsingular near the boundary.

(b) fk is a generic immersion and it is regular homotopic to j.
(c) Iff is a generic immersion, then fx is regular homotopic to f through generic

immersions. In this case L(f) L(fx),

Proof (a) First one checks that the local <&'T0C is generic. This follows from the

computation from Section 10.1. Its most complicated singularities are E1'0 (fold)
Points, the singular values constitute an S1, which — together with the double values
of the image of the boundary of the local ball — bounds the 2-manifold of the double
values. Cf. [3, 2.3.1.
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In the complement of local balls <J>A r agrees with <1>A, hence it has only simple

points, self-transverse double points and isolated triple points. All of them are

generic. Hence / has all the local property of a generic map (and, in fact, this is

enough in the determination of all the invariants, cf. [3]).
(b) 4>A|e3 is generic in real sense too: it has only simple points and generic

self-transversal double points. <t>/lA|e3 is a regular homotopy between / and fx
(h e [0, 1]).

(c) Being a generic immersion is an open condition (cf. [3, 2.1.]). Furthermore,
L is constant along a regular homotopy through generic immersions, cf. [2],

Next, we return back to the formula (8.1.10), applied for /. Clearly, a(M4) 0.

Theorem 9.1.3. Let 4>; be a holomorphic generic deformation of<P with fixed A f 0

and the corresponding maps f and fx as above. Then the following facts hold.

(a) /(/) r(ct>A) (cf 2.3).

(b) 1(f) cm
(c) L(fx) C(4>)-3T(4>A).

For the proof see 9.2.

Note that L( fx) is an analytic invariant of 4>, since it is defined as a (topological)
invariant of an analytic deformation. Recall from Subsection 2.3 that if T(<P) < oo,
then F(4>a) is independent of the deformation 4>A and is equal to T(4>).

Corollary 9.1.4. IfT(<P) < oo, then t(f) r(4>) and L(ffi) C(4>) — 3r(<!>) is

also independent of the analytic deformation 0A of<P.

Remark 9.1.5. Assume that <f>|e3 / is a generic immersion. Then T(4>) is

finite, by [ 17], and for any holomorphic deformation 4>A one has L(f\) L(f) (cf.

Proposition 9.1.2), hence C(4>) — 37(4>) L(f).
Note that if the restriction 4>|63 / of a germ O is a generic immersion, and

the holomorphic germ 4>' is C°° left-right equivalent with 0 (see Corollary 6.1.2
for precise definition), then the immersion f associated with 4>' is also generic
immersion and L( f) L( f'). Therefore by Corollaries 6.1.2 and 9.1.4 we have

TCP) TCP') too.

More generally, 4> and 4>' are topological left-right equivalent, and also f and f
are generic immersions, then L(f) L(f'), hence Corollary 1.6.2 follows too.

Theorem 9.1.6. With our sign-convention, if in the left hand side of the formulae
(8.1.2), (8.1.4) and (8.1.J0) we put the sign-refined Smale invariant Qa( f), then the

formulae are valid if we put the positive sign on the right hand sides.

In particular, the validity of these sign-corrected formulae (e.g., L2"( f)
!<t(A/4)) is independent of the 'boundary convention': changing the boundary
convention changes the sign in both sides of the formulae simultaneously.

The proof will appear in 9.2.
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Remark 9.1.7. The formula (8.1.4), involving the (algebraic) number of real cusps
of maps g : M4 -> M5 is the real analogue of our theorem f2(/) —C(O),
involving the number of cross caps of holomorphic deformations. This suggests that

if we replace a holomorphic deformation by a smooth generic map, then we trade

each cross cup by —2 real cusps.

9.2. We prove Theorems 9.1.3 and 9.1.6 simultanously (see also the discussion
from Subsection 2.4).

Proof. In the definitions of the invariants t, I and L one uses very specific
sign/orientation conventions, based on the orientation of the involved subspaces in
their definition.

For a triple value, the sign is determined in such a way that it is +1 whenever the

triple value is obtained from a holomorphic triple point (hence the orientations agree
with the complex orientations).

Since in the local deformation 0'oc we do not create any new triple value, see

e.g. the computation of Section 10, all the triple values of / come from the complex
triple points of the holomorphic <FA, hence (a) follows.

The proof of the remaining parts is based on computations of the invariants C(4>),
T (<$>), 1( f) and L(f) for two concrete cases. For the integers / and L the definitions
(orientation conventions) are not immediate even in simple cases. Therefore, in our

computation we determine them only up to a sign. The point is that computing
'sufficiently many' examples, the formula (8.1.10), even with its sign ambiguity in

front of the right hand side, and even with the (new) sign ambiguities of the integers
/ and L, determine uniquely all these signs. (This also shows that, in fact, there is a

unique universal way to fix the orientation conventiones and signs in the definitions
of / and L such that (8.1.10) works universally.)

In Section 10 we will determine the following data:

(i) For cross cup: C(<t>) 1. T(<f>) 0, / ±1, L ±1.
(92 1)

(ii) For A j: C(<F) 3, T(<P) 1, L 0.

(b) The singular values of / are concentrated near the cross caps of <1>A. For

^[°f the value / is ±1, see (i). Since the sign is the same for all cross caps,

l(f) ±C(0).
We introduce the notation

"'(./A) := ^(3/(/) - 3/(/) + L(h)). (9.2.2)

0'(/a) agrees with Q.(f) up to sign, thus £l'(jx) — iC(O). Substituting this
aud the data (i) of the cross cap in (9.2.2) we conclude that 1(f) —Q.'(fx) and

L(fx) ±C(4>)-37'((FA).
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Next, using the date (li) for Ai, all the remaining sign ambuguities can be

eliminated: L(fx) C(4>) - 3T(<t>x), 1(f) C(<D) and Q,'(fx) -C(4>)

The universal signs in formulae (8.1.2), (8.1.4) and (8.1.10) are related by

common examples, hence one of them determines all of them.

10. Calculations. The proof of (9.2.1).

We show the main steps of the computations, with their help the reader can fill in
the details. Note that if the germ <t> is weighted homogeneous, then Co 1 can be

chosen.

10.1. The case of cross cap. For the computation of T(O) see e.g. [16, 17];

C(O) is clear. Next we compute / and L. Set 4>(.v, t) — (s2.st,t) and the

smooth perturbation f(.s.t) (s2 + 2es,st + es.t). The singular locus is

E {(s,t) | s t |.v| |/| e} s Sl.

f\ £ has no singular point, hence f has no cusp points. The most complicated

singularities of / are E1,0 (or fold) points. The closure of the set of the double

points D of j is

cl(D) {(.v, t) C2 | (s - t)t + e(s - t) 0}

with the involution (s, t) (.v', t) — (2t — s, t). The fix point set of the involution
is {.v /}. Thus the set of the double points is

D {(.s.l) G C2 | (s - t)t + e(s - t) 0} \ {x t).

Each double point has exactly one pair with the same value, hence f has no triple
point.

A parametrization of D is (p. a) i-> (—ee~2at + peia, —ee~2c"), where p M+,
a G [0, 27r).

The parametrization shows that the closure of D is a Möbius band. For p 0

we get E, which is the midline of the Möbius band. The set of double values is

D f(D) \(s2 + 2es,st +es,t) \ (s.l) G D}

\(p2e2ia + 2e2ia(e-6,a - 2).2(e-4la -e2l0l),-e-20")
| p G R+ a G [0, 2n)}.

Writing p 0 we get the singular values of /,
E /(E) {(e2e2,a(e-6'a -2).e2(e-4,a -e2ia).-ee-2c")}
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The inward normal field of £ in D is the derivative of the curve

Y(t) (te2ia +e2e2ia(e~6ia -2),e2(e-4ia -e2ia),-ee~2ai)

at t =0, that is y'(/)|,=0 (e2ta, 0,0). The pushing out of £ (cf. Definition 8.1.6)
is

£' £-5-/(01,=0 {(—8e2ia +2e2ia(e~6ia—2), 2(e~4ia—e2ia), —ee-2a')}

where 0 < 8 <§C e. By Definition 8.1.6 we need the linking number of /(R4) and £'
in R6. To calculate it we fill in £' ^ S1 with a 'membrane', which here will be the

disc

H {(—8w + e2(w2 - 2w). e2(w2 - w), —w) | u; £ C |u>| < 1}.

1(f) is the algebraic number of the intersection points of H and /(R4). The only
solution is w 0, (s,t) (0,0), and the intersection at this point is transversal.

Hence, for the smooth perturbation / of the cross cap 1(f) ± 1.

Next we compute L. The set of the double points of <t> is D {(s, 0) | s 0} C
C2.

The set of the double values is D <t>(D) {(.s2,0,0) | s 0} C C3, and the

set of the double values of / is Df D n 5s {(x2, 0,0) | |s| 1} C S5.

The sum of the normal vectors at (,v2,0.0) is (0, 0, .?2). Hence the shifted copy
of D along N is D' Df + SN {(.v2,0,8s2) | |x| 1}.

Since D' does not intersect 4>(C2) for 8 6 (0, 1], we can choose 8 1. An
injective parametrization of Df+8N is D' {(r,0, f) | \z\ 1}, where z s2.

To calculate the linking number of 0(C2) and D' in R6, we need a membrane which
fills in D. We take

H {(z,sfY^,z)\\z\<\}^D2
L(f) is the algebraic number of the intersection points of 0(C2) and H. But there
is only one such point, namely P := "Tf £) (£, £\/^. ^), where £ is the real

root of g(z) := z3 + z2 - 1 0. Moreover, this intersection is transversal.

10.2. The A\ singularity. By 7.1.2 it is given by <J>o(.s\0 (s2,t2,st). The
immersion f0 associated with <b0 is not generic, /0 is the 2-fold covering of the

projective space composed with the inclusion. Thus all points of S3 are double
Points of the immersion /'.

On the other hand, by 7.1.2, C(<t>0) 3, and a similar calculation of the

codimension of the second fitting ideal shows that TjOo) 1- The finiteness of
these invariants shows that the number of cross caps and triple points of a generic
Reformation of <t>o are independent of the chosen deformation. Below we give a

concrete deformation <t>e of <J>0 and we calculate the invariant L of the generic
'minersion fe associated with d>6.
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The deformation is (.s, /) ((.v — e).s\ (t — e)t,st). The vector field

/ \
N(s,t) i)s<t>e(sj) x d,cf>e(.s\0 -s(2s-j)

V (25-0(2^-0 J

is 0 at the points (0, e/2), (e/2,0) and (e/2, e/2). These are the cross caps.
The defining equation /) <he(.v', t') (where (s, t) ^ t')) of the double

points leads to the system of equations

(.v-.v')(.v + .v'-e) (t-t'){y+ y'-) 0, st=s't'.

Thus the double locus D has three parts and these parts correspond to the three cross

caps. The first part comes from the solution s' s and t' e — t, which implies
s 0, hence D\ {(0. t) | / ^ e/2} with <t>e(0, t) <J>f (0, e — t). This provide
the double value set

D\ 4>e(0.) {(0,f(r-e),0) |f ^e/2}.

The second part comes from the solution s' e—s and t' t, which implies t 0,

and £>2 {(.v. 0) | s ^ e/2} with 0) <I>e(e - s, 0). The set of double values

is

D2 Oe(D2) {(.v(.5-e),0,0) h/e/2}.
The third part comes from the solution s' e - ,v and t' e — t, which implies
,v + t e, and D3 {(.v, e — ,v)} | s ^ e/2} with <t>e(.v, e — ,v) Oe(e — .v, ,v). The

set of double values is

D3 Oe(D3) {(.y(.s'-e),j(s-e),-s(A'-e)) | .v ^ e/2}.

Di, D2 and D3 intersect each other in the unique triple value 4>e(0, 0) <J>e(e,0)

cpe(0,e) (0,0,0).
Let D, (/) D, (T S5 (i 1, 2, 3) denote the disjoint components of the set of

the double values of /. Clearly L( /') Li (/) + L2( f) + L3(/), where L, (/') is

the linking number corresponding to the component D,(f). ButLi(/) L2( /)
L2(J Indeed, D[ and D2 is interchanged via the transformations cp(s,t) (t,s)
(of C2) and \J/(X, T, Z) (Y, X, Z) (of C3), and D3 and D2 via (p(s, t) (e -,v -
/, t) and i(/(X, Y, Z) (X + Y + 2Z, T, — Y — Z). Thus, it is enough to calculate
L | / The needed vector field along D\ is

N((),t(t -e).0) N(0,t) + N{0,e-t) {{2t - e)2,0.0).

The set of the double values of f corresponding to D\ is

D \ { f — D[ H S5 — e), 0) I |/(/-e)| 1}.
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The shiited D\(f) along N is

D\ Dl(f) + SN m2t-)2,t(t-e).0)\\t(t-)\ 1},

where 8 is small enough Neveilheless, we can choose 5=1, because D\fl^>(C2)
0 foi any 8 e (0, 1] With the notation z t(t — e) we give an injective
paiametnzation D\ — {(45 + f2,z, 0) | |z| 1} We fill it with the membrane

H {(4z + e2,r.f x/l - |z|2) | |z| < 1}

Computing the mteisection points of H and <t>(C2) leads to the equations

4z + e2 a(a — e). z b(b — e), i ^1 — |z|2 ab,

with |z| < 1 and e small The first two equations imply that \a\ < 5 and \b\ < 2

Multiplying the first two equations one gets

z(4z + e2) a2b2 - a2bc — ab2e + abe2

>From the third equation follows a2b2 |z|2 - 1, hence

3|z|2 -1 - ze2 — a2be — ab2 + abe2.

and the right hand side is negative if e is small enough Hence H fl 0(C2) 0, and

L(f) 0.

11. Final remark. The real version in arbitrary dimension.

11-1. There is a real version of pait (b) of Theorem I 2.2 which follows directly
from the lesult ol Whitney and Smale

Let 0 • (R"+l. 0) -» (R2"+l, 0) be a leal analytic geim singular only at 0. With
the same method as in the complex case we can associate an immersion f : S" S->

S2" with <t> (see 2.1) A geneiahzation of Whitney's double point formula valid for
Plane curve immersions [26] shows that the Smale invaiiant of / (more precisely, of
a genenc immersion legulai homotopic to /) equals the algebraic number of self-

intersection points (mod 2 if n is odd)
A genenc pertuibation O' ol $ has only cioss cap type singularities, l e. locally

nght—lett equivalent with germs of the toim (s, I) (,s2, si,l), where s el and

6 R" These cioss caps are isolated, and ll n is even, we can associate a sign for
each of them <t>' restricted to the boundaiy is a genenc immersion f' ' Sn ^ S2n

f and / are regulai homotopic, and /' has two kinds of double values

(a) double values related to a cross cap (that is, they aie connected by a segment

consisting ol double values ol <J>'),
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(b) double values not related to a cross cap.

When n is even, the sign associated to a cross cap agrees with the sign associated

with the self intersection point of f' related to the cross cap. Thus the algebraic
number of such cross caps is equal to the algebraic number of double values of
type (a) (mod 2 if n is odd). The double points of type (b) are pairwise joined up
by segments of the double values of <$', thus the algebraic number of them is 0.

Moreover, it can happen that two cross caps are joined by a segment consisting of
double values of O', but then they will have different algebraic sign, hence they will
not contribute in the sum. Hence, we proved:

Proposition 11.1.1. The Smale invariant of f agrees with the algebraic number of
the cross cap points appearing in a generic perturbation of<t> (mod 2 if n is odd).
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