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A problem regarding the tracing of graphs

1 One of the first questions m elementary topology, ülustrated by the Konigs-
berger Bridge Problem, requires the conditions for the tracing of a plane figure in a
contmuous path without passmg twice through any lmes in the figure Eui er solved
the slightly more general problem of decidmg when it is possible to trace the sides

in an arbitraiy fmite graph G contmuously, passmg along each side once and only once
and returnmg to the startmg pomt 1 he result as one knows is that the graph must be

(1) Connected

(2) An Euler graph charactenzed by the property that each Vertex is of even order,
that is, it must be the ]ommg pomt of an even number of sides

The proof is simple and can be found in a considerable number of expositions so

that it need not occupy us here In the following we shall, however, discuss another
problem also connected with the tracing of Euler graphs Our startmg pomt is the
Observation that when it is possible to diaw a graph in one contmuous trait without
duplication as required, it does not follow immediately how such a tracing is obtam-
able As a very simple example let us take the figure 8 shaped graph mdicated in
Fig 1 When startmg at the Vertex a, one may first proceed in the cycle ab c d a
and in order to trace the whole figure it is necessary afterwards to insert the cycle
c ef gc This remark leads us to consider the following general problem regarding
Euler graphs

When does a connected Euler graph have the property that if one starts and returns to

the same vertex a, then the whole graph is automatically traced without repetition if one

proceeds accordmg to the Single rule that whenever one amves at a vertex one shall always
select some side which has not previously been traversed?

A graph with this property may be called arbitrarüy traceable from the vertex a

One sees immediately that the graph in Fig 1 is not arbitrarüy traceable from a, but
it has this property with respect to the vertex c In Fig 2 one has a graph which is

arbitrarüy traceable from a, but from no other point, while Fig 3 is arbitrarüy
traceable both from a and b Such a graph which consists of disjomt cycles mtersect-

mg only m two vertices a and b as in Fig 3 we shall call a skein

The reader readüy venfies that the only graph which is arbitrarüy traceable from
all its points is a cycle

2 Before we can solve the general problem of findmg all arbitrarüy traceable graphs
it is necessary to denve certam auxiliary facts about them Let G be a graph which
is arbitrarüy traceable from the vertex a, furthermore, let Gx be some (connected)
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Euler subgraph of G which also has a as one of its vertices Then G1 can be traced
from a and after this process there remams in Gx some umquely determmed comple-
mentary graph G2 such that one has the direct decomposition

G GX+G2 0)

But here the remammg graph G2 must be arbitrarüy traceable from a because other-
wise the original graph G ltself could not have this property But when the same

Fig i Fig 2 Fig 3

argument is applied to G2 in (1) it follows that also Gx must be arbitrarüy traceable
from a and we have

Theorem 1 Let G be a graph which is arbitrarüy traceable from the vertex a Then

any (connected) Euler subgraph Gx of G mcludmg a is also arbitrarüy traceable from a
and has an arbitrarüy traceable complement G2m G

Now let 2 n be the order of the vertex a in the graph G Any tracing of the graph
from a must start out along some particular side Sx and return along a different side
S2 It is therefore clear that there exists some cycle (£x m G contaming Si and S2

Since (£x is arbitrarüy traceable it follows from theorem 1 that the complement
Gx G — £x has the same property If (S^ is another cycle through a in Gx one con-
cludes further that G2 (G — dx) — (£2 is arbitrarüy traceable and by contmumg
the argument one arnves at the result

Theorem 2 A graph which is arbitrarüy traceable from the vertex a of order 2 n is
the direct sum of n cycles (£t through a

G e1+£2+ £n (2)

This represents a necessary but not a sufficient condition for an arbitrarüy traceable
graph Now let us consider the case of two cycles (£x and (^ contamed m such a graph
G We suppose that 6^ and E2 are disjomt, that is, have no side in common, and that
they mtersect in a and possibly in a certam number of other vertices of G The
graph (£x -j- (£2 is then an Euler graph and therefore arbitrarüy traceable accordmg to
theorem 1

We now select a defmite direction on (£x and proceed from a to the first vertex b

which G^ has m common with (S^ and simüarly, in the opposite direction on {£x let c

be the first common vertex (see Fig 4) To trace the graph £x + G^ let us begm at a
and proceed in the given direction to 6 and return along that part of G2 which does



Ö\ su in Oi i A pioblun ieö iidin^ the ti icinö of tonphs 51

not mclude c Ihen we proceed from a to c along (^ m the opposite direction and
return to a along that part of (E2 which does not contain b After this process we have
no further exit from a so that the complete graph S^-f (£2 must have been traced
But it is clear that if b * c the section of 6^ between b and c not including a has not
been covered so that we conclude b c This gives the result

Theorem 3 Let G be a graph arbitrarüy traceable from the vertex a and (£x and (£2

two cycles in G without common sides and passmg through a Then ax and (£2 can
intersect in at most one other vertex

P12 4

3 We are now ready to deduce the following entenon
Theorem i The necessary and sufficient condition that an Euler graph be arbitrarüy

traceable from a vertex a is that ü contain no cycles not including the vertex a

Proof Let us suppose first that there exists some cycle & in G which does not pass
through a We form the graph Gx G — (f Since G and (£ are Euler graphs all
vertices m Gx must be of even order so that Gx is also an Euler graph Gx need not be
connected but it has a maximal connected component G(/) including the Vertex a
Then the sum

Ga=G(a>+0;

must be a connected Euler graph and both G2 and G{a) must be arbitrarüy traceable
aecordmg to theorem 1 But this leads to a contradiction smee one can begin traemg
G2 by first tracing G(a) from a and when one has returned to a there is no further
exit to reach the cycle £

On the other hand, if the Euler graph G contams no cycle not passmg through a
it is connected and traceable If it were not arbitrarüy traceable one could trace a

part Gx of G exhaustmg all exit possibüities from a But then the complementary
graph G2 to Gx would also be an Euler graph, and since it is clear that an Euler graph
always contams a cycle we would have a cycle in G not including a, contrary to
assumption

Theorem 4 gives a simple entenon for the graphs which are arbitrarüy traceable
from more than one vertex With our previous definition we have

Theorem 5 A graph which is arbitrarüy traceable from two vertices is a skem

Proof Let a and b be the two vertices from which the graph G is arbitrarüy traceable.

Aecordmg to theorem 4 every cycle m G goes through both a and b In the representa-
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tion (2) of G as the direct sum of cycles every cycle G^ goes through a and b and
theorem 3 shows that none of them can have any other points in common This
proves theorem 5.

4. Theorem 4 makes it possible to give a simple construction of all graphs which
are arbitrarüy traceable. Let us denote by Sa the star or subgraph of G which consists
of all those sides of G which are jomed at the vertex a, furthermore, let Gx be the
complement of Sa m Gx hence (see Fig. 5)

G Sa+Gx.

Then aecordmg to theorem 4 the necessary and sufficient condition that G shall be

' / /v \\ v

\ V^\\\!//^
d

Fig 5

arbitrarüy traceable is that the graph Gx contain no cycles, that is, it must be a

topological tree.
Now let us proceed m the opposite direction and assume that some tree Gx is given

We select a new vertex a and draw sides from a to the vertices of Gx such that the
vertices of Gx m the new graph G have an even order. This may be achieved by
drawing a Single side from a to the odd vertices m Gx and none to the even ones,
but one can also, more general, draw an odd number of sides in the first case and
an arbitrary even number of sides in the second. To show that the resultmg graph
is an Euler graph it is only necessary to venfy that the order of the vertex a is even,
since the other vertices are already even. But this is an immediate consequence of
the relation

for any graph, where s is the number of sides and /it the order of the z-th vertex.
Thus we have

Theorem 6 One can construet all graphs which are arbitrarüy traceable by takmg a
topological tree T and pm each vertex of T by a number of sides to a new vertex a in
such a manner that in the resultmg graph each vertex is of even order.

The construction is ülustrated m Fig. 5.
Since a tree is a planar graph it is clear that all arbitrarüy traceable graphs must

be planar.
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5 The problem which we have discussed in the precedmg may be considered as a
problem of constructmg a set of roads such that when one always follows new paths
at each mtersection all paths will be covered a Single time and one returns to the
startmg pomt Such a pattern would be suitable for the lay-out of an exposition.

There are several simüar questions which one may discuss If one supposes that the
roads are lmed with shops and one will cover all roads once in both directions, this
is always possible, as one easüy reahzes But one may restnct the paths by requinng
that one shall not be permitted to return along the same road immediately from any
of the intersections, then certam restnctions must be imposed on the graph. One

may also ask when it is possible to cover the graph m this manner by any route if
one only follows the rule that a new path shall be selected whenever one reaches an
mtersection I leave some of these problems to the study of the reader.

Oystein Ore, New Haven (Conn., U.S.A.)

Ein zeichnerisches Lösungsverfahren
für Differentialgleichungen zweiter Ordnung

Ist eine Differentialgleichung zweiter Ordnung m der explizit darstellbaren Form
gegeben

y" f(x,y>y')>

so laßt sich zu ihrer genäherten zeichnerischen Integration em Verfahren verwenden,
das nicht nur zu einer ersten raschen Orientierung über den Losungsverlauf geeignet
ist (wenn von Singularitäten abgesehen wird), sondern das auch so genau ausgeführt
werden kann, daß es ohne weiteres den üblichen praktischen Erfordernissen genügen
durfte Das Verfahren stutzt sich lediglich auf elementare Eigenschaften der gewohnlichen

quadratischen Parabel, aus der man sich die gesuchte Integralkurve stuckweise

zusammengesetzt denkt Ein einzelnes solches Stuck ist m der Fig 1 dargestellt.
Fur eine quadratische Parabel gilt bekanntlich, daß die Abszisse x des Schnittpunktes

T zweier benachbarter Tangenten I und II gerade in der Mitte zwischen den

Abszissen ihrer beiden Berührungspunkte / und 2 hegt Haben diese den Abstand Ax
voneinander, so laßt sich wegen des geradlinigen Verlaufes der ersten Ableitung y'
die zweite Ableitung y" im Parabelpunkte P mit der Abszisse x wie folgt ausdrucken

yi-y'i 1 lAy*
___

Ayi\
y Ax Ax \Ax Ax I '

oder mit der zeichnerisch bequemeren Benutzung ähnlich vergrößerter Dreiecke

1 /
dx \

k2 _ M Ak
h h ] h Ax

Hat man also beispielsweise die konstante zweite Ableitung y" einer quadratischen
Parabel gegeben, so lassen sich nach der Wahl einer Anfangstangente I m einem

Anfangspunkt / weitere Tangenten II, auf folgende Weise zeichnerisch finden
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