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Minkowski content of the set of singular points with multiplicity Q.

Mathematics Subject Classification (2010). 49Q20, 53A10, 49N60.

Keywords. Multiple-valued functions, Dirichlet energy, rectifiability, singularities, regularity.

1. Introduction

(©valued functions were introduced by Almgren in [2] in order to model branching

singularities of area minimizing currents in higher codimension. Indeed, it was first
noticed by De Giorgi in his pioneering work [6] that an area minimizing hypersurface
can be very well-approximated by the graph of a harmonic function if it is sufficiently
close (in a weak sense) to a Euclidean plane. In higher codimension, this statement is

not true anymore at points ofhigh multiplicity as it is well known that area minimizing
surfaces can have branching singularities, cf. (8, Section 5.2], Almgren introduced a

suitable notion of Dirichlet energy for functions taking a fixed number Q of values

in order to approximate efficiently area-minimizing currents in a neighborhood of a

singular point of branching type with multiplicity Q. He then showed that "harmonic"
(namely Dirichlet minimizing) (9-valued maps might be singular but the codimension

of their singular set is at least 2. In turn his monograph [2] used such regularity
property as a starting point to show that the Hausdorff dimension of the singular set

of m-dimensional area-minimizing currents is at most/?? — 2: in a nutshell Almgren's

program in [2J is a (fairly complicated) linearization procedure which reduces the

bound on the dimension of the singular set for an area minimizing current to the same

bound for the singular set of harmonic multivalued maps (cf. [7,8] for a more precise

description of Almgren's program which follows the recent approach of [9-13]).
In this note we establish a more refined regularity property for the singular set

of Dirichlet minimizing (9-valued functions on an ??7-dimensional domain, showing
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that indeed it is (m — 2)-rectifiable (and hence M'n~2 a-finite). The latter property
has already been shown by Krümmel and Wickramasekera in [21] when Q 2 and

the same authors have announced that their proof can be extended to any Q, cf. [20].
Our argument is however different, since it is based on the techniques introduced

recently by Aaron Naber and the fourth author in [24], whereas [21] draws on the

approach of Simon (cf. for instance [25]). Thus a byproduct of our proof is the

additional information that the subset of singular points with highest multiplicity has

locally finite Hausdorff (m — 2)-dimensional measure (indeed it is possible to give
an upper bound for its Minkowski (m — 2)-dimensional content). On the other hand

Krümmel and Wickramasekera, adapting the techniques of Simon, obtain different
byproducts, most notably the uniqueness of the tangent functions at JCm_2-a.e. point
and, for Q 2 and in the neighborhood of some special singular points, higher
regularity of the singular set, cf. Remark 2.7, [21, Theorem C | and [191. Of course,
in view of Almgren's program, rectifiability results might be the starting point for a

refined study of the singular set of area-minimizing currents, possibly leading to a

solution to [ 1, Problem 5.3].

Aside from applications to minimal currents, this work and the techniques

developed here to study problems with variable homogeneity can be adapted to
different topics in mathematics, see for example the recent works on free boundary
problems [15], liquid crystals [3] and Z/2 harmonic spinors [26]. We also mention
the recent works on the non-continuous singularities for <2-valued harmonic maps
in [18],

0-valued functions are simply functions taking values in the space of unordered

Q-tuples of points in R", which is denoted by -AgfR"). Following Almgren's

convention, we will denote a point T e ,Ag(R/') as T where |I't]
is the Dirac measure concentrated on P, e R". This space can be endowed with a

natural distance given by

d(T1,T2) min ^ |/x - 5ff(0|2 (1.1)

where -Pq is the group of permutations of Q elements. With this distance, Aq (E'!
is a complete metric space. For a domain £2 ç R'", the Dirichlet energy and the

space Wl,2(t2, Ag(R")) are defined in [2] following a rather involved, albeit natural,

geometric procedure (cf. [8, Section 7.3]). It has been noticed in [13] that modern

analysis in metric spaces can be used to give an intrinsic simple definition of both

objects. We refer to [2,13] for a more detailed description of the space of Q-valued
functions and Dirichlet minimizers, here we simply recall that Dirichlet minimizers
are Holder continuous functions with exponent a a(m,n, Q).
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A point i e ß is a regular point for a Q-valued Dirichlet minimizer u if there

exists a neighborhood B of x and Q harmonic functions t<(-: B -> IR" such that for
all y e B:

Q

u(y) • (1-2)

i l
and either Ui(y) f Uj(y) for all y £ B, or m Uj. The complement of regular
points are the singular points of u, denoted by Note that this set is automatically
a closed set. Moreover, the main result regarding (7-valued functions in [2] is that

the Hausdorff dimension of Eu is bounded from above by m — 2. In particular:

Theorem 1.1 ([2], and [13, Proposition 3.22]). If u is a Dirich let-min imiz iny
Q-valued function u: £2 ç R" —> AqIM"), then Su is a relatively closed subset

of LI with Hausdorff dimension no larger than m — 2.

An important subset of Eu consists of those singular points where all the values

of u(x) coincide, in other words

A q {x G Tiu s.t. u(x) Q\P\ for some P £ R"} (1.3)

By Holder regularity of the functions u, also the set Aq is closed.

The main result of this note is then the following theorem. In the rest of the paper
we will use the notation Br(E) for the open r-tubular neighborhood of the set E,
namely Br(E) {p : dist(/?, E) < r}.
Theorem 1.2. Let u : 12 c Rm -> Ag(R") be a Dirichlet minimizing function. Then

for any compact set K ofQ, JC"_2(Ag fl K) < oo, and indeed we have the stronger
Minkowski-type estimate

\Br(AQ) n K\ < C(K,u)r2, Vr < 1. (1.4)

Moreover A q is (m — 2)-countably rectifiable, namely it can be covered by countably

many C1 surfaces ofdimension m — 2, exceptfor a set of Mm~2 measure zero.

As an immediate corollary of the latter statement we obtain:

Theorem 1.3. The singular set Eu of a Dirichlet minimizer Q-valued function u is

(,m — 2)-countably rectifiable.

Acknowledgements. C. D.L. and A. M. were supported by ERC grant "Regularity
of area-minimizing currents" (306247). D. V. has been supported by SNSF grants
200021_159403/1 and PZ00P2_168006.

2. Main statements and plan of the paper

2.1. Preliminaries. Before going into details, we want to underline again that for
the reader who is inexperienced with Q-valued functions, a complete and readable
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introduction can be found in [ 13]. In what follows for the values of the function u we

will use the notation u(x) JA and Du(x) JA \Dui(x)||. We refer the
reader to LI 3] for all the conventions and terminologies.

In this section, we gather some preliminary results that will allow us to reduce our
main theorems to a simpler version. First of all, we show how Theorem 1.3 follows
from Theorem 1.2.

Proofof Theorem 1.3. The proof follows easily from an inductive argument in Q.
Indeed, for Q 1 we clearly have no singular set at all. For Q 2, the whole

singular set coincides with Aq, and thus this is a corollary of Theorem 1.2. For a

given Q * > 3 we assume by induction that the statement of the theorem holds for
all Q < Q*. We fix a Dirichlet minimizing <2*-valued map on some open set £2 and

let Eu A q* U X/M, where YJU \ A q*. Thus Y*'u is a relatively closed subset

of the open set £2' £2 \ Ag*. In particular, for all x e S'M, we have

Q*

«(*) j>], (2.1)
1=1

where at least one pair {Pt, Pj} consists of different points. By Holder continuity
of u, there exists a neighborhood B of x and two multiple valued functions u i and u2
such that Mi has Q\ values, u2 has Q2 values, Q\ + Q2 Q*Qi A 1, Qi > I,
Q2 > 1 and

u\b Mi + u2 (2.2)

Moreover, the images of ui and u2 are disjoint. Thus fl B is contained in the

union of the singular sets of u\ and u2, which are (m — 2)-rectifiable by inductive

assumption. By a straightforward covering, this implies that T.'u is (m — 2)-rectifiable
as well. Therectifiability of follows now from the (m—2)-rectifiability of Ag.

Thus, from now on we will focus just on the set of 2-P°ints Ay. Before

going further we state a useful simplification of our problem. Consider the function

r\\ -Aq (R") —> U" defined by taking the average of the g-tuple i.e.,

/ Ö X ,0
r,(T) := (2-3)

r l ' ^ i \

Note that this is a well-defined function on ^Ig(R"), since its value is independent
of the ordering in the (j-tuple T. It is useful to notice (see [13, Lemma 3.23]) that

if m is a Dirichlet-minimizer, then so is j; o u, thus in particular this is a classical
harmonic function. Moreover, see again [13, Lemma 3.23], if we introduce the map

U'(x) y>, (x) - ri o uj
i
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then u' is again a Dirichlet-minimizer, and it satisfies the additional "balancing
condition" rj o u' 0. Note that the singular points of u coincide with the singular
points of u', and thus for the purposes of this article we can assume for simplicity
and without loss of generality that rj o u 0. Note that under such assumption
A g C {x : u(x) ß[0]}. However, [13, Proposition 3.23] delivers the following
stronger information:

Theorem 2.1. If £2 ç Mm is connected and u:£2 —Ag(Mn) is a Dirichlet
minimizing map, then either u Q l'n] o u\ or A g {x : u(x) Q [Oj} and
has Hausdorff dimension at most m — 2.

Therefore we can from now on assume, without loss of generality, that the

following holds

Assumption 2.2. £2 is a convex open subset of Rm, u: —> Ag(M") is a minimizer
of the Dirichlet energy with rj o u 0 and positive Dirichlet energy. In particular

and that A g is a strict subset of Œ.

2.2. Frequency function and main steps. Theorem 1.2 will be split into two
separate steps, namely the upper Minkowski estimate (Theorem 2.5) and the

rectifiability (Theorem 2.6), proved in the last two sections. In order to state the

two steps, we need to introduce some notation and terminology.
For every z e Mm, we set vz\ Rm\{z}^S'"-1 given by vz(y) := (y — z)/\y — z |.

D(x, r) denotes the Dirichlet energy of u on the ball If (x):

J Br (x

The height function H(x, r) and Almgren's frequency function I(x, r) are defined
as

In this paper we will however mainly work with a "smoothed" version of D, H,
and /, first introduced in [12].

Definition 2.3. Let f be a Lipschitz nonincreasing function that is identically 1 on
[0, |] and identically 0 on [l,oo[. The smoothed Dirichlet, height and frequency
functions Dand 1$ are given, respectively, by

Ag {x : u(x) 0[O]} (2.4)

(2.5)

H<p(x, r) := — J \u(y)\2\y-x\ 1 f,'(Jz7ii) dy, (2.6)

(2.7)
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We also introduce

E(p(x, r) -j \dVxu{y)\2\y - x\<p'dy (2.8)

We omit x if it is the origin.

Observe that, under Assumption 2.2, from Theorem 1.1 we conclude that A g
is a set of measure zero in the ball Br(x), whenever r e and r < dist(x,
Thus H,p(x,r) is positive for every such x and r, which in turn implies that the

frequency function is well defined for all such values. In some cases we will have

to compute the above quantities for different functions u's: we will then use the

notation D^,tV(x,r), //^„(x.r) and so on to denote such dependence. The main
tool of Almgren's regularity theory and of this paper is the monotonicity of the

classical frequency function / in the variable r. Almgren's computation can be

easily extended to 1$ for any weight function 0 as in the definition above (a fact
first remarked in [12]). In particular both the classical frequency function and the

smoothed ones can be defined at r 0 by taking the limit as r \. 0.

In the rest of the paper we will often work under the following additional

assumption.

Assumption 2.4. Q, #64(0) and /0(64) < A. <f>'(t) —2 for every t e [|, 1]

and 0 otherwise.

A simple covering argument allows then to recover Theorem 1.2 from the following

theorem:

Theorem 2.5. Under the Assumptions 2.2 and 2.4 there is a constant C

C(m. n. Q, A) such that

Theorem 2.6. Under the Assumptions 2.2 and 2.4 the set Àg D ßi/s(0) is countahly
(,m — 2)-rectifiable.

Remark 2.7. The singular set A g can be further subdivided according to the

value of the frequency function /(x, 0), which must be positive at each singular x
(cf. Lemma 3.3). For Q 2 the minimal value of /(x,0) at singular points is |
and the combination of the works [21] and [19] imply the real analiticity of A2 in a

neighborhood of any such point. Moreover [19] shows the real analiticity of A2 Fl U
in any open set U for which the frequency function is constant on A2 H U.

2.3. Spines and pinching. Our proof is a nontrivial adaptation of the techniques
of [24]. In particular, the main estimates will be derived from a Reifenberg-type result
and estimates on the Jones' numbers of the sets Ag and suitable discretizations of it.

The main ingredient is again the frequency function /^. As mentioned above, for
Dirichlet minimizers I(j, is a monotone function of r. The other impotant property

/ip(Ag) n 5i/8(0)| < Cp2, Vp > o. (2.9)
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is that Iff, controls the degree of homogeneity (or approximate homogeneity) of u.
Indeed, u is homogeneous of degree a; at a point x if and only if I,/, (x,rf)
/^(x, r2) a for some r\ < r2 (in which case it turns out that r I^ix, r) is in
fact constant). If u were a classical function, its homogeneity would be equivalent to

u(x + Ap) Aau(x + p) or au(x + p) (Vu(x + p), y) (2.10)

From this formula, it is immediate to see that if u is homogeneous of the same

degree a at two points x -/ y, then automatically u is invariant with respect to the

line joining x and y. Indeed, we easily have

(Vn(p), x — y) au(p) — au(p) 0, for all p G M". (2.11)

The same conclusions hold for g-valued functions provided we introduce the correct

terminology.
If u happens to be homogeneous with respect to some points {x,} spanning

a A-dimensional subspace, then u is invariant with respect to this subspace. By
Theorem 1.1, a u which satisfies Assumption 2.2 and is invariant with respect to

an m — 1 dimensional does not exist, thus must have empty A g, thus making m — 2

the maximum number of invariant directions that allow for some singular behaviour
of u. Moreover, if u has an invariant subspace of dimension m — 2, then the singular
set Ag is either empty or it coincides with this subspace.

The monotonicity formula for /«/, gives a quantitative measurement (in an integral
sense) of how close u is to being homogeneous of degree Iq at a point x. The precise
statement can be found in Proposition 4.3. In turn this leads to the most important
estimate of the note:

Definition 2.8. Let u and (j> be as in Assumptions 2.2 and 2.4. For every x G B\ and

every 0 < s < r < 1 we let

lL/(x) := /0(x,r) - /0(x..v) (2.12)

be the "pinching" of the frequency function between the radii s and r.
Theorem 2.9 (cf. Theorem 4.2). There exist C4.2 C4.2(A,m,n, Q) > Osuchthat,

if u and <p satisfy the Assumptions 2.2 and 2.4, x\,x2 G /ii/x(0) and |xi —x2| 5 r/4,
then

\'/2 /,„4r I o'/270(z, r) - I<j,(y, r)I < C4.2 {Wr%(Xl)) ' + [W^{x2)) y\,
Vz,y G [x1;x2]. (2.13)

With the latter estimate we will be able to bound in a quantitative way the distance
between A g (T Br(x) and a carefully chosen m—2 dimensional plane hXJ for all x, r
(cf. Section 5). This, combined with an inductive covering of A g and the generalized
Reifenberg theorem proved in [24], will allow us to conclude the proof.
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2.4. Plan of the paper. The rest of the note is organized as follows:

- Section 3 gives several important bounds and identities on the smoothed frequency
function. In particular, Proposition 3.1 states the crucial monotonicity identities and

the related computations used later; Lemma 3.3 shows a fundamental e-regularity
theorem, namely that /,/,(x, r) cannot go below a certain threshold when x c Ag;
Lemma 3.4 gives useful bounds for the frequency and height function at different

points and scales.

- Section 4 gives the most important new ingredient of the paper, namely it proves
Theorem 2.9. Similar estimates are a fundamental starting point for the results of [24]
on the rectifiability of the singular set for harmonic maps and are a direct consequence
of the monotonicity formula. In our framework the proof is instead rather nontrivial.

- Proposition 4.2 is used in Section 5 to show that the average of the frequency drop
at scale r with respect to a general measure p controls the (m — 2)-mean flatness

of ix, also called Jones' number ß2, cf. Proposition 5.3.

- In turn, Proposition 5.3 is combined with the Reifenberg-type methods developed
in [24] to prove the Minkowski bound of Theorem 2.5.

- Finally, the Minkowski bounds and Proposition 5.3 allows a suitable estimate of
average of the Jones' number of the measure Mm~2 L Ag: the results of [24] and

of [4] characterize the rectifiability of p. in terms of such average and imply therefore

directly Theorem 2.6.

3. Smoothed frequency function and relevant identities

3.1. Properties of the frequency function. We recall next the monotonicity identity
for the smoothed frequency function, which is the counterpart of the monotonicity of
Almgren's "classical" frequency function /, cf. [13, Eq. (3.48)]. The monotonicity
of I,/, is contained in the arguments of [12], but since this is not explicitly mentioned

there, we provide here the relevant statements and the short proof. Moreover we
will differentiate the functions also in the variable x. We summarize the relevant

identities in the following Proposition.

Proposition 3.1. Under Assumption 2.2 we have that the functions D^, H^, and 1$

are C1 in both variables. Moreover the following identities hold:

1 c
D(/)(x, r) — / (p'{^~^j^'dVxUi{y) ui(y)dy,

* i — 1i — 1

(3.1)

(3.2)

9„D0(r,x) -~ f ^(VOE^'OO ' dvUi(y)dy,
J ; — i/ 1

(3.3)
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f7l — 1

drH^ix, r) //0(x, r) + 2D0(x, r), (3.4)
r

r Q

9„i/0(x,r) -2 / <p'{^y^\y ~ x\~l^2,Ui{y)-dvUi{y)dy (3.5)
J i=l

In particular both /0 (x, r) and r ]~m Hp(x. r) are nondecrea,sing functions of r and

we have the following identities

9r/0(x,r) 2—— (//0(x,r) £0(x, r) - r2D0(x, r)2) >0 (3.6)
f*1 (f) 5 f

s1~mH(/)(x,s) r1_m//0(x,r)exp ^-2^ 70(x,f)y-^- (3.7)

Remark 3.2. Note that by letting </; f l[o,t[ we recover corresponding statements

for the classical Dirichlet, height and frequency functions, at the price of a loss of
smoothness: some of the identities are, in particular, true in a suitable a.e, sense.

A particularly useful inequality that is instead valid for every x, .v and r is the

monotonicity

.v1_m//(x, s) < rl~mH{x, r). V0 < s < r < dist(x, 3£2). (3.8)

Proof First of all we can assume, without loss of generality that cp is smooth: indeed

in this case

• the smoothness of /0 in r is an obvious consequence of the smoothness of 0;
• the smoothness of /0 in x follows from the usual fact that the convolution of a

smooth kernel with an integrable function is smooth.

After having established the above identities for <p smooth we can approximate any
Lipschitz test with a sequence of bounded (pk that are smooth, have uniformly bounded
derivatives and converge strongly in Wl,p for every p < oc. It is then easy to see that
dv Dçk and 9r //0A converge uniformly and to conclude in the limit the corresponding
formulae. As already noticed 7/0 is positive and thus l,p is also C1.

(3.1) follows from testing [13, Eq. (3.5)] with the map

f(y,u) := (pi^y^u

Differentiating in r we get

3 rDt(x.r) -f \D«(y)\2

Testing [13, Eq. (3.3)] with the vector field

<p(y) -x)
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we obtain (3.2). Similarly, differentiating in x we achieve

3vD^{x,r) j \Du(y)\2<p' v dy

and from the latter we derive (3.3) testing (13, Eq. (3.3)] with the vector field

<0(3>)

Changing variables in the integral we rewrite the formula for the height in two
different ways

H^x, r) — f \u(x + z)\2\z\~l(j)'dz
J

r (3.9)

-^=r J +

Next, since m is a continuous ff1'2 map and «Ag(M") 3 P -> |F|2 Pi is a

locally Lipschitz map, \u\2 is indeed a tfj,')2 map. Moreover the chain rule formulae
[13, Proposition 1.12] imply

dv\u\2(y) 2^Ui(y)dvUi(y). (3.10)
i

We thus differentiate the first integral in (3.9) in v and the second integral in (3.9)
in r to get

dvH<p(x, r) -2 I \z\~l<p'(jf) Y. dyUjjx + z) Uj(x + z) dz, (3.11)
i

m — 1

3rH^{x,r) H,p(x, r)
r

/ l£rV(l£l)J23ïu'(x+ rÇ)-ui(x + r0dl;

(3.12)

Changing the integration variable back to y in (3.11) we achieve (3.5). Changing
variable in (3.12) we get

drH^(x,r) r^-^-H<j)(x,r)-2 J dvxui(y) fo(j) dy
i

and hence we conclude (3.4) from (3.1).



Vol. 93 (2018) Rectifiability of the singular set of Q-maps 747

The expression for 3r/0(x, r) in (3.6) is an obvious consequence of (3.2) and (3.4),
whereas such expression turns out to be nonnegative using (3.1) and the Cauchy-
Schwartz inequality:

2

r2Z)0(x,r) -4>'(^-^jY^3VxUi(y)-Ui(y)dy

< f _x|-i ^ \Ui(y)\2dy
i

E \dVxUi(y)\2 dy

H<t>(x,r)E(t>{x,r).

Note that the assumption —</>' > 0 is used crucially only in the inequality above.

Finally, we can rewrite (3.4) as

a drHt(x,r) m-I D,p(x,r) 2
8, log (r Ht(x, r>)— - -/»(*,

Integrating the latter identity we achieve (3.7) and the monotonicity of r ' ~m H^fx, r)
follows from the positivity of 1$.

3.2. e-regularity. The following lemma is, loosely speaking, an e-regularity theorem

that shows that, if the frequency is sufficiently small at a certain scale, there are

no Q-points at a slightly smaller scale.

Lemma 3.3. There is a constant 0 < n. Q < 1 with the following property.
Under Assumption 2.2,

r) < e3.i3 =>• Aq n Br/4x 0. (3.13)

Proof. Without loss of generality, we can assume x 0 and r 1. Suppose that

^>(0 < 1 and that there exists y e Aq fl Bi/4(0). By [13, Theorem 3.9], we have

the existence of constants a (m, Q) > 0 and C(m, n. Q) such that

["]co.«(fll/4) ^c(fB IDmI2)
'

- CDo(])1/2- <3-14)

In particular, since u(y) Q [0] for some y e 5i/4(0), we have

f \u\2 <cD+a).
JdB 1/4

Note next that by passing in polar coordinates we use (3.8) to derive

(3.15)

Hi(\)<C f |u|2<CD0(l).
JSBq4
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By the growth estimates (3.7), since we assumed that I(j,(\) < 1, we obtain

//*( 1) < CH+(\) < C£>0( 1), (3.16)

which immediately implies

/</>(!) > C~l e3.i3(m,n, g).

3.3. Elementary upper bounds. We now prove that the value of //^ (resp: /^) at

a point x, at a certain scale, gives a uniform upper bounds in a ball around x on the

same quantity at smaller scales.

Lemma 3.4. There exists a constant C (m, </>) with the following property. If u

satisfies Assumption 2.2, then

H+(y, p) < CH+(x, 4p), Vy £ Bp{x) C B4p(x) c fi (3.17)

< C(l^(x, 16r) + l), Vy £ Br/4(x) C Bï6r(x) C Q (3.18)

Proof. The proof is a standard computation, see for example [17, Theorem 2.2.8] in
the case of harmonic functions and for the classical frequency and height.

We first argue for (3.17) and assume, without loss of generality x — 0 and p 1.

Using (3.8) we easily see that

[ \u\2<cf \u\2, Vre]2,4[.
JB2 JdBr

Averaging the right hand side against the measure —r_1 ft(r/4) dr and passing to

polar coordinates we achieve

f \u\2 < C7/0(4).
Jb2

On the other hand, since B\(y) C B2, it is obvious that H^y, 1 < C fB^ \u\2. This
shows H<j,(y, 1) < CH,p(0,4) and completes the proof of (3.17).

We next argue for (3.18) and assume, again, x 0 and r 1. (3.17), (3.6) and

(3.7) give

H<t,(y, 4) < CH+(0,16) < Oc^(o'16)//0 (0, \) < Ceci^°'16) H^y, 1)

CH^{y, 4) exp fc7^(0,16) — 2 ^ I^y.t) y)
Since H^iy, 4) is positive, taking the logarithm we conclude

2/0(y,l)^4y <C(1 + /0(16)).
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4. Main estimate on the frequency pinching

The main goal is to prove Theorem 4.2 below: this is the essential ingredient that
allows us to use the techniques of [24] in our framework and eventually conclude the

(.m — 2)-rectifiability and Jfm_2-local finiteness of the set Aq.
Definition 4.1. Let u and (j> be as in Assumptions 2.2 and 2.4. For every x e Bi and

every 0 < s < r < 1 we let

Wsr(x) := I^x.r) - I^(x,s) (4.1)

be the "pinching" of the frequency function between the radii s and r.
The next theorem shows how the variations of the frequency in nearby points are

controlled by the pinching of the two points.

Theorem 4.2. There exist C4.2 C4.2(A, m, n. Q) > 0 such that, ifu and<p satisfy
the Assumptions 2.2 and 2.4, X\,X2 ßi/8(0) and \xi — x2| < r/4, then

|70(z,r) - 70(y,r)| < C4.2 [(Wr%(Xl))l/2 + «/8(x2))'/2]|z - y\,

Vz, y e [xi, x2\ (4.2)

A main ingredient in the proof of the theorem will also play a fundamental role
in the next estimate and for this reason we show it here.

Proposition 4.3. There exist C4.3 C4.3(A, m, n, Q) > 0 such that, ifu and <p

satisfy the Assumptions 2.2 and 2.4, then, for every x e B\/8,

L Y, \(z-x)- Dui(z)-Itj>(x, |z-x|)n,-(z)| dz < C Wys(x) (4.3)
B2(x)\B i/4(X) t

4.1. Intuition for the proof. In order to get an intuition for the theorem, we explain
briefly the underlying idea with an example. Let h be a g-valued function such that

1(0,4) — 7(0, 1 /8) 0 and 7(x, 4) — 7(x, 1/8) 0, where x e T^/^O) \ {0}. For
the sake of simplicity, one could assume here that h is actually an harmonic function,
thus smooth.

By unique continuation, we immediately get that the frequency 7 is constant for
all radia both at the origin and at x. Set 7(0,0) d and 7(x, 0) d'. Note that the

two values may a priori be different, but we want to show that this is not the case.

The monotonicity formula for 7 implies that h is a ^-homogeneous function wrt 0

and d'-homogeneous wrt x. In other words for all y e IB/"

(Du(y), y) du(y), (Du(y), y - x) d'u(y). (4.4)

By subtracting these two equations, we prove that

(Du(y), x) (d — d')u(y). (4.5)
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Consider the function f(t) log(I(tx, 1)), then naively we can make use of the

external variation formulas and write

where we used without proper justification the integration by parts for Q-valued
functions. By (4.5), we have

which in turn implies that /(0) /( 1 and so d — d'.
Theorem 4.2 is the quantitative version of this statement. For its proof, we will

use the quantitative version of (4.4), which is given in Proposition 3.1.

4.2. Proof of Proposition 4.3. Assume H# (1) 1. Using Proposition 3.1 we can

compute

uDxu
2

(4.6)

f\t) (d - d') - (d - d') 0, (4.7)

4

/ 2(xH<j>{x,x))
1

J1/4

(E^ix, x) - 2xllf){x, x)D<p(x, x) + I^x, x)2H^(x, r)) dx

£ 2(rH*(x, x))-1 f \y ~ xl"1

2(r//0(x,r))
1J-xj 1

(4.8)
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Observe that <f>' —21[1/2,i] - Hence the integrand in (4.8) vanishes outside

{^x < \y — x\ < t} and considering that the integral in x takes place on the

interval [|, 4], we can assume | < \y — x\ < 4. Next we introduce the function

£00 := ^\{y - x) Dui(y) - - x\)uiiy)^
i

and, using the observation above, the monotonicity of /0(x,-) and the triangle
inequality, we conclude

£(30 < 2Ç(y,r) + 2|/0(x, r) - 70(x, \y - x|) |\u(y)\2

<2Ç(y,x) +2Wl4/8(x)\u(y)\2

Inserting the latter inequality in (4.8) we infer

W,/4(x) > J (t//0(x,t))_1 j-4>'{^r^)\y -x\~H(y)dydr

~ 2M/,/8(x) j (t^(x,r))
1

y'-^,(Jz^i)|>'-xr1|M(y)|2r/y Jr

> ^ (xH^x^))'1 j -<p'(^^)\y-x\~lI;(y)dydx - 8H^g(x).

(4.9)
Next, using (3.18) we conclude /0(x, x) < C for every r < 4 and we can therefore

use (3.17) and (3.7) (together with //0(1) 1) to find a uniform bound from below

for //0(x, t) when r [1/4,4], Hence, from (4.9)

CH^8(x)> J £00 J -4>'(^^)\y - x\~l dx dy

=:M(y)

Since — 21[1/2,i] we can explicitly compute

2
M(y)

_
[ min {4,2\y — x|} — max {^, \y -x|}] > 21 B2(x)\Bl/4(x)(y),

Iy x\

which clearly completes the proof.

4.3. Proof of Theorem 4.2. Without loss of generality, we assume r 1 and

//0(1) 1. For simplicity, we fix the notation

W(x) := W4/g(x) 70(x,4) - 70(x, 1/8) (4.10)

and we introduce the measure

d-x -\y ~ x|-V'(|y - x|) dy
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and the vectors

Vx(y) := y-x \y- x\vx(y), v := x2 - x\

Combining (3.3) and (3.5), we deduce

3„/0(x, 1) 2H4>(x, l)"1

CMH

Svdylli ' drjxUi dflxx i(/>(x,i)J ^y^ Ui 3vUid/ix (4.11)

Let

8£j(z) := dVxfUi(z) - r^xt, \z -xt\)ui(z), fori 1,2 and / e {1,... Q}.

By linearity of the (multivalued) differential, we have

dvUi(z) Duj(z) v

Dui(z) (z — x\) — Dui(z) (z — x2)

dr,xtUi(z) - dj,X2Ui(z)

(^(xi, \z — ATI I) - I<j,(x2, |z -X2\)) Ui(z) + 8u(z) - S2,i{z).

=:g3(z)

Substituting the above expression in (4.11) we conclude that

3vI#(x, 1) 2H^{x, l)"1 J (ÊU ~ g2,i) • 3VxUi diix

=:(A)

-2 D^(x, 1)

Hfiix, 1)2 J y ' (S),( ®2,t) W(

=:(ß)

+ 2//0Lv, 1 -1 J ^Swd^UidlLx-Itix,}) J 83\u\2 d/ix

=:(C)

In order to exploit some cancellation property, we re-write 83(z) as

S3(Z) /#(*!, l)-/0(x2,l) + /^(xi, |z-xi|) -/^(xi, 1)

:=e

(4.12)

:=g4(z)

- [/^(x2, |z-x2|) - /0(X2, 1)] • (4.13)

:=gs(z)
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Note first that jix is supported in Bi (x) \ B\/2{x), thus \ < |z — x\ < 1. Note

moreover that, if x belongs to the segment [xi,X2], then |x — x^| < -4
and thus we

conclude that \ <\z — xi\ <2.
Thus we conclude

|S4(z)| + |S5(z)| < W(xi) + W(x2), Vz spt(//x), Vx [xi,x2\. (4.14)

Moreover, notice that

J 8 y^Ujd^Uj Uj djix - I„Ax, 1) J 8\u\2d/xx
i

— 8 j* ^ ^ Uj Uj ' Uj d[xx D(j)(x, 1

8\~ j ^'(1 y ~ X\)^2,'dvxui{y) ui(y) dy - d^x, i) (3=Po.

This equation is the equivalent of (4.7), where 8 plays the role of (d — d'). Thus we
obtain

(C) < [W(X]) + W(x2)]2Hi/>(x, l)"1 / [\u\2 + \u\\Du\\diix

<[W(Xl) + W(x2)]2H4>(x,\)-1(2H<p(x,i) + J\Du\2d^
< [W(Xl) + W(x2)]4(\ +CH<p(X, 1)"1D0(x,2)),

where the constant C depends on </>. By (3.18) we have /^(x, 4) < C(m, (j), A) and

thus, using (3.7),

//0(x,l)"1D0(x,2) < C//0(x,2)///0(x,l) < C.

We have thus concluded (C) < C(fV(xi) + W(x2)).
Coming to (A) observe that, using Cauchy-Schwartz

(A)2 <4//0(x, l)"2 f -82J\2dßx f ^2\dVxUj\2dn,x

f
1 1

(4.15)
< 4H(f>(x,ir2 I lgi,i - ë2,i\2dixx J \Du\2d/ix

i
Next, using (3.18) we conclude /,/,(x, r) < C for every r < 4 and we can therefore

use (3.17) and (3.7) (together with 7/0(0,1) 1) to find a uniform bound from below
for 7/0(x, r) when r e [1/4,4]. Thus, arguing as above we conclude

104)1 <c(/ Ç(|êU|2 + l82,i\2)d/ixy (4.16)

The same bound is obviously valid for |(Z?)| as well, following the same arguments.
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Thus in particular we obtain

BvI^(x,\) < C(W(Xl) + W(x2)) + C^J Y^{\Su\2 + \82,i\2)dßx^
'

(4.17)

Let xt := tx\ + 1 — fx2. We next wish to establish the estimate

J2\^,i\2d^xr <CW(xe), (4.18)/
which clearly would complete the proof. If we introduce the function

&00:=£|S<,,-|200

we can write

J \8t,i\2d^xt J -<P'{\y-xt\)\y-xt\~l U(y)dy.

.m(y)

Observe next that 0 < — |y — xt\~x <f>'(\y — xt\) < 4 and thus m(y) < 4. Recall that

4>'(s) vanishes when s < \ and .v > 1. Hence we can assume \ < \y — xt\ < 1.

On the other hand \xt — xi\ < \ for every t e [0,1], hence \ < \y — xt\ < | and

so m(y) < 41ß2(X)\ß1/4(X)(y). Therefore (4.18) follows from Proposition 4.3. We

thus conclude the pointwise estimate

dvI<p(x' 0 - C(W(xi) + W{x2)), Vx e [xi,x2].

Indeed reversing the role of x\ and x2 we then conclude

13„/*(x, 1)| < C(W(x1) + W(x2)), Vx 6 [x!,x2].

Integrating the last inequality between any two given points in the segment [x\, x2]
we derive the desired estimate.

5. L 2 -best approximation

Here we prove some distortion bounds in the spirit of [24], We use the standard

notation dist(v, A) := infx6yi \y — x|.
Definition 5.1. Given a Radon measure ji in Em and k t JO, I m — 1}, for every
x G ROT and for every r > 0, we define the /eth mean flatness of ji in the ball Br(x)
as

D 4(x, r) := inf r~k~2 f dist(y, L)2 d/x(v), (5.1)
L JBr{x)

where the infimum is taken among all affine /e-dimensional planes L C Em.
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Remark 5.2. In the literature DkL is often called the Jones' ß2 number of dimension k

(see for example [4,5]). For the aim of this article, we will not need to use any ßp
for /? / 2, this is why we use this different notation.

The following is an elementary characterization of the mean flatness. Letx0 e Rm

and /•() > 0 be such that /x(ßro(xo)) > 0, and let us denote by xX(hr0 the barycenter
of /x in Br(xo), i.e.

:= u(R \Y v, f xd/x(x)
/x(ßro(x0))

and let b: Mm x Mm —> M be the symmetric positive semi-definite bilinear form given
by

b(v,w):= ((x — xXQs0) • v) ((x — xXo>r()) • w) dfi(x), Wv,weRm.
JBro(xo)

By standard linear algebra results there exists an orthonormal basis of vectors in Rm

that diagonalizes the form h: namely, there is {rq,..., vm} c Rm (in general not

unique) such that

(i) {i>i,..., vm} is an orthonormal basis: i.e. u, • vj Sjj;

(ii) b(vi,Vj) Xi, for some 0 < Xm < Am_i < ••• < X\ and h{vi,vj) 0

for i /- j.
Note that, in particular, by simple manipulations, the following identities hold:

/ ((x - xXi)M)) Vi) x d/x(x) XiVi, V i 1 m. (5.2)
>' M(x())

The Ath mean flatness of a measure /x, as well as the optimal planes L in

Definition 5.1, can be then characterized in the following way: let x0 e Mm and

r0 > 0 be such that /x(5ro(xo)) > 0, then

m

Dk(xo,r0) tk~2 Xl (5-3)
/ —k +1

and the infimum in the definition of Dkß is reached by all the affine planes L +
Span{ui Vk) for every choice of an eigenbasis v\,...,vm with nonincreasing
eigenvalues Ai > A2 > •• • > Xm.

The main point of this section is that, if u is as in Assumptions 2.2 and 2.4 and /x
is a measure concentrated on the set Ag, its (m — 2)th mean flatness is controlled by
the pinching W.
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Proposition 5.3. Under the Assumptions 2.2 and2.4, there exists Cs_j(A,m, n, Q) >
0 .such that the following holds. If fi is a finite nonnegative Radon measure with

spt (/z) C A q, then

for every x0 G Bi/s andfor all r G (0, 1],

The proposition will need the following corollary of Almgren's regularity theory.

Lemma 5.4. Let £2 c W" he a connected open set and u: £2 —> Aq(R") a Dir-
minimizer. Assume there is a hall Bp(p) C £2 and a system ofcoordinates x\,..., xm

for which the restriction ofu to Br( p) is a function of the variable X\ only. Then ü
is a function of the variable X\ only on £2.

Proof. The lemma is a simple consequence of the unique continuation for harmonic
functions when <2 1: moreover, it follows easily from the condition Aa 0 that

any harmonic function on a ball Bp(p) that depends only on the variable Xj takes the

form a(x) ax\ + h for some constants a and h. Recalling [ 13, Theorem 0.1 ], there

is a (relatively closed) singular set S C £2 of Hausdorff dimension at most m — 2

such that, locally on £2 \ S, the map ü is the superposition of Q classical harmonic
sheets. Since S does not disconnect £2 we can use the classical theory of harmonic
functions to conclude that each such sheet can be written locally as ax\ + h for
constants a and h. We then easily conclude that ü is the superposition of harmonic
sheets globally on £2 \ S, each taking the form aç>x\ + bç> for a choice a\,... ,uq,
h\ bç of constant vectors in E". This completes the proof.

ProofofProposition 5.3. By scale-invariance, we can assume r 1 and I(j, (0, 1 1.

Without loss of generality we assume that p(B\/fi) > 0 (otherwise the inequality is

obvious) which implies

From now on any constant that depends on A,m,n and Q will be simply denoted

by C. Let x xX() be the barycenter of p in Bi/8(x0), and let {tq,..., vm} be

any diagonalizing basis for the bilinear form h introduced above with eigenvalues
0 5 < Am—i < ••• < Ai. From (5.2) and the definition of barycenter we
also deduce that, for every / I..... rn, for every i 1,... ,Q and for every
z G B3/2(x0) \ Bi/2(xo), we have

(5.4)

Ap n Äi/g / 0 (5.5)

(5.7)
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By squaring the two sides of (5.6) and summing in i we get

|3„yw(z)|2 < / E |(x — x) • vj [|(z — x) • Duj(z) — auj(z) \ d/x(x)|
\Jb1/8(x0) i

< f y] ((x-x) • u7)2d/r(x)
JB1/8 (xq)

'jBi/8(XO)
|(z — x) • Dui(z) — a Ui(z)\ dfi(x)

—

»1/8 (*()) ,•

from which we conclude

L
/ E I(z — x) • Dm, (z)-gMj(z)I d^t(x)

Xj\dVj w(z)|2 < f E |(z — x) • Dui(z) — a M;(z)|2 dyt(x). (5.8)
JBya(xo) i

Integrating with respect z E ßs/4(xo) \ /f y4(xo) and summing in y 1,..., m — 1,

we finally get

m—1

D~2(xo, 1/8) / El9v"(z)|2dz
JÂ5/4C*o)\f».3/4(-*<>) /

f X—»/ (Am-1 + Am) E |3„y.w(z)| dz
7S5/4(X0)\S3/4(X„) y_j

m—1

<2 Xm-i J2 \dvjU(z)\ dz
7ßs/4(X())\ß3/4(xo) ._J

m

<2/ y]Ay|3U/W(z)|2dz
7ß5/4rio)\ß3/4(xo) 1

5'8) f f \—^ I |2<C / / > |(z — x) • Dui(z) — a m,-(z)| dyt(x)dz
7ß5/4(x0)\ß3/4(xo) 3ßl/8(x0) J.

<C I / E I (z - x) • Diu (z)-aui (z) I2 dz d/x(x).
JB] /otxn) JBm~,(x)\B\ ,-,(x) :1/8(xo) J B3/2(x)\B]/2(X)

We next claim that

m-t
/ Ir)?J/rr(z)12 dz > c(A) > 0.

» f»5/4(X())\f»3/4 (X()) y_j
(5.10)
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Indeed, since /^(O, 1) < A, by (3.7),

IDu\2 < D0(O,4) < A//0(O,4) < CA//0(0,1) CA.
ß.

If the claim were not correct, there would be a sequence of maps uk with r)ouk =0,
uk(yk) g[0] (recall (5.5)),/ß2\Duk\2 < CA, lfBABx/2 \uk\2 l,but

L

L
m—1

j
S l9«y I dz - r •

'S5/4U"o)\ß3/4(-*•<)) y' l

for some choice of points xk, y£ in ßi/8(0) and of orthonormal vectors vk,...,
By a simple compactness argument, up to extraction of subsequences, uk would

converge to a Dir-minimizer U such that q o ü 0,

f \u\2 1 and j
J B[\B\n JBl

\Du\2 < cA
1 \&i/2

jJ B<

Moreover there would be a point p G Bi/8 and orthonormal vectors tq,..., vm-\
such that

m—1

EIM2 °-
1 B5/4(p)\B3/4(p) j — 1

Thus, there is ball Bp(q) C B2(0) over which m is a function of one variable

only. By Lemma 5.4 we conclude that 77 is a function of one variable on the whole
domain B2(0). However, since u(q) g[0]]for some q G Bi/8we conclude that

necessarily Ag has dimension at least m — 1. However ü is nontrivial and thus we
would contradict Theorem 1.1.

Next, using (5.10) and the triangular inequality in (5.9) we conclude that

D,T2(*o, I)

< C I / |(z — x) Duj{z) — /^(x, 1) Uj(z)\2 dz dp.{x)
JBi/s(xo) JB^2(x)\B 1 /2C*) l

=:(0

+ C f f (l<p(x, 1) -a)2 \u(z)\2dz d/t(x)
JBi/gCxo) ' B4/2(x)\Bin(x)

=:(!!)

Recalling our choice of a in (5.7) we can estimate the second integral easily as

2

(II) - C f (l{x, 1)
1 f /0(y, Dd/i(y)) d/x(A-)

JBl/s(xo) V 1/sUo)) JB\/s(x0) /
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c f f (70(x, 1) -/0(y, l))d/r(y)) d/z(x)
JBI/8(X») V/Möl/sUo)) JBI/s(xq)

f (/0(x, l) -/0(j, i))2d/x(j) d/z(x)
/X(%8(X0)) JB1/s(Xo) JB\/8(XO)

Thus, using Theorem 4.2 we conclude

(II) - <t)Ct
w I f (^i/bW + %(y))dp(y) d/z(x)

H(B i/8(x0)) JBl/s(xo) JBl/s(xo)
W • ' ' /

2C f W^{x)dii{x).
" B1/8 (-To)

As for the first integral, we split it as

(I)<C f f {l<t>{x, 1) - \z -x\))2\u\2dz d/z(x)
J B\ /«Un) " Bt./^(X)\B \ /o(Ai)IBi/sixo) J B3/2(x)\B\/2ix)

=:(h)

+ C / y; I (z -x) Dujjz) - 70(x, |z -x|) m,(z)|2 dz d/x(x).
^ 1/8C*o) JB3/2(x)\B\/2(x^ i

O2)

(5.12)
Observe now that, tor z in the domain of integration, and x 6 spt(/z) fl Z?!/8(0),

1/4 < \z — x\ < 4 and thus, by the monotonicity of the frequency function,

I/0(x, Iz - x|) - /0(x, 1)| < /0(x, 4) - /0(x, 1/4),

which leads to

(It) < CH<p (0, 1) f W^{x)2d^x) <C [ W)/4(x) dfi(x) (5.13)
J B1/8(•*()) JB\^(xq)

As for (I2) by Proposition 4.3

I V|(z—X). Dui(z) - /0(x, |z — x|) Ui(z)|2dz < CWy8{x).
J B^/2M\B]/2(x) t

(5.14)

Integrating the latter inequality in x and adding the estimate (5.13) we conclude

(I)<C f Wt%(X)dß(x). (5.15)
1 /8 (-*•())

The inequalities (5.11 and (5.15) clearly complete the proof of (5.4).
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6. Approximate spines

It is well known that for g-valued functions of dimension 2, Ag is discrete,
see for example |16, Corollary 3.4]. This is a consequence of the fact that if
/0(0,2) — /^(0, 1/4) is sufficiently small, then A g n (ßi(0) \ ßi/2(0)) 0. For
functions of m variables, a similar statement is true if we assume pinching of the

frequency over m — 1 points that are sufficiently spread. In this section, if A is a

subset of we denote by span A the linear subspace generated by the elements

of A (with the usual convention span 0 {0}).

Definition 6.1. Given a set of points {x,- }f=0 C Br (a we say that this set of points
are pr-linearly independent if for all f 1,..., k:

d (x,-, A'o + span {x,_i — x0 xi -x0})>pr. (6.1)

Definition 6.2. Given a set F C Br(x), we say that F rp-spans a A:-dimensional

affine subspace V if there exists {x, }f=0 ç F that are rp-linearly independent and

V x'o + span {xi — x0}.

The following simple geometric remark will play an important role in the next
section:

Remark 6.3. If a set F D Br(x) does not rp-span a &-dimensional affine subspace,
then it is contained in Bpr(L) for some (m — 3)-dimensional subspace L. The proof
is very easy, but we include it for the reader's convenience. First of all, by scaling
we can assume that r 1. Now pick the maximal k e N for which there is a set

{xo, xK} C F that p-spans a /r-dimensional affine space L. Clearly we must have

k < k but also F c BP(L): the latter is given by the maximality of k because if
there were y F \ Bp(L), then {x0 xK, y) would p-span a (jc + l)-dimensional
space.

Lemma 6.4. Let u be as in Assumptions 2.2 and 2.4. Let p, p, p e]0, 1 [ be given.
There exists an e c (m, n. Q. A. p. p.p) > 0 such that the following holds.

If {x, }/T02 C BI (0) is a set ofp-linearly independent points such that

IF-(x,) I<p(xi, 2) - I<p(xi,p) < e, Vi (6.2)

then

Ag G (ßi(0) \ Bp(V)) 0, (6.3)

where V xo + span {x, — x0 : 1 <i < m — 2}.

Under the same assumptions of the previous lemma, we also obtain that /^(x, r) is

almost constant on V if r is not much smaller than p. In fact, a suitable modification of
the proof of Theorem 4.2 leads to the following much more precise estimate when we
estimate the oscillation of the frequency function at the same scale. Since, however,
such a precise control is not needed later, we omit its proof.
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Proposition 6.5. Fix any p > 0, and consider the set

F(S) {yG ß1/8(0) s.t. W^(y) < (6.4)

If F p/ti-spans some suhspace V, then for all y, y' G V fl /i 1/32(6)

|/*0hl)-/«(/.l)| <CVS, (6.5)

where C C(A, m,n, Q, p).

Indeed we need a less precise version of such oscillation bound at all scales

between p and 1. We record the precise statement in the following lemma for which

we provide a proof later.

Lemma 6.6. Let u he as in Assumptions 2.2 and 2.4 and p, p, p e]6,1 [ he given. For
all S > 0, there exists an e e(m. n, Q. A, p.p. p. 8) > 0 such that the following
holds.

Let {xiYflq2 C B\ (0) he a set ofp-linearly independent points, and assume that

for all i :

W~(xi) 14,(Xi,2) - Itixi.p) < e (6.6)

Then for all y,y' G B\ (0) fl V andfor all r, r' G [p. 1] we have

\l<l>(y,r)- /</,(/, r')| < S. (6.7)

where V xq + span {x,- — xo : \ < i < m — 2}.

6.1. Compactness and homogeneity. The rest of the section is devoted to proving
the above lemmas. In both cases we will argue by compactness. The crucial

ingredients are the following proposition, where we show that a uniform control

upon the frequency function 14 ensures strong L2 compactness, and the subsequent

elementary lemma.

Proposition 6.7. Letuq: Br(x) —> -Aq(W he a sequence of W1 '2
maps minimizing

the Dirichlet energy with the property that

SUP (/</>,«„(x, r) + //0jM<?(x,r)) < 00.
<t

Then, up to subsequences, uq converges strongly in L2 to a map u G H7^2.

Moreover u is a local minimizes namely its restriction to any open set ß CC Br (x)
1 2

is a minimizes and the convergence is locally uniform and strong in WXa^.

Lemma 6.8. Let u: Rm — ^4>g(M") he a continuous map that is radially
homogeneous with respect to two points x\ and X2, namely there exists positive
constants oq and a2 such that

"(*) H Vx ^ Xl>
i

u(x) y [i* _x2r2M'(if=fti+x2)|' Vx ^ x2~
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Thena i »2, u is invariant along the Xj—X\ direction, namely u(y +X(x2—x\))
u(y) for every y and every Â e 1, and finally u{Xx\ + (1 — A)x2) Q [0] for
every À e R.

A last technical observation which will prove useful here and in other contexts
is the following "unique continuation" type result for g-valued minimizers of the

Dirichlet energy.

Lemma 6.9. Let £2 C Mm he a connected open set and u.V. £2 - > Aq(\SL" two

maps with the following property:
• both u and v are local minimizers of the Dirichlet energy, namelyfor every p <E £2

there exists a neighborhood U such that u\u and v\y are both minimizers;

• u and v coincide on a nonempty open subset o/£2.

Then u and v are the same map.

ProofofProposition 6.7. After suitable scaling, translation and renormalization we
can assume that Br(x) Bi (0) and that H(j)^Uq(0, 1) 1. We therefore conclude
that (0, 1 is uniformly bounded and that Duq is uniformly bounded in L2(BP)
for every p < 1, because

f \Duq\2<—£W0,1), Vpe]±,l[.
Jb„(o) 2-2p

Observe also that

f Kl2 < //*,«,(o,i),
7j?,(O)\J?i/2(O)

which combined with the uniform control of fß2/3(p) I ^ui ^ 8'ves a uniform estimate

on /ß|(0) \u<,\2- Hence the sequence {uq) is uniformly bounded in Wx,1(Bf>(()))

for every p < 1: the compact embedding of Wl'2(Bp(0)) in L2(Bp(0)) (cf. (13,

Proposition 2.111) and a standard diagonal argument gives the existence of a

subsequence, not relabeled, converging strongly in L2K to a Wlof map u.
We claim next the existence of a constant C such that

Hu„(0,p)= [ K|2<C, V?andV/0]i 1[. (6.8)
JdBp 2

The latter clearly implies that

f Kl2 < c(i -p)
J B\(0)\ßp(0)

and thus upgrades the strong L2K convergence to strong convergence in L2(B\(f))).
Arguing as in 113, Proof of Theorem 3.15] we derive that the map p i-» hq(p)

Uq (0» P) belongs to and we compute

h'ci(p) - -f \ua\2 + lf \Duq\2
r JdBp J Bp(0)
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(cf. [13, (3.46)]. Integrating in p we then conclude

f \h'q(p)\dp<C \ug\2+2fl[
J1/2 JBi(P)\B1/2(P) J1/2 J Bp«))

12

Duq(x)\ dx dp

(1)

On the other hand notice that reversing the order of integration in (I) we easily
conclude

(I) J \Duq(x)\2<p(\x\)dx D^tUe/(0, 1).

Hence the sequence hq is uniformly bounded in 1[), which in turn gives
a uniform bound on its L°° norm. This completes the proof of the first part of the

proposition. The local uniform convergence follows instead from [13, Theorem 3.19],
1 2whereas the local minimality of u and its strong convergence in Wu^ follows from

[13, Proposition 3.20].

ProofofLemma 6.8. We start by observing that u(x\ u(x2) Q [0{| simply by

homogeneity and continuity. Moreover, if we show the invariance of the function
along the x2—x\ direction, then the equality oq a2 is a triviality. After translating
and rescaling we can assume, without loss of generality, that x\ 0 and that

x2 e (1,0,0,... ,0). We let (zi,...,zm) be the corresponding standard

Cartesian coordinates on Rm. Our goal is to show that u is a function of the variables
z' (z2, ...,zm) only.

We first claim that

u(e + w) u{w). (6.9)

The identity is obvious if w 0. Fix thus w ^ 0.

Xw — e
Xw e + \Xw — e\— =: e + \Xw —e\w\.

\Xw — e\

Note that for X oo, e + icq. -> e + Using the homogeneity of the function
we then conclude

[AaiUi(w)j l\Xw - e\a2Ui(e + u;A)J. (6.10)

Clearly, if u(w) ß[0], then u(e + w\) ßfO] and sending A to infinity we
conclude u(e + 0|[O]: thus by homogeneity u(e + w) ß[0] u(w).
With a symmetric argument we conclude that if u(e + w) Q [0], then u(w)
Q [0] u(e + w). If both u(w) and u(e + w) are different from Q [0], then sending
A oo we conclude that the

\e — Aiu|a2
lim

A^oo A1
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exists, it is finite and nonzero. Hence oq a2, which implies that the limit is

indeed |iu|. Plugging this information in (6.10), sending A to inhnity and using the

homogeneity of u we achieve (6.9).
Next consider z\> 0 and z' e Rm 1. We then have

u(zuz) Ç Œzi,Mi(0'zrlz')l u(0,z').
i i

If instead z\ < 0, we can then argue

u(z\,z') ^[(-Zi)aiM/(- 1, (-Z!)_1z')]
i

^[(-2i)a|Mi(0, (—Zi)_1z')]] w(0, z')
i

ProofofLemma 6.9. We prove it by induction over Q. For Q 1 the statement
is the unique continuation for classical harmonic functions. Assume therefore that

Qo > 1 and that the claim has been proved for every Q < Q0. Let Aq(u) be

the set of points where u Q\i} ° m J. We know from [13, Proposition 3.221 that,
either Aq(u) coincides with £2, or it has dimension at most m — 2. If it coincides
with £2, then Aq(v) has nonempty interior and again invoking [13, Proposition 3.22]

we conclude that Ag(r) £2. In this case v Q {rj ° v} and u Q\i} o wj: since

ï] o u and r] o v are harmonic functions that coincide on a nonempty open set, they
coincide over all f2 and we conclude u v.

We can thus assume that both Ag(w) and Aq(v) have dimension at most m — 2.

Therefore the open set £2' := f2 \(Aq(u) U Aq(v)) is a connected open set. Clearly,
by continuity of u and v it suffices to show that u and v coincide on £2'. Consider
therefore in f2' the set T which is the closure of the interior of {u v). Such set

is nonempty and closed. If we can show that it is open the connectedness of £2'

implies F Q'.
Let thus p be a point in T. Clearly there are T e A q (R" and S e Aq2(W)

with Qi + Q2 Q, spt(jT) H spt(5) 0, and u(p) v(p) T + S.

In particular, there is a 5 > 0 such that max{^(T/, T). ~§(S, 5")} A S implies
spt(T') n spt(S") 0. It follows that any g-point P with ~§(P,T + S) < 8 can be

decomposed in a unique way as S' + T' with ~§{S', S),~§(T', T) < 8.

Using the continuity of u and v, in a sufficiently small ball Bp(p) we have

\\-§(u,T + S)\\ + ||^(u,r + S)|| <8.

In particular this defines in a unique way continuous maps U\, u2, v\, v2 such that

"IBp(p) Mi + u2, v\Bp{p) vi + v2, and

\\-§(Ul. DHo, m«2, S)||o, \\8(vx, T)||o, \\S(v2, T)||o < 5
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Note moreover that, by possibly choosing p smaller, we can assume that both u \Bp(p)

andu|#p(p) are minimizers. It follows then that the maps u, and vL mustbeminimizers
of the Dirichlet energy. By definition of F, there is a nonempty open set A C Bp(p)
where u and v coincide. Given the uniqueness of the decomposition P S' + T'
discussed above when §(P, T + S) < 8, we conclude that u\ v\ and u2 v2

on A. By inductive assumption, this implies that Wj v\ and u2 v2 on the whole
ball Bp(p). In other words Bp(p) C T and thus p is an interior point of T. By the

arbitrariness of p we conclude that F is open, thus completing the proof.

6.2. Proof of Lemma 6.4. Assume by contradiction that the lemma does not hold.
Then there is a sequence of uq satisfying the Assumptions 2.2 and 2.4 and a sequence
of collections of points Pq {x9;o,-%i x?>m_2} with the following properties:

• each Pq is p-linearly independent for some fixed p > 0;

• (*q,i, 2) - I<j),Uq (Xq,i, p -> 0 as q -> oo for some fixed p > 0;

• AQ(uq) Fl (Bi (0) \ Bp(Vq)) contains at least one point yq, where p > 0 is some
fixed constant and Vq x^o + span {xqp — xq$,..., xq,m~2 — x^o})-

Without loss of generality we can assume that 64) 1. Recalling that

I<t>,uq(0,64) < A, we can apply the Proposition 6.7 and, up to a subsequence not

relabeled, assume that

• uq —> u in L2(B(,4(0)) and locally uniformly;

• u is a minimizer of the Dirichlet energy and uq —> u strongly in B^')2 ;

• Pq converges to some p-linearly independent set P {xo xq \;

• the points yq converge to some y e B\ (0) with u(y) ß[0j.
Observe first that 0, 64) 1 and that r] ou 0. By [ 13, Proposition 3.22],
either A q(u) has Hausdorff dimension at most m—2, or u Q [£]] for some classical
harmonic function The latter alternative would however imply £ o u 0

and hence 0, 64) 0. We conclude therefore that Ag(w) has dimension at

most m — 2.

In particular //0jM(x, p) ^ 0 for any positive p. In turn we conclude from the

convergence properties of uq that I#,Ue/(yq<p) I<p,u(y, p) whenever p < 64 — \y\
and yq —> y. Hence we infer that

f(Xj, 2) I(f>(x,, p

In turn this implies that the function u is homogeneous in |x — x, | in the annulus

B2(xi) \ Bp(xi) with homogeneity exponent a, > 0. We can thus extend u to a

function u,- with the same homogeneity over the whole Rm. A simple rescaling

argument implies that for every / 0 there is a neighborhood U of p where Vj

is a minimizer of the Dirichlet energy. Using Lemma 6.9, vi and u coincide on

#64(0) \ {xf}. But then by continuity we conclude that u u,- on ß64(0).
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Hence we have that

uM H [lx-xi\a'uj(xi + f )|. (6.11)

j
Note that, ifa, were 0, then the map u would take a constant value different from Q [[()]],

which is not possible because u(y) <2[0]. Thus each cq is positive.
Now, although u is defined on B64(0), using its homogeneity with respect to

any of the points xy, it could be extended to a map u, on the whole Rm, as done

above. Each such extension would be a local minimizer of the Dirichlet energy and,

by unique continuation (cf. Lemma 6.9), all such extensions must coincide. We can
therefore consider u as defined on the whole space Rm, with (6.11) valid everywhere
and for every x,. Using Lemma 6.8 we conclude that, if

then u is a function of the variables orthogonal to V and u(xo + v) <2[0] for

every v e V. On the other hand, since the notion of ^-linear independence is stable

under convergence, V is an (m — 2)-dimensional space. Lemma 6.8 implies also that
the at's are equal to a number a. Summarizing, if we denote by S the unit circle of the

two dimensional space V-1, we have that there is a continuous map £: S -» -Ay (R")
such that

u(x0 + v + Xw) J2Ua^j(w)l Vu G U, Vtu e S, VA > 0. (6.12)

On the other hand the point y (which is the limit of the points yq) cannot belong to V.

Since u(y) ô[0], we would conclude that u <2[[0]] on the (m — l)-dimensional
space xo + span LUjj- x0}. This however is a contradiction with the dimension
estimate on Ag(n).

6.3. Proof of Lemma 6.6. The proof is entirely analogous to the previous one.

Again by contradiction assume that the statement is false. Then there is a sequence
of uq satisfying the Assumptions 2.2 and 2.4 and a sequence of collections of points
Pq {xq$, x,h\ xq,m-2} with the following properties:

• each Pq is p-linearly independent for some fixed p > 0;

• Am,, (Xq.i • 2) - /0,Mf/ (xqj, p -> 0 as q 00 for some fixed p > 0;

• if vq xqj) + span {xqp — xqp xqjn-2 — xqA) |, then there are two points

yq, 1 yq,2 £ (Xq,0 + Vq) l~l B\ (0) and two radii rqp, rq 2 e [p. 1] with the property

V xo + span {x, — xq : \ < i < m — 2} =: x0 + V,

j

that

Iij>,uq(yq,l' rq,l) I<t>,uq (f<72' rq,^) \

—
$ > 0. (6.13)
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Without loss of generality we can assume that H$,Ucl (0, 64) 1. Recalling that

I<t>,uq(0,64) < A, we can apply the Proposition 6.7 and, up to a subsequence not
relabeled, assume that

• Uq —> u in L2(Z?64(0)) and locally uniformly;
1 2

• u is a minimizer of the Dirichlet energy and uq —> u strongly in Wuj ;

• Pq converges to some p-linearly independent set P {x0,.... xq \;

• the points yqj converge to some y, and the radii rqj to some r;- e [p, 1],

Again arguing as above the plane

L x0 + span{x,- — x0 : 1 < i < m — 2} xo + V

is (m — 2)-dimensional and u has the form (6.12) for some a > 0. We conclude that

f) a, for any r > 0 and any x G L. (6.14)

On the other hand yi,y2 e L and I^,ug(yq,i,rq,i) -* Thus (6.13)
and (6.14) are in contradiction.

7. Minkowski-type estimate

In this section we combine the previous theorems with the Reifenberg-type methods

developed in 124] to give a proof of the Minkowski upper bound in Theorem 2.5. We

follow in particular the simplified construction of (23].
The following result, which we simply quote from [24, Theorem 3.4], allows us to

turn a small bound on the mean flatness into volume bounds for a general measure /z.
Note that generalizations of this result appeared recently in 114,22].

Theorem7.1 ([24,Theorem3.4]). Fixk <me N, let J BS/ (Xj)\jej ç B2((i) C Rm

be a sequence ofpairwise disjoint balls centered in B j (0), and let [i be the measure

M E'sr%- <7-1)

jeJ

There exist constants <5o So(m) and Cr CR(m) depending only on m such that

iffor all Br (x ç B2(0) with x e Bt(0) we have the integral bound

f (f Di(y>s) —)^(t) < &lrk (7.2)
JBr(x) \J0 V /

then the measure pu is bounded by

ji(ß](0)) Y2*j
jeJ

(7.3)
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7.1. Efficient covering. In fact the latter theorem and the results of the previous
sections will be used to prove the following intermediate step

Proposition 7.2. Let u be as in the Assumptions 2.2 and 2.4. Fix any x G Bi/8(0)
and 0 < .V < r < 1/8. Let D ç Ag fl Br(x) by any subset of Aq, and set

U sup I y G D}. There exist a positive 8 8-1,2 8(m,n. Q. A), a

constant Cy Cy(m) > 1, a finite covering with balls BSi{Xi) and a corresponding
decomposition of D in sets Ai C D with the following properties:

(a) Ai C BSj(xi) and Sj > s;

(b) Ei ST~2 - CVrm~2;

(c) for each i, either si s, or

sup{/0 (y, Si) : y At} < U - 8 (7.4)

With this proposition at hand the theorem follows easily:

Proofof Theorem 2.5. We consider the set D() := A q D B\(0) and recall that, by
Lemma 3.4,

U0 sup{/0(y, 1/8) : y G D„} < C(A + 1). (7.5)

Apply Proposition 7.2 with r 1, s p and D D0 and let {A,} and {BSi(xi)},
i G /1, be the corresponding decomposition and covering of D0. In particular

5>r2<cK.
(/,

Let /f := {/ : .sy p}. For each ,v; > p we instead have the frequency drop

sup{/0 (v, st) : y G Ai} < U0 - 8

For every / G f \ if apply the Proposition 7.2 again with D Ai, r ,v, and

s p. We then find a decomposition {Aij} of each At and corresponding balls

{BSi J (Xij)}, j G /;, with

E.,tn—2 ..m—2
i,j < *

We now define /2 as the union of /f and all /j with / <f if. By renaming the sets

and the radii, we have a new decomposition {A,-} of Ag n ßi/8(0), i e I2, and a new

covering {BS[ (x, i e I2, with

J2xr2<cvj2^f<cv-
iE/2 i/[
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This time, however, if ,sy > p, then the frequency drop is given by

sup {I# (y, st) : y e Ai} < U0-28.

Proceeding inductively for each k we find a decomposition {Ai }ieik and corresponding

covering {Bs/ (x, )} with the properties that

E — cv
i elk

and either ,v, p, or

sup{/(p (.y,S{) : y e At} < U0 - k8

Clearly, since the frequency function is always positive, after at most k — L<5—1 Co J + 1

steps all Si for i e IK equal p. We have thus found a family of N balls Bp(xi)
with Npm~2 < Cy C(m,n, Q, A) which cover Àq IT ßi(0). Obviously,

Bp(Aq 0 ß,/8(0)) C UiB2p(xi)

and we thus conclude

|fip(Aenfii/8(0))| <2mNpm <Cp2.

7.2. Intermediate covering. Proposition 7.2 will in fact be reached through an

intermediate covering.

Lemma 7.3. Let u be as in Assumptions 2.2 and 2.4, p < 100-1 and a < r < | be

three given positive numbers and x G Bi/8(0). Let D be any subset of Aq IT Bz{0)
and set U supvgD l$(y, r). Then there are a 57.3 8{m,n, Q.A.p) > 0,

a constant C — CR(m) and a covering of D by balls Brj(xi) with the following
properties

(a) r, > lOprr;

(b) £,-e/ C~2 < CRxm~2;

(c) For each i, either r, < a, or the set ofpoints

Fi D rr Bn (Xi) O {y : /0(y, p/y) > U - 8} (7.6)

is contained in Bpr((Li) IT Br/(xi), for some (m — 3)-dimensional affine
subspace Li.

Proof. By a simple scaling and translation argument, from now on we can simply
assume that r | and x 0. Observe that after this operation /^(0,64) might have

increased: anyway, according to Lemma 3.4, we will still be able to bound it in terms
of A. For the rest of the argument we treat 8 > 0 as fixed and detail the conditions
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that it will have to satisfy along the steps of the proof: we will see at the end that all
such conditions are met if 8 is chosen sufficiently small.

The first part of the proof consists in constructing a first covering via an inductive

procedure consisting of k — |Jog10p(8a)J steps (note that k is the smallest integer

exponent such that ^'(lOp)* < a). At each step k we will thus have a covering
of D by balls 'C(k) {BPi (x, : i e /^}. The starting cover is given by {ßi/g(0)}
and the cover G(k + 1) is obtained by modifying 'C(k) suitably: in particular we

keep some "bad" balls B of *(k) in G(k + 1) and we refine the covering on some
other "good" balls B. Along this procedure we have the following conditions:

(i) the radii of the balls in ~(k) are all equal to some 8_1(10p)7 with integer
exponents j ranging from 0 to k :

(ii) if Br(x), Br>(x') e G(k), then Br/5(x) (T Br*/5(x') 0;

(iii) if a ball in t(k) has radius larger than 8_1(10p)fc' then it is certainly kept
in G(k + 1).

Step 1. Inductive procedure. Consider a ball Br(x) e L(k). If r 8_1 I Op)7 for
some j < k, then we assign it to "G(k + 1). If r 8_1(l()p)^, consider the set

F F(Br(x)) := D Cl Br(x) n {y : /0(y,pr) > U - 8\.

We then:

(bad): assign Br(x) to ~C(k + 1) if F does not pr-span an (m — 2)-dimensional
space;

(good): discard Br(x) if F pr-spans an (m — 2)-dimensional space, which we call
L L(Br(x)).

We note first that, if (bad) holds, then there is an (m — 3)-dimensional affine space L
such that F C Bp(L), cf. Remark 6.3. If (good) holds, we must replace Br(x)
in ~(k + 1) with a new collection {ßioprC*;)}-

More precisely, in the latter case consider an (m — 2)-dimensional affine space V

that is pr-spanned by F. By Lemma 6.4, if 8 is chosen smaller than a constant

8(m,n, Q, A, p), we can assume that D n B\ (0) is contained in Bpr(V). Consider

now all the good balls {Bl} H(k) C *G(k), the corresponding affine spaces L) and

the set

G (k) := D n\J Bp(10p)k (Vt).
i

We can cover G(k) with a collection !F(k + 1) of balls with radius (lOp)^"1"1 such

that the corresponding concentric balls of radii 2p( 1 i)p)k are pairwise disjoint. It
will also be important for the next step that such balls are chosen so that their centers

are contained in D fi (U,- Bl IT K,
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Consider now the collection 33(k) C G(k) of balls that have been kept in the

covering ~G(k + 1) and let 33 \/5(k) be the corresponding collection of concentric balls
shrunk by a factor We include B G !F(k + 1 in the covering *{k + 1) if and

only if B does not intersect any element of Si/5(k). We need however to check that
~G(k + 1 is still a covering of D. Consider that, by construction !B(k) U !F(k + 1 is

certainly a covering of D. Pickapointx e D: if it is contained in an element of S (k)
we are fine. Otherwise it must be contained in an element B of 3r{k+ 1). If B is

not contained in ~(k + 1), then there is a ball Br'(x') e 33(k) such that Br>/5(x')
intersects B. Since however the radius of B is at most than 10r' < r'/10, it is obvious
that B is contained in Br/(x').

Step 2. Frequency pinching. We next claim the following pinching estimate: for any
given r] > 0, if we choose 8 sufficiently small, then

either G(k) {/?i/8(0)} or /^(x, ps/5) > U — q, Vß,(r) G G(k). (7.7)

Indeed, unless the refining procedure stops immediately, for any Bs(x) G G(k) we

must have s 8_1(l()p)y+1 for some j e N. Following our construction, we then

find a good ball B' Ä8-i(10p)> e "G(./') such that F(B') 8~'p(l0p)J-spans an

(m — 2)-dimensional affine space V with x V fl B'. Moreover V n B' contains
at least one point z G F(B'). ft then follows from Lemma 6.6 that, if we choose 8

sufficiently small (depending on p and rj), then we can ensure

11fix, ps/5) - I tf) (z, .v) I < ^

Since however /^(z, .sj > U — 8, the claim follows by imposing additionally 8 < |.
Step 3. Discrete measures. The covering of the statement of the lemma is now given
by T? (k and it is clear that to complete the proof it just suffices to prove the packing
bound

E sm~2<CR(m).
ß.v(x)ee00

For this reason, from now we enumerate the balls in G(k) as B5si (x, i e I. Since

our goal is to use Theorem 7.1, we introduce the measures

B E-vr% and ßs= E sr2sXi.
is/ iel,r/<s

Observe that:

• Ht < pr if t < r;
• ß Mi/40;

• if we define r ^(10p)K, then p,s 0 for s < r.
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We will show that ps(Bs(x)) < CR(rn)sm 2 for every s and every v. Indeed, if we
set x log2(/~_1/8) — 4, it suffices to show that

fis(Bs(x)) < CR(in)sm~2, for all x and for all ,v r2J with /' 0, 1,2 x.
(7.8)

Note indeed that, unless {ßS7(x,)} is the trivial cover (ßi/8(0)}, all the radii .v,

are smaller than ^ ^ and thus (7.8) shows that < Cr(w) for

every x G Z?i/8(0). Covering ßi/K(0) with finitely many balls of radius implies
then the desired packing estimate.

The estimate (7.8) will be proved by induction over j. Note that the starting step
is fairly easy. Indeed, ptf(Bf(x)) — N(x, r)rm~2, where N(x, r) is the number of
balls BSj (xi) with .v, r and x,- G Bf{x). Since such balls are pairwise disjoint and

contained in B2p(x), the number, N(x,s) is bounded by 2m.

The remaining portion of the proof is devoted to show that if (7.8) holds for
some j < x then it holds for j + 1. Hence from now on we set r 27r
and, assuming ßr(Br(x) < CR{m)rm~2 for every x, we want to show that

B2r{B2r(x)) < Cr(m)(2r)m~2 for every x.

Step 4. Inductive packing estimate: coarse bound. We first show the coarser bound

B2r(B2r(x)) < C(m)CR(m)(2r)m-2 (7.9)

where Cr^u) is a dimensional constant larger than 1. This is rather easy to achieve

since we can split

B-2r Br + X! 'S,r~% =: Br + fir
iel ,r<Sj<2r

Since B2r(x) can be covered by C(m) balls Br{xi), the inductive assumption clearly
implies

Br(B2r(x)) < C(rn)CR(m)rm~2

On the other hand

ßr(B2r(x)) < N(x.2r){2r)m~2,

where N(x, 2r) is the number of balls BSj with i G /, r < ,v, < 2r and x,- G B2r(x).
The corresponding smaller balls ßr(x,) are then all pairwise disjoint and contained
in B2r(x), from which the bound N(x, r) < C(m) follows readily.

Step 5. Inductive packing estimate: mean flatness and conclusion. We now wish to

improve the coarse bound (7.9) to

ß2r(B2r(x)) < CR(m)(2r)m 2. (7.10)
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We set for convenience ß := ji2r L B2r(x). The idea is to apply a (scaled version)
of Theorem 7.1. If we can show that

ff
D^~2(z, s) — dß{z) < 8^tm~2 Vy e B2r(x), V0 < t <2r/Mm WO

(7.11)
(where h'o is the constant of Theorem 7.1), we will then conclude

jÜ(Ä2r(jt)) 5 Cr(2T)'n~2,

which is the desired bound.
The key for deriving (7.10) is that, by (7.7), we can, without loss of generality,

assume

UiXi.p.Sj) > U - rj. (7.12)

In fact if this estimate did not hold the covering {BSi (x, } would be given by (ßi/8(0)}
and the claim (7.8) would be trivially true.

In order to obtain the bound (7.11 we first set

Ws(x.) := !"?*<«> '(*•*»>"'(*•*>. *'> *• (7.13)
10, otherwise,

and then observe that for all i

D^~2(xi,s) < C(m,n, Q,Af Ws(y) dß(y), for all 0 < s < 1.
J B,s(xi)

(7.14)
Indeed, if .v < ,v,, the above inequality reduces to 0 0 because spt(/x) n Bs (x, | xL}.

Otherwise, it follows from Proposition 5.3.

Fix any t <2r. Using (7.14) we bound

/ := [ f Dfl 2{z,s)—\dfi{z)
J B,(y) \Jo s 7

<C f f sl~m f Ws(Odßa)dsdß(z)
0 JBs(z) (745)

— cf sl~~m [ f Ws(t;) dß(£) dß{z) ds
J0 JBt(y) JBs(z)

In (7.15) we can certainly intersect the domains of integrations with B2r (x), since ß
vanishes outside. We also claim that we can substitute ß with fis. First we look at the

innermost integral: if <Ç e spt(/x) \ spt(/xv), then Ç z, for some i e I with s-, > s

and, by definition WS(Ç) 0. As for the integral in z, if z z,- for some i e I with

si > s, then Bs(z) fi spt(/x) contains only z and the innermost integrand vanishes
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because Ws(z) 0. Substituting Ji with and applying again Fubini's theorem,
we can write

I <C [' sl~m [ WAV f dtxs (z) dfis (0 ds (7.16)
Jo JB,+s(y)nB2r(x) J Bs(!;)rB2r(x)

Next, for .v < r we can use the inductive estimate (7.8), whereas for r < s < 2r we
can use the coarser bound (7.9) to estimate the inner integrand with C(m)sm~2. We
therefore achieve

/ < C(m,n, Q, A) f f Ws(0 dns(Ç) —
Jo JBt+s(y)nB2r(x) s

<C f [ Ws(Ç)dnt — (7.17)
Jo J B,+s(y)nB2r(x) s

<C [ f Ws(£) — dnt(Ç)-
JB2t(y) J0 s

Next fix £ e spt(/rf). Then obviously z,- for some i. Recall that Ws(zj) 0 if
s < Sf and that Ws(zt) f(p(zi > 32,v) — I,An s) otherwise. Consider now the largest

integer k such that 2Ks, > t and note that 32 • 2K+X s, < Then we can derive the

following estimate

f' — ds f' — ds f' ds
/ Ws CQ — / Ws (zi )—= (/0 (Zi, 32.v - /* (zf, 2s)) —

JO J5/ ^ JSi à

_1_ /•2y + l^
-J2 (U^i' 32'y) - '<P (Z/ > 0) —

j=0 2's' s

< V (/0(Z,-, 32 • 27 + 1,v,-) - /,,(z,-.2'.v,» /
7=0 27 s<

'S

K

\og2j2 (r*{Zi, 26+ySi) - /0(z,-, 2JSi))
7=0

5 K

log2^ £ (/*&•, 2'+<+1s/) - /0(zi, 2'+'si))
t=0 7=0

5

log 2^ (70(zi, 2k+£+1.v,) - /^(z,, 2£.S';))

t=o

< 61og2(/0(z,-, I) - I,p(zi,Si)) <} 6rj fog 2. (7.18)
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Next, with an obvious covering argument we can use the inductive estimate (7.8)
(for t < /•) and the coarser estimate (7.9) (in the case r < t < 2r), to estimate

l*-t(B2t(y)) < C(m)tm~2. Combined with (7.18), the latter bound in (7.17) yields

f I Dü~2(z>s)~-)dJi(z)<C(m,n,Q,A)ritm~2. (7.19)
Jb, (y) V Jo * J

At this point, choosing r] smaller than some appropriate constant c(m,n,Q, A)
(which requires 8 to be chosen smaller than a suitable positive constant c(m, n, Q,
A, p)) allows us to fulfill (7.11) and thus complete the proof of (7.8).

7.3. Proof of Proposition 7.2. As in the proof of the previous lemma, we start by

observing that without loss of generality we can assume x 0 and r ^. The proof
of the Proposition is again an inductive procedure to generate the correct covering,
where we use Lemma 7.3. The parameter p appearing in the Lemma is, for the

moment, fixed: it will be chosen, sufficiently small, only at the end.

We start by applying Lemma 7.3 a first time with r | and a .v. Let

C(0) { Br, (xi )} be the corresponding covering. We then divide 'C(O) as

8(0) {Bn(xi) : r, < .v} and 73(0) Br, (-L : n > .v}.

Next, for each Bn (x,) e <23(0) consider the set F, and the affine plane /., given by
Lemma 7.3. Each B2p/n C^;) H Brj (x,) can be covered by a number N < C(m)p3~m
of balls of radius Apr,. If Apr, < s we then include these balls in a new (additional)
collection ï?( 1 Otherwise we apply to each of these balls and for each i Lemma 7.3

again and include all these balls in the new collection L?(l). Observe that we have

the bound

J] rT~2 —
C(m)p3~m J2 (prj)"'-2 C(m)p £ ,f~2

Brj{xi)6^(1) Brjixj)sC(0) Brj(xi)e-e(0)

In particular if p is chosen sufficiently small, we can ensure that

C(m)p < ^
p < (2C(m))~i := p0(m). (7.20)

We repeat the procedure finitely many times until we find a ~(k) that contains no
balls of radius larger than s. We then define the collection 'C Uy^LT/). Clearly

£ rr2<J22~e E
Br,(xi)e-e 1=0 Brj(xj)£e(0)

From now on p is fixed, depending only on the dimension m.
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We then dehne inductively the sets A\ for each Brj (x, e U. We start with the

elements U(0):

• if Bn (x,) e i8(0), namely r; < .v, we then set A\ D n Brj (x,);
• otherwise we set A- (D D Brj (x,)) \ F,, where /•', are the sets of Lemma 7.3.

Observe that by construction the Fi 's are covered by t 1 and thus

DC U 4 U Bn(xi)-
Brj(xi)e£(0) Bri(xi)e-e( 1)

We then proceed inductively and notice that at the final step all balls of 'C(k) have

radii no larger than s. Thus the final collection of sets A\ is a covering of D.
Moreover, by definition, either r, < ,v, or

sup{/0 (y, pi-j) : y e A'j} < U — 8

This condition differs from (7.4) just by a factor of p p(m) inside the frequency [p.
Since A'i ç BS] (x,), we can clearly cover this set by a family of C(m)p C(m)
balls BpSj (xjj) (recall that p has already been fixed as a positive geometric constant

depending only on m in (7.20)). By setting Ap BpSj{xij) D A'{, we get (7.4) on
this set, and preserve up to a constant C(m) the packing estimate.

Finally, some of the balls in F have radii strictly smaller than s. However by
construction they are all larger than lOpv. Hence we can substitute such balls with
balls of radius s at the price of paying another multiplicative constant C{m) in the

packing estimate.

8. Rectifiability

In this section we complete our plan by giving a proof of Theorem 2.6. The crucial

ingredient is the content of [4, Corollary 1.3), which we cite here without proof.

Theorem 8.1 ([4, Corollary 1.3J). Let S C M" be Mk-measurable with Mk (S) < oo
and consider ji Mk LS. Then S is countably k-rectifiable ifand only if

D^(x,.v)—- < oo, for fi-a.e. x. (8.1)

Using a different proof, a similar result was obtained in 124, Theorem 3.3], which
in some sense is the "continuous version" of Theorem 7.1. Indeed, the rectifiability
result is a corollary of the proof of Theorem 7.1, since in order to obtain the uniform
bounds tor the measure /x one needs to build smooth manifolds that approximate
the measure pt at smaller and smaller scales. If instead of a discrete measure pt

one considers the ^-dimensional Hausdorff measure Mk restricted to a set S, the

L
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construction basically works in the same way and produces a Lipschitz approximation
for S that coincides with S up to a set of small measure. By repeating this construction

inductively, one proves rectifiability.
Notice also that in order to obtain the estimate (8.1), we will need to use the

uniform upper Ahlfors bounds on the measure Mk LA q, which is the main product
of our construction, and the main point of Theorem 7.1. With this uniform estimate

in hand, it is easier to apply directly Theorem 8.1 instead of going through the details

of [24, Theorem 3.3].

Proofof Theorem 2.6. We know from Theorem 2.5 that fi [ _(Ag n ßi/8)
is a finite Radon measure. But in fact, by a simple scaling argument, we achieve the

uniform estimate

p(Br(x)) < C(m,n, Q. A)rm~2 (8.2)

As in the last step of the proof of Lemma 7.3 we use Proposition 5.3 to estimate

f \ D~2(z,s) — d[i(z)
JBt (y J0 s

—
C f I Sl~m f Ws32s(Ç) dn(Ç) dsdfi(z)

JBt(y)J0 JBs(z)

C f sl~m f [ W32s(Ç) dfi(Ç) djifz) ds
Jo JBt(y) JBx(z)

<c['s1-m( Ws32stt) [ dfi(Ç)dn(z)ds (8.3)
Jo Jßr+Ay) JBAS)

<2)C f' W1 f W32s(f)dß(^)ds
Jo Jßt+S(y)

<c f [' ws32'U) — diitt).
J b2i 09 Jo s

Next arguing as in the proof of (7.18), we reach

f W32s(0 — < 61og2(/0(t, |) - /0(C,O)) < C(m,n, Q, A),
Jo s

as long as 321 < Inserting the latter estimate in (8.3) and using (8.2) we then
conclude

whenever t < I • 3^. We can thus apply Theorem 8.1 to conclude the rectifiability
of Aq (T ZL/8(0).



778 C. De Lellis, A. Marchese, E. Spadaro and D. Valtorta CMH

References

[ 11 Some open problems in geometric measure theory and its applications suggested by

participants of the 1984 AMS summer institute, in Geometric measure theory and the

calculus of variations (Areata, Calif, 1984), J. E. Brothers (ed.), 441^-64, Proc. Sympos.
Pure Math., 44, Amer. Math. Soc., Providence, RI, 1986. MR 840292

121 F. J. Almgren, Jr., Almgren's big regularity paper, g-valued functions minimizing
Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to
codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffcr, World Scientific
Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge,
NJ, 2000. Zbl 0985.49001 MR 1777737

131 O. Alper, Rectifiability of line defects in liquid crystals with variable degree of orientation,
Arch. Ration. Mech. Anal, 228 (2018), no. 1, 309-339. Zbl 1384.58013 MR 3749263

|4| J. Azzam and X. Tolsa, Characterization of n-rcctiliability in terms of Jones' square
function: Part II, Geom. Funct. Anal., 25 (2015, no. 5, 1371-1412. Zbl 1334.28010
MR 3426057

15 ] G. David and T. Toro, Reifenberg parameterizations lor sets with holes, Mem. Amer. Math.
Soc., 215 (2012), no. 1012, vi+102pp. Zbl 1236.28002 MR 2907827

161 E. De Giorgi, Frontiere orientate di misura minima, Seminario di Matematica della
Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa, 1961.

Zbl 0296.49031 MR 179651

171 C. De Lellis, The size of the singular set of area-minimizing currents, 2015.
arXiv: 1506.08118

181 C. De Lellis, The regularity of minimal surfaces in higher codimension, in Current
developments in mathematics 2014, 153-229, Int. Press, Somervillc, MA, 2016.
MR 3468252

[91 C. De Lellis and E. Spadaro, Regularity of area minimizing currents I: gradient Lp
estimates, Geom. Funct. Anal., 24 (2014), no. 6,1831-1884. Zbl 1307.49043 MR 3283929

110] C. De Lellis and E. Spadaro, Multiple valued functions and integral currents, Ann. Sc.

Norm. Super. Pisa CI, Set. (5), 14 (2015), no. 4, 1239-1269. Zbl 1343.49073 MR 3467655

[11] C. De Lellis and E. Spadaro, Regularity of area minimizing currents II: center manifold,
Ann. ofMath, (2), 183 (2016), no. 2, 499-575. Zbl 1345.49052 MR 3450482

[12] C. Dc Lellis and E. Spadaro, Regularity of area minimizing currents III: blow-up, Ann. of
Math. (2), 183 (2016), no. 2, 577-617. Zbl 1345.49053 MR 3450483

1131 C. De Lellis and E. N. Spadaro, (9-valued functions revisited, Mem. Amer. Math. Soc.,
211 (2011), no. 991, vi+79pp. Zbl 1246.49001 MR 2663735

114 ] N. Edelen, A. Naber, and D. Valtorta, Quantitative Reifenberg theorem for measures, 2016.

arXiv: 1612.08052

1151 M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the

lower dimensional obstacle problem, preprint, 2017. arXiv: 1703.00678

1161 F. Ghiraldin and L. Spolaor, On the number of singular points for planar multivalued
harmonic functions, Manuscripta Math., 154 (2017), no. 3-4, 513-525. Zbl 06804018
MR 3713924



Vol. 93 (2018) Rectifiability of the singular set of O-maps 779

1171 Q. Han and F.-H. Lin, Nodal sets of solutions of elliptic differential equations.

[18] J. Hirsh, S. Stuvard, and D. Valtorta, Rectifiability of the singular set of multiple valued

energy minimizing harmonic maps, preprint, 2017.

119 ] B. Krümmel, Constant frequency and the higher regularity of branch sets, preprint, 2014.

arXiv: 1410.7339

[20] B. Krümmel and N. Wickramasekera, personal communication.

[21 ] B. Krümmel and N. Wickramasekera, Fine properties of branch point singularities: Two
valued harmonic functions, preprint, 2013. arXiv: 1311.0923

1221 M. Miskiewicz, Discrete Rcifcnbcrg-type theorem, Ann. Acad. Sei. Fenn. Math.,43 (2018),
no. 1, 3-19. Zbl 06854656 MR 3753160

[ 231 A. Naher and D. Valtorta, Stratification for the singular set of approximate harmonic maps,

preprint, 2016. arXiv: 1611.03008

[24] A. Naher and D. Valtorta, Rcctifiable-Reifenberg and the regularity of stationary and

minimizing harmonic maps, Ann. ofMath. (2), 185 (2017), no. 1, 131-227. Zbl 06686585
MR 3583353

[25] L. Simon, Rectifiability of the singular sets of multiplicity 1 minimal surfaces and energy
minimizing maps, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993),

246-305, Int. Press, Cambridge, MA, 1995. Zbl 0874.49033 MR 1375258

[26| B. Zhang, Rectifiability and minkowski bounds for the zero loci of Z/2 harmonic spinors
in dimension 4, preprint, 2017. arXiv: 1712.06254

Received December 06, 2016

C. De Lellis, Institut für Mathematik, Universität Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

E-mail: camillo.delellis@math.uzh.ch

A. Marchese, Institut für Mathematik, Universität Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

E-mail: andrea.marchese@malh.uzh.ch

E. Spadaro, Mathematisches Institut, Universität Leipzig,
Augustusplalz 10, 04109 Leipzig, Germany

E-mail: spadaro@math.uni-leipzig.de

D. Valtorta, Institut für Mathematik, Universität Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

E-mail: daniele.vallorta@math.uzh.ch




	Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps

