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Flat cycles in the homology of T \ SL,„ R/ SO(m)

Grigori Avramidi and T Tarn Nguyen-Phan

Abstract. In this papei we show that flat (in — 1 )-dimensional ton give nontrivial rational
homology cycles in congiuence covers ol the locally symmetiic space SL,„ Z\SLm R/ SO(in).
We also show that the dimension of the subspace ol i (T \ SL,„ R/ SO(m); Q) spanned
hy flat (in — 1 )-ton grows as one goes up in congiuence covers
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L Introduction

Let M be a finite volume, nonpositively cuived, locally symmetric manifold. It is
usually difficult to determine the homology of such a manifold. However, totally
geodesic submanifolds N are natural candidates for non-trivial homology cycles.
In this paper we study the case where N is a maximal periodic torus of M. That
ls N is a compact, totally geodesic, immersed toius whose dimension is equal to
the geometric (i.e. real) rank of M. Prasad and Raghunathan have shown [5] that
a I°cally symmetric space always contains such ton, while Pettet and Souto have
shown that these ton are "stuck" in the thick part ol the locally symmetric space and
cannot be homotoped out to the end [6], This leads one to suspect that such tori
might be homologically nontrivial in a strong sense. The main goal of this paper is
to justify such suspicions in the special case when T < SL,„ Z is a finite index
torsionfree subgroup and M T\SL,„ R/ SO(ni) is the corresponding locally
symmetric space. In this case, maximal periodic ton can be obtained in the following
concrete way.

Let r e SL„, Q be an element whose characteristic polynomial is irreducible and
as distinct real eigenvalues. The mmset' of r acting on H := SL,„ R/ SO(m)

totally geodesic (in - l)-dimensional fiat X whose image in the quotient space
mZ\ SLm E/ SO (in) is an isomelrically immersed (in - l)-dimensional torus.

""'itel'nt'5'61'110111 T 1S J semislmP'e isomeliy ol the symmelnc space H := SL(R"')/SO(R'") The

least by°rr 'S "1C SCl °' P0lnts jx e H I (hi(x,rx) < dn(y, ry) loi all v 6 H) that are moved the
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We show that such tori yield interesting homology cycles in finite volume quotients
of H.

Theorem 1.1. Let X be an (m — \)-dimensional flat whose image in M :

SL„, Z\ SL,„ R/ SO(m) is compact. Then, there is a finite cover M' of M such

that the image of X m M' is a non-trivial homology cycle in Hm-\ (MQ).
The key ideas of the proof of this theorem are the following.

1) First we find a totally geodesic copy Y of (SLm_i R/ SO (in — 1)) x R in H
which is defined over Q and intersects the flat X transversally (not necessarily

orthogonally) in a single point. This reduces to showing that the boundaries

at infinity of X and Y are linked.

2) Then we find a finite index subgroup T < SLm Z such that the images of X
and Y are embedded orientable submanifolds X and Y of T \ SL„, R/ SO(m)

intersecting transversally, with all intersection points having the same sign.

This means the signed intersection number X fl Y is non-zero. Since this number
does not change when we replace the cycle X by a homologous cycle2, we
conclude that X is a non-trivial homology cycle in Hm-i(T \ SL,„ R/ SO(w);Q).
Similarly, Y is a non-trivial cycle in homology with closed supports \
SL,„ R/ SO(/h); Q).

Let T be a hnite index torsion free subgroup of SL,„ Z and T(/?") := T fl
ker(SL„, Z -r SL,„(Z///')) the p" congruence subgroup. The argument sketched

above can be generalized to one that uses multiple flats. We prove the following
theorem. It shows that the subspace of homology generated by flat tori grows as one

goes up in congruence covers.

Theorem 1.2. Given a prime p and an integer N, there is no such that for n > ;;0,
the dimension of the subspace of Hm-\ (Y(pn)\H \ Q) spanned by flat cycles is > N.

Remark 1.3. This also implies nonvanishing tor homology in dimensions other
than m — 1. For instance, it in 3 then r(pn) \ H is homotopy equivalent to
a 3-complex, b\(Y(p")) 0 by the normal subgroup theorem and /(T(/?")) 0,
hence bflr(p")) 1 + b2{Y{p")) grows as one goes up in congruence covers.

Related work. There is a large and fruitful literature on homology of locally
symmetric spaces obtained from totally geodesic submanifolds. Examples are
[2^4,7,8], The idea of eliminating unwanted intersections by passing to congruence
covers appears in some form in all these works. However, as far as we can tell, the

homology studied in those papers comes from cycles which are the fixed point sets
of a finite order rational isoinetry a. These cycles are called special cycles. One
finds another finite order rational isoinetry a' commuting with a and then intersects
the fixed point sets. The resulting fixed point sets intersect orthogonally.

2More formally, transverse intersections between compact cycles and closed cycles make sense on the

level of homology and give a map //,„_] x )/2 ^ //()
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The Hat T'"-1-cycles considered in this paper are not of this type. They are

not fixed by any finite order isometry. (The fiat X Rm_1 in the universal cover
is the fixed set of an abelian group of involutions (Z/2)"\ but these involutions
are not rational and do not descend to a finite cover.) Further, our complementary
subspaces Y do not need to intersect X orthogonally. This gives flexibility in the
choice of Y and allows us to find appropriate intersection patterns in the universal

cover via a density argument.
The rationally defined subspaces Y which we intersect with the flats X are more

familiar. For instance, rational copies of H2 x R in SL3 R/ SO(3) have been studied
by Lee and Schweriner in [2].

Acknowledgements. We would like to thank Juan Souto for asking the first
author whether maximal periodic flats in locally symmetric spaces give interesting
homology and for suggesting that intersections might be resolved by passing to finite
covers, Wouter van Limbeek for pointing out that GL2 R is not the same thing as

SL2 RxR (making the paper significantly longer), and Cesar Lozano for explaining
complex enumerative geometry (which motivated Proposition 4.1).

2. The SL3 case

In this section we we describe some intersections in the symmetric space SL3 R/ SO(3)
in terms of linking on its sphere at infinity and give a "projective plane" description
°t when linking occurs. For the formal argument it is not really necessary to
single out the SL3 case from the general SL,„ case, but in practice the SL3 case
is easier to visualize, so we do it separately and illustrate the argument with some
Pictures. We will describe the sphere at infinity in terms of flag-eigenvalue pairs
in R3 (Section 2.13.8 in 111). This will allow us to compute intersections of totally
geodesic submanifolds X and Y in SL3R/SCH3) purely in terms of the sphere at
infinity.

A description of the sphere at infinity SA 9(SL3 R/SO(3)). The points at
infinity correspond to geodesic rays e'z where Z is a trace zero, symmetric matrix
°f length one. That is, the eigenvalues Aj > A2 > A3 arranged in descending order
satisfy

Ai + A2 + A3 0,

A2 + A2 + A2 1.

Let £, (u r3 1 Zv _ t|ie ^._ejgenspace 0f z. Then, the eigenvalues
together with the flag

()C£,C£i + £2C R3
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provide enough information to recover the symmetric matrix Z. This description of
the sphere S4 at infinity naturally subdivides it into three pieces.

• A four dimensional piece A) > A2 > A3 and 0 C £1 C E\ + £2 C R3

isomorphic P3 x (1/ \/6, 2/\/6),
• a two dimensional piece Ai 2/Vö, A2 A3 — 1/\J6, and 0 C £1 CK3

isomorphic to the real3 projective plane P2 of lines through the origin in R3,

and

• a two-dimensional piece Aj A2 1/V6, A3 —2/>/6, and 0 C £j +
£2 C R3 isomorphic to the projective plane P2 of planes through the origin
in R3.

The circle Sl C S4 corresponding to a flat R2 C SL3R/SO(3). A two-
dimensional flat corresponds to a transverse collection of one-dimensional subspaces

A, B,C C R3. Running through the possible eigenvalues gives the circle.

Subgroups SL2 RxlC SL3 R. A subgroup SL2 IxRc SL3 R corresponds to

a pair (£, P) where L is a one-dimensional subspace of R3, P is a two-dimensional

subspace of R3, and L and P are transverse to each other. The flags associated to

(L, P) are those that occur on the sphere at infinity of the corresponding SL2 R x R.

The possible 1-dimensional subspaces in such a flag are L or a one-dimensional

subspace Lq C P. The possible 2-dimensional subspaces are P or any two-
dimensional subspace Pq containing L. The possible flags are nested sequences
of these.

Suppose that we have two such subgroups corresponding to pairs (£, P) and

(£', P'), and denote the corresponding two-spheres at infinity by S and S' in S4.

We describe the points of intersection S n S'.

The intersection S fl S' in S4. We say that the pairs (£, P) and (£', P') are in

general position if L ^ L', P P', L &\ P', L1 rh P, and (P n P') ftl (L + £')•

Proposition 2.1. If the pairs (L, P) and (£', I") are in general position, then the

corresponding spheres S and S' intersect twice. They have no intersections in P3 x
(1 /\fb, 2/ y/6), intersect once at P C\ P' e P2 and once at L + L' ¥\.

Proof. Since (L, P) and (L'. P') are in general position, the only flags they share

are 0 C P IT P' C R3 and OcLlL'cR3.
Transverse intersections. Let p be a point of intersection of S and S' in S4.

Denote by L(p. S). L(p. S'), and L(p,S4) the links of p in S,S' and S4,

respectively. II the circles L(p, S) and L(p, S') link in the three-sphere L(p, S4).
then we say that the intersection of S and S' at p is transverse.

3AII projective spaces in this paper are real.
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Some real projective geometry. Think of A, B,C and L as points in P2 and P
a projective line in P2. We explain the criterion for determining whether the flat X
corresponding to {A, B, C) intersects the copy Y of H2 xM corresponding to (L, P).
For two distinct points, say A and B, we denote by AB the projective line passing

through A and B. In Figures 1, 2, and 3, we draw the projective plane as a disk with
antipodal boundary points identified.

Proposition 2.2. Suppose that (A, B,C) and (L. P) are in general position. Then

P?\{Äß, AC,~BC} is a union offour open triangles. The spaces X and Y intersect

if and only if the triangle containing the point L does not meet the line P. The

intersection is necessarily transverse.

BC

Figure I.

Proof Suppose that P passes through the triangle containing L. For one of the
vertices of the triangle (without loss of generality, the vertex A) the pair of points

C} do not link the pair of points {LA D BC. P fl BC} on the projective line BC.
We rephrase this in the following way: Let Y' be the copy H2xK corresponding to
(4. BC). Then OY fl BY' {LA. P fl BC and the non-linking statement becomes
lhe statement that dX does not link BY n BY' in BY'. Thus BX does not link 3F in
the sphere at infinity S4, i.e. X and Y are disjoint. This is depicted in Figure 1.

Conversely, suppose that P does not pass through the triangle containing L. The
argument in the previous paragraph shows that BX links BY fl BY' in the sphere BY'.

0 conclude that 9A" links BY in the sphere at infinity SA we need an additional
argument. Namely, we need to show that the intersection of the two-spheres BY
and BY' at the point P D BC is transverse.
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Figure 2.

To show this, we look at the two-sphere at infinity dY" of the symmetric space Y"

corresponding to the pair (P n BC. LA). A neighborhood of the point P fl BC in S4

can be identified with a neighborhood of (P fl BC) x (P n BC) in ¥2{ x i)Y". Now,

P^nilT is the line P together with the point L while P^nilT' is the line BC together
with the point A. The lines P and BC cross at P fl BC. On the other hand S\ \

dY" D dY is the boundary of the flat corresponding to (L, AL fl P, P fl BC) while
S2 := dY"r\dY' is the boundary of the flat corresponding to (A, ALCBC, PHBC).
The circles Si and S2 in dY" cross at P n BC because the points {L, AL fl P} link
the points {/I, AL n BC} on the projective line AL. Since P and BC cross in P2

and Si and S2 cross in dY" we see that the intersection of dY with dY' at the point
P 0 BC is transverse. This second part of the argument is illustrated in Figure 2.
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Remark 2.3. Corresponding to an open geodesic simplex A in P[ we can define its
dual simplex A* in the dual projective plane (with the edges of A* corresponding
to the outside angles of the simplex A). Recall that the points A, B and C subdivide

Pj into four simplices Ai, A2. A3 and A4. Then, one can show that Proposition 2.2

implies the sphere corresponding to (L, P) links the circle corresponding to

(A, B,C) if and only if (L. P) e U^=1A, x A* C x P^. Since we do not
use this description, we will not give a proof of this (but the reader is invited to draw

some pictures and convince themselves of it).

Figure 3.

2-1. An arrangement of intersections. Using Proposition 2.2 it is easy to construct
a pattern X\ XN, K, YN of fiats A, and copies of H2 x R denoted T,-, for
which A, intersects Yj if and only if i < j. One such pattern (with N 4) is

indicated in Figure 3. The right picture is obtained from the left picture via rotations
by a fixed amount. To get the required pattern for a general N one starts with a

sufficiently thin triangle (A, B, C) and uses a small enough rotation.

The sphere at infinity of SL,„

{u this section we describe the sphere at infinity in terms of flag-eigenvalue pairs in

(Section 2.13.8 in [ 11). Points on the sphere at infinity correspond to geodesic
'ays e'Z where Z is a trace zero, symmetric matrix of length one. That is, the
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eigenvalues A i > • • > Xm of Z arranged in descending order satisfy

X\ + • • • + Xm 0,

X\ H I- X2m 1.

Let E, := {u e Rm | Zv X, v} be the A,-eigenspace of Z. The eigenvalues

together with the flag

0c E i C Ei + Ej C C E\ + • • • + Em-i C Rm

provide enough information to recover the symmetric matrix Z. Thus, the points
on the sphere at infinity are parametrized by flag-eigenvalue pairs. The flags are

best thought of as nested arrangements of points, lines, planes etc in real projective

space Pm_1.

The sphere of a direct sum decomposition. Suppose we are given a direct sum

decomposition Rm U\ ® • • ® Ur. Up to finite index, the subgroup of GL(Rm)
preserving this decomposition is GL(£/i) x - • -xGL(£/r) and the subgroup of SL(RW)

preserving the decomposition is Rr_1 x SL(f/i) x • • • x SL(Ur). This group acts on

SL(Rm)/ SO(Rm) preserving a totally geodesic symmetric subspace

Rr_1 x SL(f/1)/SO(f/0 x x SL(Ur)/SO(Ur). (3.1)

We denote the sphere at infinity of this symmetric subspace by S(Ui,..., Ur). We

note that S(R) 0 because SL(R) is a point. Generally, if U is an «-dimensional

vector space then S(U) £"("+0/2-2 proc(uct decomposition (3.1) gives a

join decomposition

S(U\ ,...,Ur) Sr~2 * S(Ui) • • • * S(Ur) (3.2)

for the sphere at infinity. Next, we describe the flags that occur on this sphere.

The sphere S(U\,.... Ur) as the fix set of an element in SL(Rm). Let r e

SL(Rm) be a diagonalizable element whose eigenspace decomposition is Rm

Ui ©• • -®Um. The minset4 of x is the symmetric subspace Rr_1 xSL(f/i)/ SO((/i)x
• • • x SL(Ur)/SO(Ur). The action of r extends to the sphere at infinity S(Rm) and

its fixed set is precisely the sphere S(U\,..., Ur). The action of r on the sphere at

infinity does not change the eigenvalues and sends a flag F\ c • • • C to the flag

tF\ C C xFk (see 2.13.8 of [1].) A standard linear algebra argument shows

that the subspaces V C Rm that are preserved by r are precisely those spanned by
the eigenvectors of r. We will call these the subspaces associated to the eigenspace

4The element z is a semisimple isometry of the symmetric space H := SL(Rm)/SO(M'"). The

mmset of r is the set of points {x e H \ du (x, zx) < du{y, zy) for all y H} that are moved the

least by r.



Vol. 90 (2015) Flat cycles in the homology of T \ SL„, M / SO(/w) 653

decomposition (Ui,..., Ur). We will say that a flag F\ c • • • C /•& is associated
to the eigenspace decomposition (U\ Ur) if each of the subspaces F, in the flag
ls spanned by r-eigenvectors. These are precisely the flags that are preserved by r.
Thus

The sphere at infinity S(Ui,..., Ur) consists of those flag-eigenvalue pairs
whose flag is associated to (U\,..., Ur).

Projective space description. Here is a slightly more geometric description. Let
P 1

be the projective space of lines through the origin in Rm. The subspaces Ut
form a transverse arrangement (Lj Ur) of projective subspaces in ff""-1. A
^-dimensional subspace V C Mm defines a (k — 1 )-dimensional projective subspace
V ~ 1 c Pm~>. it is spanned by the eigenvectors of r precisely when there
are k points in the union U(r=1 U, C Pm~' that span V.

General position. Suppose that Fx Lm, L are points in pm_1 and P is an
(,m — 2)-dimensional projective subspace ^ Pw_2. We say that (F\,..., Lm) and
(L, P) are in generaiposition in pm_1 if

(1) none of the points is contained in P,
(2) any m points span an (m — l)-simplex in Pm_1, and

(3)

L, L} n P Lt Lj nLLj Fi F j F^.
Here, we denote by L, Fj the projective line passing through the points F,
and Fj and by FF \ F, F, Fm the projective hyperplane passing
through all the points except for F, and Fj. In words, this third condition
says that the intersection of the line passing through the points F, and F}
with the hyperplane P is not equal to the intersection of that line with the
hyperplane passing through the remaining points.

Intersecting spheres at infinity. Suppose we have two direct sum decompositions

where F, Lj,..., Fm are points and P is a hyperplane in Pm_1. If (F\,..., Fm) and
P) are in general position, then the first two general position conditions imply

that the only subspaces associated to both (Li,..., Fm-2, Fm-\Fm) and (L, P)
are the point V := P n Fm-XFm and the hyperplane Q := FFX Lm_2.5
The third general position condition implies that the line F' is not contained in

to r/inCe ^ c*"es"'t c°tilain any ol (he points L,, the only subspace contained in P that is associated
!>•••, L/„_2, Ffn — i Lm) is F' := P ft F,„-1 Lm. If the subspace is not contained in P, then

^must contain L, and by general position Q is the smallest dimensional such subspace associated to
1''''' Lm-2, L,„_ 1 L,n) Finally, it is easy to see that it is the only such subspace.
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the hyperplane Q. Thus, the spheres at infinity S{L\,..., Lm-2, Lm-\Lm) and

S(L. P) intersect at exactly two points L' and Q in S(E.m).

A neighborhood of Q. The singleton codimension one flags form a projective

space in the sphere at infinity 5(Mm). This projective space has a regular
neighborhood TV(P!^) in 5(Mm) which is a bundle whose fibre over a point
V P-2 can he identified with the cone Cone(S(U)) of the sphere at infinity
of V.

4. The linking lemma

In this section we explain how to compute intersections of totally geodesic sub-

manifolds in the symmetric space SLm R/SO(m) in terms of linking on the sphere

at infinity. We then describe how to determine linking at infinity in terms of the

geometry of real projective space. This description turns out to be convenient for
constructing and perturbing intersection patterns in the universal cover.

Suppose that X ^ Rm_1 is a flat obtained as the minset of an element r e SLm M

with m distinct real eigenvalues, while Y is a copy of (SLot_i M/ SO(m -l))xR
which is the minset of an involution p e GLm R with eigenvalues (—1,..., — 1, 1).

Let (Li,..., Lm) be the eigenspaces of r and (L, P) be the line-hyperplane pair
of eigenspaces of p. Suppose that (L i,..., Lm) and (L, P) are in general position.
Then the spheres at infinity dX S(L\,..., Lm) and 3Y S(L, P) are disjoint.
Using geodesic projection through a point to the sphere at infinity S'(Mm) one sees

that X and Y intersect if and only if the spheres dX and 3Y link in S(Rm). If there

is an intersection, then it is necessarily transverse because the spheres dX and 3Y

link.
We give a geometric criterion for determining when the spheres dX and 3F link.

Proposition 4.1. Suppose that (Li,..., Lm) and (L, P) are in general position.
Denote by V, the hyperplane which passes through all the points L\ Lm e
Pm_1 except Li. The hyperplanes fj Vm subdivide Pm_1 into open (m — 1)-

simplices. The spheres S{L\ Lm) and S(L, P) link ifand only if the (m — 1)-

simplex a containing L does not meet P.

Proof. We do an inductive argument. The base case m 2 is easy. In this case the

proposition is simply identifying the projective line P1 with the circle at infinity 3IHI2.

Now, we suppose that the Proposition is known for m — 1 and prove it for m.
Note that either P does not meet the simplex o, or it intersects at least one edge of
the simplex. So, without loss of generality we will make the following assumption
for the rest of the proof.

• If P meets a then it intersects the edge E of the simplex a lying on the line
Lm — 1 Lm.
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Remark 4.2. So the projective line Lm-\Lm ^ P1 get broken up into two
components: the edge E and its complement.

If P does not meet a at all, then it intersects the line Lm-\Lm outside the
edge E. Let Q := LL\ be the hyperplane passing through the points
L, L\,..., Lm-2- Since L is contained inside the simplex a, the hyperplane Q
intersects the edge E. Thus,

• The hyperplane P meets a if and only if on the line Lm-XLm the pair of
points Lm} link with the points {P fl Lm-\Em, Q D Lm-XEm}

The pair of points {Lm-X, Lm} S{Lm~\, Lm) S° lies inside the circle
S(Lm-1 Em) Sl. It links the points {P n Lm-\ Em, Q fl Em-iEm} in this circle if
and only if the suspension S(L\ Lm) S'"~3 * S(Lm-j, Em) links the points
{P H Lm_xLm, Q n Lm-iLm} in the suspension S(Llt..., Em-2, Lm-XLm)
Sm * S(Lm-xLm). This is the same as linking the points {P fl Lm-XLm, Q}
because the flags Q and Q n Lm-XLm are "adjacent": the segment on the sphere at
infinity corresponding to the flag Q fl Em-\ Lm C Q connects them and does not meet
S(EX, • • •, Lm) so they lie in the same component of S{LX,..., Em-2, Lm-XLm) \
S(L\,, Lm). In summary,

(*) The hyperplane P meets a if and only if the sphere S(Li,..., Em) does not
link the pair of points {P n Lm-\Lm, Q} inside S(Lj,..., Em-2, Lm-\Lm).

To unburden notation slightly, we will from now on denote the sphere S(Ei,..., Lm)
by the letter S := S(L\,..., Lm). Since (L\,..., Lm) and (L, P) are in general
position, the spheres at infinity S(L, P) and S(Li,..., Lm_2, Lm-\Lm) intersect
in precisely the two points P n Lm-\Lm and Q. If P meets the simplex a then (*)
shows one of the two connected components of S(L\,..., Em-2, Lm-\Lm) \ S is
a ball which is bounded by S and does not intersect S(L, P). This means that the
sphere 5 does not link the sphere S(L, P) which is half of what we needed to show.

Now, suppose that P does not meet the simplex a. It remains to show that in
this case the sphere S links the sphere S(E, P). By (*), in this situation one of
the components of S(L\, Lm-2. Lm-\Lm) \ S contains Q but does not contain
P n Lm~\Lm. We call this component D. It is a ball with boundary dD S. The
sphere S(L, P) does not meet S and intersects the ball D in a single point Q. To
show that S and S(L, P) link, it is enough to show that the intersection at Q is
transverse. Note that

* The link of Q in the entire sphere at infinity S(Rm) is the join Lk( Q, f^l\) *
S(Q).

* The link of Q in D is Lk(Q. n D) * S(L, Lm_2, QDLm-XLm).
* The link of Q in S(L. P) is Lk(Q. P',nnZl2 D S(L, P)) * S(L, Q n P).

We will show that

Lk(Q, fzl2 n D) and Lk(Q,r?nZx2 n S(L, P)) link inside of Lk(Q,
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(2) S(Li,..., Lm-2, Q n Lm-\Lm) and S(L, Q D P) link inside S(Q).

which implies that Lk(Q, D) and Lk(Q, S{L, P)) link inside Lk(Q, S(Mm)), and

hence the intersection of D and S(L, P) at Q is transverse. This will complete the

proof of the Proposition.

(1) Near Q, the intersection PI D is a projective line in (the line of
all projective hyperplanes in P_1 passing through the points L\,..., Lm-2),
whde Pl2 Pi S(L, P) is a projective hyperplane in (the hyperplane of
all hyperplanes passing through L in P-1). By general position, the line and

hyperplane intersect transversally at Q, which shows that Lk(Q, fZl2 P D)
and Lk(Q,F:]2nS(L, P)) link inside of Lk(Q, P^l').

(2) Second, recall that L is contained in the (m — l)-simplex 0*, the hyperplane P

does not meet a, and the hyperplane Q LL\ • Lm_2 passes through the

points L, L],..., Lm-2. Now, we intersect with the hyperplane Q ^ Pm~2.

Notice that L is contained in the (m — 2)-simplex Q P a and the hyperplane
Q fl P in Q does not meet Q P a. Further, the simplex Q P a has vertices

L1,..., Lm—2, Q n Lm—\ Lm. Moreover, (Lj,..., Lm—2, Q P Lm—1 Lm) and

(L, Q P P) are in general position in Q s Pm_2.6 Thus, we can apply the

inductive hypothesis to conclude the spheres S(L 1,..., Lm-2, Qf)Lm-iLm)
and S(L, Q n P) link in 5(0).

Simp Simpl

Figure 4.

6The third general position condition is a consequence ot the fact that L is contained in the (m
simplex Q fl a while the hyperplane Q fl P does not meet the simplex Q Cla

-2)-
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4.1. An arrangement of intersections. Using Proposition 4.1 it is easy to construct
a pattern X\ Xn, Y\,..., Yn of flats Xj and copies of (SLm_i R/ SO(w — 1)) x
R denoted Tj, for which A, intersects Y/ if and only if / < j. One such pattern (with
N 4) is indicated in Figure 1. We draw the ball model of projective space Pm_1,
with points on the boundary of the ball identified via the antipodal map. The right
picture is obtained from the left picture via rotations by a fixed amount. To get the

required pattern for a general N one starts with a sufficiently thin geodesic (m — 1)-

simplex /USimp and uses a small enough rotation.

5. Elements defined over Q

Everything we've done so far has been in the symmetric space SLm R/ SO(m). The
rational structure has not yet entered the picture. It starts to play a role when one
tries to understand how the spaces X and Y project to arithmetic quotients of the

symmetric space.

Rational flats. Let r e SL,„ Q be an element with m distinct real eigenvalues, and
denote its minset by AA It is a totally geodesic submanifold of H. The centralizer
Ct(R) s (R*)m_1 acts transitively on the minset by orientation preserving
isometries. The group of all isometries preserving the minset Sy(R) := {g
SLm R | gX X] is the semidirect product Cr(R) x Sm of the centralizer with
the symmetric group on m letters (the symmetric group permutes the eigenspaces
°f r.) Let T < SL,„ Z be a finite index torsionfree subgroup and denote by
Ex := T n Sx(R) the group of all isometries in T preserving the flat X. The

following lemma shows that after passing to a deep enough congruence subgroup
we can assume that all isometries of Fx commute with r.
Lemma 5.1. Fix a prime p. Then Tx(p") C CX(W) for sufficiently large n.

Proof. Let Ai,..., A„, be the eigenvalues of r and K := Q(Ai Xm) the field
obtained by adjoining those eigenvalues. The group S\(K) is SLm /(-conjugate to

x sm. where the (A*)'"-1 consists of determinant one diagonal matrices
and the symmetric group Sm is represented by permutation matrices. From this it
follows that Sx(K) decomposes into CX(K)-cosets

Sx(K) CX(K) U Cx(K)y\ U • U Cx{K)yr.

w'th the matrices y, being conjugates of the permutation matrices, i.e. lying in
SLW K. Let Kp \= Q^CAi Am) be the /;-adic completion. Note that the non-
identity cosets lie in the closed subset

r

6 SL,„ Kp | [xy~\i] 1}.

/ 1
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of SLm Kp. This subset does not contain 1 since [y,r\r] ^ 1, so there is a

small p-adic neighborhood of the identity U(pn) where all elements from Sx(K)
commute with r i.e.

rx(p") rxn u(Pn) c sx(K) n u(P") c cr(R).

Since r is a matrix with entries in Q, the image of X in H/ T is an isometrically
immersed (in — 1 )-dimensional flat. (See Theorem D in [8] for a proof of this.) Let

Pr(t) det(t — r) be the characteristic polynomial. The following is a special case

of a theorem of Prasad and Raghunathan in [5|:

Proposition 5.2. Suppose r e SLm Q has in distinct real eigenvalues and
irreducible characteristic polynomial. Then X/ Tx is compact and finitely covered

by a (m — 1 )-dimensional torus Tm_1.

Rational copies of (SLm_i R/ SO(m — 1)) x R. Now, let p e GLm Q be

a diagonalizeable matrix with eigenvalues (—1,...,—1, 1). Then the centralizer

CP(R) GLm_i R acts on the minset Y ^ SL,„_i R/ SO(m -l))xK of p, and the

quotient Y/ Ty is a properly immersed submanifold of H/ T. (Theorem D in [8].) In
this case the group SY(R) of isometries preserving Y is just the centralizer CP(R).
Note that CP(R) S GLm_[ R has two components. If in is even, then the entire
centralizer preserves the orientation of Y, but if in is odd, then the elements not
in the identity component do not preserve the orientation of Y. The eigenspaces

of p are a (rational!) line L and a hyperplane P. Whether or not an element

preserves orientation can be determined by its action on the line L. (This is noted

in the discussion after Corollary 2.4 of [2].) Let y CP(Z) be an element in the

centralizer with integer entries. Then 1 det(y) det(y |/,)det(y |/>) and since y
has integer entries we must have y |^= ±1. Further, the element y preserves
orientations precisely when we have + signs, i.e. dety |/-= dety |l= 1. Let
0 / r e Lz c c Qm be a non-zero vector with integer entries. Then, yv ±v.
For sufficiently large n we have v — v in the quotient Lz/P" C (Z/pn)m so that
the subgroup Vy(p") which acts trivially on Li/pn must preserve the orientation
of Y.

Embeddings vs immersions. A result of Raghunathan (Theorem E in |8J) shows

that we can always find a positive integer Kq such that for K > K0 the maps

X/YX(K) —> H/ V(K) and Y/ Ty (K) -> H/ T(A') are embeddings. Thus, we can

replace the group T by the congruence subgroup T(/?"), p" > K0 to make sure that

the quotients X/Vx(pn) and Y/ry(pn) are embedded in the quotient H/T{p").
We remark that this is the same as saying that V(pn)X is a disjoint union of copies
of X in H, and Y{pn)Y is a disjoint union of copies of Y in H.

We summarize the conclusions of this section in the following proposition, and

add an extra bullet. The notations are the same as the ones used throughout the

section.
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Proposition 5.3. Let p be a prime. Then for sufficiently large n,

• Y(p")X is a disjoint union of copies of X and Y(p")Y is a disjoint union of
copies of Y.

• The subgroup Yx (p") centralizes x and the subgroup Yy{pn) centralizes p.

• There are Y{p")-invariant orientations on Y(p")X and Y{p")Y.

Proof. Everything except lor the third point has already been proved in the section
above. Further, we've shown that Vy(p") preserves an orientation on Y for large
enough n. For such n we can—starting with an orientation Y+ of Y—define a

T(//n)-invariant orientation on Y(p")Y by {yY)+ yY+ for y e Yy(p").
For large enough n, the group (/?") is contained in the centralizer Cr(R), and

this centralizer preserves an orientation on X. Hence, we can define an invariant
orientation on Y(pn)X in the same way as for Y.

6. Rational intersection patterns

In Subsection 4.1 we described a certain intersection pattern {V,-. T,}^ involving
finitely many flats and copies (SF,„_i R/ SO(/n - l))xR. In this section we explain
how to get the same intersection pattern using using rational flats that are compact in
the quotient, and copies of (SF,„_i R/ SO(m — 1)) x R that are defined over Q.

Intersection patterns are preserved by small perturbations. From the description

of intersections between V, and Y, given Proposition 4.1, it is clear that an
intersection pattern does not change when V, is perturbed to a nearby flat XI, (so the

«/-tuple of eigenspaces is perturbed slightly). Similarly, the intersection pattern does
not change when Yj is perturbed to a nearby Y- (so the line-hyperplane pair (L, P)
's perturbed slightly).

Small rational perturbations of X and Y exist. Note that the SLm Q-orbit of
transverse///-tuple {L\ Lm) is dense in the space of all such triples. In particular
'et r be an element with in distinct real eigenvalues and irreducible characteristic
Polynomial. The orbit of the /»-tuple of eigenspaces of r is dense. Thus, any flat X
has arbitrarily small perturbations whose quotients are compact (m — l)-dimensional
to"- Similarly, the rational line-hyperplane pairs are dense in the space of all
such pairs, so Y has arbitrarily small perturbations whose quotients are properly
immersed.

Putting these two observations together with the intersection pattern described in
Subsection 4.1, we get the following
Proposition 6.1. There are rational flats {X, whose quotients Xj/Yx, are
t0'npact and rational copies of(SL,„_| R/ SO(//; — 1)) x R denoted whose
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quotients Yj/ Yyi are properly immersed in H/ V such that Xj intersects Yj if and

only ifi < j. Further, all the intersections of the Xj and the Yj are transverse.

7. Pushing intersection patterns down to a congruence cover

The goal of this section is to show that the intersection pattern described in

Proposition 6.1 can be pushed down to appropriate congruence covers. Once this is

done, we will be able to conclude that the submanifolds involved in the intersection

pattern give nontrivial homology cycles in those congruence covers. Our method is

to "make intersections more similar to each other" by passing to congruence covers.

Theorem 7.1. Let p he a prime. Suppose that x SLm Q is a matrix with in distinct
real eigenvalues and irreducible characteristic polynomial, while p GLm Q is a

diagonalizable matrix with eigenvalues (— 1,..., — 1, 1). Let X and Y be the minsets

of x and p, respectively. Suppose further that we have the following "genericity"
condition

(t) The only solutions to the system of equations px xp, xx xx are the

scalar matrices1.

Then

(1) If X and Y intersect transversely in a single point z G H, then for sufficiently
large n the quotients X/ Vx(pn) and Y/Yy{pn) are embedded, orientable

submanifolds, all their intersections in H/ Y(pn) are transverse and have the

same sign.

(2) If X and Y are disjoint then for sufficiently large n the quotients X/ Yx(pn)
and Y/Yy{pn) are disjoint in H/Y(pn).

8. Proof of theorem 7.1

Proposition 5.3 shows that, replacing T by a sufficiently deep congruence subgroup

Y(pn) if necessary, we may assume TA" is a disjoint union of copies X, equipped
with a T-invariant orientation (so that if X+ is the oriented fiat then (yX)+ yX+
for all ye Tjand T* C Cr(l), i.e. all elements of T preserving the flat X commute
with the element r. Similarly for the subspace Y. Then, the quotient X/Yx is a

compact oriented submanifold of H/ Y and Y/Yy is a closed oriented submanifold
of H/Y. The intersection of these two submanifolds has finitely many components,
and each of these components corresponds to a Yy-orbit of components in YX (TT.
Our goal in this proof will be to show that if we replace Y by a sufficiently deep

'Note that this is a linear system of equations with rational coetlicients, so it is equivalent over K, Q

orQ„.
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congruence subgroup T(p"), then all the intersections T(p")X n Y have a very
special type.

Claim. There is n (depending only on the pair of elements r, p £ SLm Q and the

prime p) such that for any y £ Y(p"), either

• yX and Y don't intersect, or

• y factors as a product y ab where a £ CP(Q) preserves Y and the

orientation on Y and b £ CT(Q) preserves X and the orientation on X.

Given this claim, we get

yx+ n y+ abx+ nf+ aX+ n Y+ a(X+ n«_1y+) a(X+ n Y+).

This means all the intersections are transverse and have the same sign as the
intersection X+ fl Y+ (since a(X+ n Y +) is a shifted version of the transverse
intersection X+ fl F+ and the shift a £ SLm Q preserves the orientation of the

entire symmetric space H.) This implies the first part of the theorem. Further, it
means that if X and Y do not intersect, then yX and Y do not intersect. This gives
the second part of the theorem.

We prove the claim in four steps.

(1) (Reduction to p-adic centralizers) There is an n (depending on the pair r, p
and the prime p) such that for any y £ r(p") if yX and Y intersect then y
can be expressed as a product y a'b' where a' £ CP(ZP) and b' £ CX(ZP).

(2) (A linear algebraic lemma) There are rational matrices a,b £ GLm Q and a

scalar c £ Qp such that a ca' and b c~]b'.

(3) (Product lemma) The product of centralizers CP(ZP)CT(ZP) is finitely cov¬

ered by the Cartesian product CP(ZP) x Cr(Zp).

(4) If n was taken to be sufficiently large (again, depending only on r, p and p)
then for any y £ T(p") there are rational matrices of determinant one a £

CP(Q) and b £ Cr(Q), such that y ah, a preserves the orientation of Y

and b preserves the orientation of X.

Recall that the quotient X/ Tjy is compact (by Proposition 5.2), so the intersection
of Ayr* and Y/Yy in H/ T has finitely many components. Consequently, the flats
111 TA" that intersect Y break up into finitely many Ty-orbits which we will denote

by{rYy,-V}f=0,y; eSLmz.

Step l. We begin with several remarks about the p-adic centralizers CP(ZP) and

Cr(Zp). Roughly, one can think of these centralizers as the "p-adically closed
Versions of Ty and T*", respectively.
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• The centralizers CT(ZP) and CT(ZP) are compact in the p-adic topology, so

their product CP(ZP)CT(ZP) is also compact. Moreover, the groups and

Ty consist of integer matrices that commute with r and p, respectively, so

Ty Ty is contained in Cp(Zp)CT(Zp).
• If an element p e SLm Z is not contained in the closed set CP(ZP)CT(ZP)

then a small enough p-adic neighborhood of y misses this closed set, and

hence also misses the product IVTx- In other words, T(pn)y n TyTA* 0

for large enough /;.

Lemma 8.1. //T(/;")y (TTy T^- Q then none of the flats VyyX occur in Y(p")X.

Proof. Suppose there are elements a £ Yy and c £ T(p") such that ayX cX.
Then a(a~lc~,a)yX X which means a(a~lc~1a)y =: b is an element of T^-.
The equation (a~lc~la)y a~xb shows that T(p")p IT TyTA- ^ 0, which is a

contradiction.

Now, pick an n so that for every y, Cp{Zp)Cz{Zp) we have T{pn)yiY\YyTx 0-

If y £ T(p") and the flat yX intersects Y, then it must have the form ay,X with
a Ty and y, CP(ZP)CT(ZP). So y ay,b for some b £ Ta-, which implies
that y is in the product of centralizers CP(ZP)CT(ZP). This completes the proof of
Step 1.

Remark 8.2. It is easy to check that T(pn)y IT Tyr^ 0 <=>• T(pn) D

rry^x 0. So we get the following interpretation: If the double coset I>
premisses a p-adic neighborhood of the identity T(p"), then the flats TyyX do not

appear in T(p")X. We will use this later in Step 4.

Above in Figure 5 is a (very) heuristic p-adic picture illustrating Step 1.

The double cosets {Cp(Zp)yiCT(Zp)}^=0 are all compact and locally look like
products8. A small enough p-adic neighborhood of the identity T(p") intersects

CP(ZP)CT(Zp) and does not meet any of the other (finitely many) non-identity
double cosets.

Step 2. The following linear algebraic lemma lets us go from matrices over Zp back

to ordinary rational matrices (over Q), at the expense of allowing the determinants

to vary.

Lemma 8.3. If y a'b' where a' £ Cp(Zp) and b' £ Cr(Zp) then there are
rational matrices a.b £ GLm Q and a scalar c £ Qp such that a ca', b c~lb'.

Proof. The element a' satisfies the equations [a', r] [p, r] and [a', p] 1. These

equations can be rewritten as

a'z [p, z]xa\
a'p pa'.

(8.1)

(8.2)

8We will prove this local product structure in Step 3 and use it in Step 4.
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P

Figure 5.

These equations are linear homogeneous in the matrix entries of a' and are defined
over Q (since y, r, and p are defined over Q). If they have a /7-adic solution a' of
determinant one, then they also have a rational solution a with non-zero determinant.
Moreover, it is easy to check that a~la' commutes with both p and r, so by the

genericity condition it is a scalar matrix9, which means a ca' for some constant
c 6 Q/>- Take b a~xy.

Step 3. In this step we relate the product of centralizers to their Cartesian product.
This will make it a bit easier to separate a double coset Ty y(- Tx from a small /?-adic
neighborhood of the identity in the next (last) step.

Let p := {v e Qp \ v'" 1} be the group of /n-th roots of unity in Qp.
Since these roots of unity have finite order, they all actually lie in Zp. The genericity
condition (t) says the only matrices that commute with both p and r are the scalar
matrices. These matrices have determinant one precisely if the scalar is an w-th root
of unity. In other words, the intersection of centralizers Cp(Zp) (T Cr(Zp) is the

group ß.

Lemma 8.4. The map

CP(ZP) x Cr(Zp) -> Cp(Zp)Cx(Zp),

(.v.y) i-> .vy,

ls a finite sheeted regular cover with covering group p acting via v (x, y
(v.v, y~'y).

9ln other words, the genericity condition implies the vector space of solutions is one-dimensional.
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Proof. Condition (t) implies that the map in the statement of the lemma is finite-to-
one and its fibers are the /r-orbits. Quotienting out by p, we get a map

(CP(ZP) x CX{ZP))/p —r Cp(Zp)CT(Zp).

This map is a continuous bijection of compact Hausdorff spaces, so it is a

homeomorphism10. On the other hand, the group p acts on the Cartesian product
Cp(Zp) x CT(ZP) by covering translations11 so CP(ZP) x CX(ZP) —> (CP(ZP) x

Cx(Zp))/p is a finite sheeted regular cover.

Step 4. The following lemma completes the proof of the main claim. The main point
of the lemma is to look at how matrices commuting with p act on the 1-eigenspace L
of p and throw away the intersection by passing to a finite cover if L gets rescaled in

a non-trivial way.

Lemma 8.5. For sufficiently large n, all the flats in Y(pn)X which intersect Y are

of the form ahX where a G CP(Q), h G Cr(Q), a preserves the orientation of Y

and b preserves the orientation of X.

Proof For y, CP(ZP)CX(ZP), let y, ab a'b', and a ca' as in linear

algebra lemma, and look at how the rational matrix a acts on the line L. Pick a nonzero

vector 0 / i) 6 Lq and note that av kv for some k e Q. Also, recall that

the group Ty consists of integer matrices preserving the orientation of Y, so that

Ty v v. Thus

Yya'v ryac~1v kc~xv.

• If kc~x p. then Ty«' fl pU(p") 0 for a sufficiently small, p-adic
neighborhood pU(pn) of the group p. Thus, the product Yyu' x b'Yg
misses the ^-invariant neighborhood of the identity pU(pn) x CT(Zp) in the

Cartesian product CP{ZP) x CT(ZP) and consequently its image rya'bTx
YyYiYx misses the neighborhood of the identity U(p")Cx(Zp) in the product
CP{ZP)CX(ZP). This means Y{p") CI Tyy, T* 0 for sufficiently large n.
For such the fiats Ty y, X do not appear in T(p")X.

• On the other hand, if kc~' v for some m-\h root of unity v e Qp then

a ca' a'
k cv v

is a rational matrix with determinant det(a'/v) 1. In other words, afk e

CP(Q). Similarly, kb e CX(Q). Moreover a/k preserves the orientation of Y

because (a/k)v v and kb preserves the orientation of X since it lies in the

centralizer of r.
10But not a group homomorphism The right hand side isn't even a group.
"Officially, it acts freed, properly discontimioush.
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In conclusion, since there are only finitely many y,, we can pick n sufficiently large
so that every flat in Y (p")X that intersects Y is of the form described in the statement
of the Lemma. This completes the proof of the Lemma and thus also the proof of the
main Claim.

Proof of Theorem 1.2

The condition (t) saying that the only solutions to xt zx,xp px are scalar
matrices is satisfied whenever the collection of eigenspaces (Li,..., Lm) of r and
the line-hyperplane pair (L, P) of p are in general position.

Let X\,. ..,Xn and Y\,..., be the subspaces obtained in Proposition 6.1.
The eigenspaces of Xj and line-hyperplane pairs of Y} are in general position, so

we can apply Theorem 7.1 and find n0 such that for n > no the quotients Xj
Xj/rx.ip^mdYj YJTYSP")

• are embedded orientable manifolds,

• Xt and Yj intersect

• all the intersections of Xt and F, are transverse and have the same sign,

• X, and Yj do not intersect for / > j.
This means the intersection matrix is upper triangular with non-zero diagonal entries.

Consequently, it is a non-degenerate N x N matrix, which means the flats Xj span
an N-dimensional subspace of Hm-\(H/ Y(p"): Q).

9. Questions

We end the paper by mentioning some questions related to the results of this paper.

• (Other symmetric spaces) Maximal periodic flats can be found in any locally
symmetric space. For which symmetric spaces do they give non-trivial
rational homology classes? An argument analogous to the one presented in
this paper can be performed for Hilbert modular surfaces, and we expect that
there is a common generalization to lattices of the form SLm Ok, where K
is a totally real number field. On the other hand, some lattices in complex
hyperbolic (hence real rank one) spaces have Property (T), and for these the

maximal tori are closed geodesies that do not give rationally nontrivial cycles
(since Property (T) implies H\ is torsion.)

• (Uniform lattices in SL3) There are uniform lattices in SL3 (associated to units
of division algebras) for which the only properly immersed totally geodesic
subspaces are flat tori. For these, there are no candidate complementary totally
geodesic subspaces. Do the 2-tori in these lattices give torsion homology
classes?
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• (Rates of growth) How fast does the subspace of (rational) homology
generated by maximal flat tori grow in congruence covers? This question
is especially interesting for Hilbert modular surfaces: in this case, the second

homology grow linearly in the degree of the cover. Does the space of 2-tori
also grow linearly?

• (Peripheral cycles) Do the maximal tori give homology cycles that come from
the end? If one can find complementary compact cycles that intersect these

ton non-trivially in homology, then the answer is no. In Hilbert modular
surfaces, one can intersect with complementary 2-tori, but already for the

lattice SL3 Z this question is open.
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