
On Euler's idoneal numbers

Autor(en): Steinig, J.

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 21 (1966)

Heft 4

Persistenter Link: https://doi.org/10.5169/seals-24651

PDF erstellt am: 14.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-24651


ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El Math Band XXI Heft 4 Seiten 73-96 10 Juli 1966

On Euler's Idoneal Numbers
1. Introduction

In his 1621 edition of the Arithmetic of Diophantus [1], Bachet de M__ziriac
cautiously observed that 'almost all' primes of the form 4 £ 4- 1 are representable
as a sum of two integral Squares1). Albert Girard went a step further and stated2)
without proof in 1625 and 1634, in commentaries to his edition of Simon Stevin's
mathematicai works ([2] and [3]) that all such primes are thus representable.

In 1641 Fermat communicated3) the same theorem to Frenicle de Bessy [4],
while a stronger formulation affirming the uniqueness of this representation for a

given prime is enunciated4) in a letter [5] to Mersenne dated 1640, and also appears
as a marginal note5) in Fermat's copy of Bachet's Diophantus [6].

Frenicle probably discovered independently that a prime can have at most one
representation, for in his reply [7] to Fermat's letter he proposes6) the problem of
factoring some integer which has several expressions as a sum of two Squares; in
particular he asks Fermat to deduce from 221 102 4- H2 52 4- 142 that 221
13 • 17.

Fermat's proof of Girard's theorem is outlined in a very interesting letter [8]
sent to Carcavi in 1659, which contains an account of his principal methods and dis-

1) '... quandoquidera omnes fere huiusmodi numeri componuntur ex duobus quadratis, quales sunt
5. 13. 17. 29. 41. aluque primi numeri qui sublata unitate relmquunt numerum panter parem'.

2) 'Determmaison d'un nombre qui se peut diviser en deux quarrez entiers
I. Tout nombre quarrt.
II. Tout nombre premier qui excede un nombre quaternaire de l'unitä.
III. Le produict de ceux qui sont tels.
IV. Et le double de chascun d'iceux.'

8) 'La proposition fondamentale des triangles rectangles est que tout nombre premier, qui surpasse de
l'unitö un multiple de 4, est compos6 de deux quarr^s'.

4) 'Tout nombre premier, qui surpasse de l'unit6 un multiple du quaternaire, est une seule fois la somme
de deux quarret, et une seule fois l'hypot^nuse d'un triangle rectangle'.

5) 'Numerus pnmus, qui superat unitate quaternarn multiplicem, semel tantum est hypotenusa trianguh
rectanguli'.

6) 'Sur le sujet des triangles, voici ce que je vous proposerai encore: Une hypot^nuse eompos^e 6tant
donnee avec les quarr^s premiers entre eux qui la composent par leur addition, trouver ses parties. Que 221

soit rhypot&ause donnee avec les quarr^s qui la composent, savoir* 100,121 et 196, 25, il faut trouver par
le moyen d'iceux que 221 a 13 et 17 pour parties'.
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coveries in number theory. He writes7) that after several unsuccessful attempts he
has obtained a proof by 'descente mfinie'.

A natural question to ask is whether a prime 4 k 4- 3 is representable as a sum of
two Squares; it is very simple to show that this is impossible, and indeed that no
integer of this form can be thus represented. This result was known to Fermat, who
mentioned it in a letter [9] to Roberval8)

It is evident that if a prime is a sum of two natural numbers they must be relatively
prime. Bearing this in mind, the results of Girard, Fermat, and Frenicle yield the
following theorem:

An odd prime is representable as a sum of two Squares ij and only if it is of the form
4 ß 4- 1. This representation is unique, and the two Squares are relatively prime9).

This in turn provides two critena for pnmality; it follows that an odd integer is

composite in either of the following cases: a) it is of the form 4^4-1 but is not representable

as a sum of two Squares, thus 21; b) it has several such representations, as 221.

Fermat died in 1665, and no further progress was made for about a Century,
until Euler published the first recorded proof of Girard's theorem10) in 1760 and
then sought to obtain another criterion for primality by proving a converse of the
sharper theorem of Fermat. We know that an odd integer which is a sum of two
Squares must be of the form 4 k 4- 1; may one affirm that an odd integer which is

uniquely representable as x2 4- y2 is a prime it (x, y) 1 Euler proved that this is

indeed true (except for the trivial case x 1, y 0); his discovery can be expressed
as follows: An odd integer greater than 1 which is a sum of two Squares in only one way
is a prime if these Squares are relatively prime.

Unfortunately he twice gave an erroneous formulation of this result. The first
occurs in a letter [10] to Goldbach, dated 1745, where Euler writes (Si numerus

4n+ 1 umco modo in duo quadrata resolvi possit, tum certe erit numerus primus',
which is obviously wrong since 45, although composite, has the unique representation
45 - 32 4- 62.

Then in 1758 he published [11] a proof of his converse, which he enunciated in the
following manner: 'Si numerus formae 4^4-1 unico modo in duo quadrata inter se prima
resolvi queat, tum certe est numerus primus'. This is also incorrect; he should have
written 'Si numerus ma]or quam unitas et formae 4w+ 1 unico modo in duo quadrata
resolvi queat, ac ea quadrata inter se prima sint, tum certe est numerus primus''.

Indeed, it is one thing to say that an integer has a unique representation as a sum
of two relatively prime Squares, and quite a different one to say that an integer has a

unique representation as a sum of two Squares and that these are relatively prime.

7) '...si un nombre premier pns ä discretion, qui surpasse de l'umt£ un multiple de 4, n'est pomt
compose" de deux quarräs, ü y aura un nombre premier de meme nature, momdre que le donnö, et ensuite un
troisieme encore momdre, etc. en descendant ä 1'infmi jusques ä ce que vous arriviez au nombre 5, qui est le
momdre de tous ceux de cette nature, lequel il s'ensuivroit n'Mre pas compose" de deux quarrös, ce qu'ü est
pourtant. D'oü on doit m_erer, par la d^duction ä l'impossible, que tous ceux de cette nature sont par
consequent composes de deux quarr^s'.

8) *... j'ai autrefois demonträ qu'un nombre momdre de l'umt6 qu'un multiple du quaternaire n'est ni un
quarrt, ni composd de deux quarräs, ni en entiers ni en fractions*.

9) In saymg that an integer is a sum of two Squares, I mean two Squares of nonnegative integers. Further,
two representations which differ only in the order of the summands are considered to be identical, thus 49 is
uniquely representable as a sum of two Squares (but these are not relatively prime).

10) Euler attnbuted [32] the theorem to Fermat.
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For instance, although 125 is not a prime, it is a sum of two relatively prime Squares m
only one way 125 22 4- ll2 52 4- 102 Euler himself undoubtedly had an ac-
curate idea of what he had proved, for he knew that an integer with several representations

as a sum of two Squares must be composite In fact he correctly wrote [12] some
twenty-tive years later that' tam rigorose est demonstratum omnes numeros, qui unico
tantum modo sunt summae duorum quadratorum, semper etiam esse primos, dummodo

fuennt impares, atque numeri x et y primi inter se, quae levis hmitatio sponte sua patet'
A contemporary of Euler s, Beguelin, probably noticed his error, and gave [13]

a formulation which is both correct (apart from the trivial case noted above) and
extremely elegant ' M Euler a demontre que tout nombre impair qui est la
somme de deux quarres premiers entr'eux, est un nombre Premier lorsqu'il ne peut pas
etre decompose en deux autres quarres'

However, Euler's unfortunate lapses were the ongm of errors which have
persisted up to our day For example F Rudio wrote in his preface [14] to Volume I
of Euler's Commentationes Arithmeticae that 'Wenn sich eine Zahlin 4-1 nur auf eine

einzige Art als Summe von zwei Quadraten, die unter sich prim sind, darstellen lasst, dann
ist sie sicher eine Primzahl', which contains the same syntactic error as Euler's article
Then, in Rudio's preface [15] to Volume II we find the passage ' Zahlen der Form
4 «4-1 Von diesen hatte er bewiesen, dass sie prim sind, falls sie sich nur aufeine einzige
Weise in der Form a2 4- b2 darstellen lassen which repeats the mistake of Euler's
letter to Goldbach Finally R Fueter, who prefaced [16] Volume III, gives Euler s

result as ' Ist namhch eine Zahl nur auf eine Weise als Summe von zwei Quadraten
darstellbar, so muss sie Primzahl sein to which we can object that 10 l2 4- 32 without

bemg a prime
In his search for further cntena of pnmahty, Euler then discovered that certain

other forms can be put to the same use as x2 4- y2 some natural numbers D have the
mteresting property that any odd integer greater than unity which is representable as

a x2 4- ß y2 in a Single manner is a prime if<x.ß D and (oc x, ß y) 1 These particular
values D he named 'congruent' or (more frequently) 'idoneal' numbers

Most of his theorems concerning idoneal numbers are stated without proof, and he

admits that they are based on induction, by which he means that he has not en-
countered any counterexamplen) Also, many of his statements are unclear or
mcomplete and several of his errors have been transmitted by later authors, thus

creatmg a somewhat confused state of affairs
After this Situation had come to hght dunng a seminar, Professor H Hopf sug-

gested that I attempt a histoncal and cntical appraisal12) of the subject, I would hke
to seize this opportumty to express my gratitude for his constant mterest and

unfaihng kindness

2. A Property of Binary Quadratic Forms
In 1778 Euler announced [12] the following property of binary quadratic forms,

which is an extension of the result obtamed by Fermat and Frenicle for the form

n) In the summary mtroducmg Euler's Spectmen de usu observahonum \n mathesi pura [17] we find the
passage 'Talis cognitio solis observatiombus mmxa, quamdiu quidem demonstratione destituitur, a ventate
sollicite est discernenda atque ad inductionem referri solet (for a translation of relevant extracts of this
summary and comments on Euler's use of induction, see G Pölya [18])

12) Another essay on this subject has recently been written by I G Melnikov [19]
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x2 4- y2 ' constat omnes numeros, qui in taii forma m x x 4- ny y duplici modo

contmentur, certe non esse primos, siquidem numeri m et n ambo fuerint positivi '

Ihe condition that the coefficients m and n be positive is essential, as Euler himself
points out with the example 2 x2 — y2, which represents the prime 7 for infinitely many
pairs of natural numbers x, y This important restnction is unfortunately omitted13)
m other articles ([20], [21]) Euler gave two proofs of this theorem, both consist m
showing how an integer with several representations can be factored, and both are
incomplete

His first proof ([20], [21]) is as follows let the integer N have two different
representations by the form a x2 4- ß y2

N oLa2 + ßb2 aA2 + ßB2 (1)

By elimmating ß we get

N (B - b) (B 4- b) a (a B + A b) (a B - A b), (2)

and Euler [20] concludes 'unde satis patet numerum N primum esse non posse, sed

certe communem factorem habere, tarn cum formula a B + Ab quam cum formula
aB — A b, quandoquidem istae formulae diversae sunt a prioribus B 4- b et B — b' u)
This is not very convmcmg, it makes no use of the fact that a and ß are positive, and
conceivably one of the parentheses (a B 4- A b) or (a B — A b) could be a multiple
of N, thus reducmg (2) to a trivial identity To complete Euler's proof, we remark
first that there is no loss of generahty in assuming a a2 and ß b2 to be relatively prime
for any common factor of these two integers divides N Clearly, the condition
(oca2,ßb2) 1 implies that (N,<x) 1, and this together with (2) shows that N
divides the product (a B 4- A b) (a B — A b) Therefore it is sufficient to prove the
inequality N > \a B ± A b\ m order to show that both parentheses have a non-
tnvial common factor with N This can be done by multiplymg the two representations

m (1) to obtain the relation15)

2V2 (oiaA ±ßbB)2 + oiß(aBT A b)2, (3)

whence N2 ><x.ß (a B ± A b)2, smce a ß > 1, it follows that

N2 >(a B ± A b)2,

and therefore N^aB + Ab>\aB — A b\ Itis easily seen that equality cannot

occur, smce this would imply a ß 1 and a A b B, thus givmg two identical
representations in (1)16)

18) For example in [20] we read 'Si numerus N duplici modo contmeatur in taii formula a x x +ß y y,
ubi a et ß sunt numeri dati quicunque, tum certum est ülum numerum N non esse primum, atque adeo eius
divisores facile mvestigan poterunt'

u) This was translated [21] by Euler's assistant Nicolas Fuss for Beguelin as follows ' par
consequent le nombre propos^ N aura dans ce cas ci toujours un facteur commun tant avec a B + Ab
qu avec a B— A b, parce que ces formules sont toutes differentes des formules B + b & B—b '

15) Euler applied this relation in [20] to prove that the product of two numbers of the form ot x% 4ß y*
is of the form x% +aß y%

16} Nagell [22] and Trost [23] prove Euler's theorem by using (2) and (3) to show that if N is a pnme,
the two representations in (1) must be identical
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Euler's second proof rested on another method for factonng an integer N which
has several representations In [24] he explams it for the particular case a 1, let

N a2 4- X b2 x2 + X y2, (4)

and wnte this as (a + x)j(b + y) X (y — b)j(a — x) Then simphfy the fraction on the
right until numerator and denominator are relatively prime (y — b)/(a — x) pjq
with (p, q) 1, so that y — b np and a — x n q for some integer n Thus
(a 4- x)/(y 4- b) Xp/q and Euler sets a + x Xmp,y + b mq From the four
equations

y — b np y 4- b mq
a — x n q a 4- x Xmp

one obtains a (n q + X mp)j2 and b (mq — np)/2, whence by replacmg in (4),

N i- (X m2 4- w2) (A £2 4- ?2) (5)

Euler then asserts ' unde palet formulam Xpp 4- qqvel ipsam vel eius semissem vel

quadrantem esse factorem numeri propositi N', which is not always correct, if (X, q) > 1,

m is not an integer, and then Euler's conclusion is erroneous17) However, his
mistake is easily repaired by settmg (X, q) t and X t X', q tq' We then get
y 4- b m' q' and a + x X' m' p, where m' is an integer As above we obtain

N -1 (X' m'2 + t n2) (Xf p2 4- t q'2), (6)

and it is not difficult to show that (6) yields two non-tnvial factors of N18)

Euler indicated ([12], [20], [21]) a similar method for obtammg factors of an

integer which has several representations when 1 < a < ß, but his account contains
the same type of error as for the case a 1

A rather well-known Illustration of Euler's method for factonng large integers
concerns the number 1000009 After provmg his converse to Fermat's theorem for the
form x2 4- y2, Euler concluded his article [11] of 1758 with several examples, one of
which consisted in showmg that 1000009 is expressible as a sum of two Squares in two
different manners and is therefore not a prime Then in 1774 he discussed the problem
of constructmg a table of primes, and gave a hst [26] allegedly contaming all primes
between 106 and 1002000, but which in fact onutted one prime and mcluded several

composite numbers19), m particular 1000009 A correction to this effect appeared [27]

in the Proceedings of the St Petersburg Academy of Sciences for 1777, and m 177820)

Euler again showed [28] that
1 000 009 10002 4- 32 2352 + 9722,

whence he mferred that this integer is composite and has the factors 293 and 3413,

both primes21)

17) A similar mistake occurs in Trost [23], and was pomted out by L Schoenfeld in his review [25]
of this book

18) This depends on the fact that A, and hence A', are positive
19j See F Rudio's footnote to page 403 of [26]
20) Although written in 1778, [28] was not published untü 1797, for the reasons set out in §5
21) L E Dickson mistakenly writes [29] 'L Euler proved that 10002+ 32 is a prime smce not expressible

as a sum of two Squares in another way'
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3. The Form x2 + y2

a) Euler's Proof of Girard's Theorem

Let us now bnefly examine Euler's proof of Girard's theorem He enters upon
this subject for the first time in his Theoremata circa divisores numerorum in hac forma
P & a ± qbb contentorum [30], published m 1751 but probably wntten between 1744
and 1746 22) In this article he formulates fifty-mne theorems, which may be separated
into two categones The first type of theorem states that all prime divisors of a certain
binary quadratic form must also be contamed in certain linear forms For example,
if (a, b) 1 we have 'Numerorum in hac forma a a -\- b b contentorum divisores primi
omnes sunt vel 2 vel huius formae 4m+l numeri'23)

The second category contains theorems stating that if a prime has a prescnbed
hnear form, then it is also representable by a certain binary quadratic form For
instance, 'Omnes numeri primi huius formae 4 m 4- 1 vicissim in hac numerorum
formula a a 4- bb contmentur', this is Girard's theorem None of the theorems stated
m this article are proved, but Euler came very near to provmg Girard's theorem in
his De numeris qui sunt aggregata duorum quadratorum [11], wntten about 1752 and
published m 1758, several of its results were already commumcated by Euler to
Goldbach m 1745 [10] and 1747 [31] This paper contains the following proposition
'Summa duorum quadratorum inter se primorum dividi nequit per ullum numerum,
qui ipse non sit summa duorum quadratorum', which Euler estabhshes by a method of
descent

He then reasons as follows smce each divisor of a sum of two relatively prime
Squares is ltself a sum of two Squares, Girard's theorem would be proved if one could
show that every prime 4 n 4- 1 divides some sum of two relatively prime Squares
In a paragraph entitled Tentamen demonstrationis, he attempts to show that this is
indeed the case let p 4 n 4- 1 and (a, b) (a, p) (b, p) 1 Then we have

ap-i ^bP-i _ x (modp),

whence p \ a*-1 - b*-1, which is the same as p \ a*n - b*n or p \ (a2n - b2n) (a2n + b2n)

Smce p is a prime, it must divide at least one of the two parentheses It remains to
show that, for each prime p of the form 4 n 4- 1, it is possible to choose a and b m
such a manner that p -f a2n — b2n Then we would have

P I (an)2 + (&n)2 Wlth « bn) 1,

so that p would be a sum of two Squares
This last difficulty was overcome in Demonstratio theoremahs Fermahani, omnem

numerum primum formae 4w4l esse summam duorum quadratorum [32], published m
1760 There he actually shows how to finda and b xip 4n+l, consider the sequence
1, 22", S2n, {4n)2n, and construct its first differences 22n - 1, 32n - 22rt,

(4 n)2n — (4 n — l)2n Now at least one of these terms is not divisible by p, for other-
wise p would also divide all the second differences, and so on for the third, fourth and

n) The article appeared m the Commentam academiae sctenttarum Petropohtanae for the years 1744-46,
which were printed in 1751

28) This theorem already appears in Fermat's letter [9] of 1640 to Roberval {'Si un nombre est compose"
de deux quaires premiers entre eux, je dis qu'il ne peut 6tre divis6 pär aucun nombre premier momdre de
Turnte qu'un multiple du quaternaire')
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following differences. But the differences of order 2 n are constant and all equal to
(2 n) Since p is a prime greater than 2 n, it cannot divide (2 n) Hence,

p 4 c2n - (c - l)2n for some c, 2 < c < 4 n.

Further, 4 w 4- 1 is a prime and c < 4 » -f- 1, so that (c-l,4w+l) (c,4w+l) l.
Also, (c, c — 1) 1 and therefore

/> | c2n 4- (c - l)2n, with (cn, (c - l)n) 1.

This is Euler's proof; extremely ingenious, but also rather complicated. He later
used similar devices for the forms x2 4- 2 y2, which represents primes 8 k 4- 1 and
8 ß -f 3, and x2 + 3 y2, which represents primes 6 ß 4- 1.

b) Euler's Converse of Fermat's Theorem

The second article [11] mentioned above also contains the theorem 'Si p et q sint
duo numeri, quorum uterque est summa duorum quadratorum, erit etiam eorum productum
p q summa duorum quadratorum'; Euler proves this with the identity

(a2 4- b2) (c2 + d2) (ac + bd)2+ (ad-bc)2=(ac-bd)2+ (ad+b c)2,

which was already known to Diophantus.
If b > 0 and d > 0 we have a c -\- b d > a c — b d, so that the two representations

are identical only if ac + bd ad + bc. But this is the same as (a — b) (c — d) 0,
which implies that a b or c d, and hence that p q is even.

Therefore, the product of two odd integers, each of which is a sum of two Squares
of natural numbers, is a sum of two Squares in at least two different ways.

Now let N be odd and N x2 4- y2 in only one way, and that with (x, y) 1.

We know that all divisors of N are also sums of two Squares. If N is greater than 1,

it is either prime or composite. But if N were composite, it follows that _V would have
several representations as a sum of two Squares. Therefore Af must be a prime. This
completes the proof of the following proposition: 'An odd integer greater than 1 which
is a sum of two coprime Squares is a prime if it has no other representation as a sum of
two Squares', which is a correct formulation of Euler's converse to Fermat's theorem
for the form x2 4- y2.

Euler then briefly remarks that certain even integers have only one representation

as a sum of two Squares, as 10 1 4- 9. Some twenty years later he mentioned24)
that if the two Squares are relatively prime, such integers are always the double of a
prime. He never set down his proof, but his article contains enough hints to permit us
to reconstruct it: let N 2 iV' x2 4- y2 in only one way, and that with (x, y) 1.

Since N is even and (x, y) 1, x2 and y2 must both be of the form 4 & 4- 1. This
indicates that 4 f N, and hence that N' is odd. Now 2 2V' x2 4- y2 implies N'
a2-\-b2, where a (x — y)/2 and b (x 4- y)/2 are integers; conversely, N'
a2 4- b2 implies N 2 N' (a — b)2 4- (a 4- b)2, so that there are as many representations

of N' as of N as a sum of two Squares. Finally, we must have x a — b and

y a 4- b, whence (a- b,a H- b) (x, y) 1, and therefore (a, b) 1.

Thus N' is odd, uniquely representable as a sum of two Squares, and these are

relatively prime. Therefore AT must be a prime if N' > 1, and we have the following

*4) See the quotation from Euler's letter [40] to Beguelin reproduced in §5.
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theorem: An even integer N > 2 which is a sum of two Squares in only one way is the
double of a prime if these Squares are relatively prime.

In 1769 Euler published the essay Quomodo numeri praemagni sint expiorandi,
utrum sint primi necne [33], where he applied the results which we have just discussed
to test several large integers of the form 4 & + 1 for primality. He showed that the
representations

3 861 317 9612 4- 17142 and 10 091 401 12512 + 29202

are unique, and concluded that these two integers are primes.

4. The Forms x2 + 2 y2 and x2 + 3 y2

In 1654 Fermat affirmed in a letter [34] to Pascal that all primes of the form
8^4-lor 8^4-3 are (uniquely) representable as x2 + 2 y2 in natural numbers x
and y25). There is also a letter from Fermat to Kennelm Digby [35] dated 1658 which
mentions the same result.

Then in 1756 Euler wrote in his Specimen de usu observationum in mathesi pura
[17] that he had attempted without success to prove this theorem, and that he was
also incapable of proving several similar theorems which he believed to be true26),
such as 'Omnes numeri primi in aliqua harum formularum contenti 24 n 4- 1, 24 n 4- 7

simul quoque sunt formae 6 a a 4- b b', or 'Omnes numeri primi in alterutra harum
formularum contenti 24 n + 5 et 24 n 4- 11 simul sunt numeri formae 3 a a 4- 2 b b'.

It was only in 1774 that Euler published [36] a proof of Fermat's theorem for
x2 _j_ 2 y2, However, in his article [17] of 1756 he established a converse to this theorem
by reasoning as for x2 -j- y2: if (x, 2 y) 1, each divisor of x2 4- 2 y2 is of the same
form, and since

(2 a2 4- b2) (2 c2 4- d2) (2 a c ± b d)2 4- 2 (a d =F b c)2,

a product of two odd primes of the form x2 4- 2 y2 is expressible in this same form in
two different ways. He comes to the following conclusion: 'Si numerus formae
2 a a 4- b b unico modo in hanc formam fuerit resolubüis atque a et b fuerint primi inter
se, tum ille numerus certe est primus'. This is not quite correct, as shown by the example
38 62 4- 2 • l2. What Euler should have written (and what he in fact proved) is

'Si numerus impar formae 2a a -j- bb et maior quam unitas unico modo in hanc formam
fuerit resolubüis atque a et b fuerint primi inter se, tum ille numerus certe est primus'.

Euler then conveniently albeit not quite correctly expressed Fermat's theorem,
his own converse and the particular case of the theorem discussed in §2 which concerns
the form x2 4- 2 y2 as a Single proposition: 'Si numerus quicunque in alterutra harum
formularum 8n + 1 vel 8 n 4~ 3 contentus nullo modo in formam 2a a 4- bb resolvi
possit, tum non erit primus; at si unico modo in hanc formam possit resolvi, tum erit
primus; sin autem plus uno modo haec resolutio succedat, tum pariter non erit primus,
sed compositum'. If we correct it by adding the restriction 'at<jue a et b inter se primi sint'
after the verb 'resolvi', then the second and third parts of this statement are respec-

m) 'Tout nombre premier, qui surpasse de 1 ou de 3 un multiple de 8, est compose" d'un quarrt et du double
d'un autre quairi, comme 11, 17, 19, 41, 43, etc.'

M) The theory of binary quadratic forms can be applied to show that all of Euler's theorems of this
type enunciated in [17] are correct.
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tively Euler's converse and a particular case of the theorem of §2, while Fermat's
result follows from the third part and the contraposition of the first.

It is interesting to note that Euler had already applied [37] this criterion for
primality in 1750, six years before publishing a proof, to show that 198899 is a prime.
He indicated that the representation 198899 4412 4- 2 • 472 is unique, and added
the incorrect statement 'Certum autem est, si quis numerus unico modo in forma
2 a a + b b contineatur, tum eum esse primum, sin autem duplici vel pluribus modis ad
formam 2a a + bb redigi queat, tum eum esse compositum', whence he deduced that
198899 is a prime (which is correct, since 47 and 441 are relatively prime).

In his letters to Pascal27) and Digby, Fermat further asserted that all primes of
the form 6 k 4- 1 are also of the form x2 4- 3 y2. Euler proved [38] this in 1760 by
essentially the same method as he had used for x2 4- y2, first showing that if (x, 3 y)
1, every odd prime divisor of x2 4- 3 y2 is again of the same form. Surprisingly, he did
not proceed to prove a converse to Fermat's theorem for this form, as he had done
with x2 4- y2 and x2 4- 2 y2, but applied this property of the divisors of x2 4- 3 y2 to
obtain Solutions for the Diophantine equation x3 4- y3 4- z* v3.

5. Euler's Discovery of the Idoneal Numbers

We have seen in the preceeding sections how Euler, in considering theorems of
Fermat on the forms x2 + dy2 for d 1, 2 and 3, noticed that these three forms
provide necessary and sufficient conditions for the primality of certain classes of
integers.

Then in 1777 Beguelin published an article28) [13] concerned with the form
x2 4- y2. Euler, who had been blind for the past eleven years29), had it read to him
and in May 1778 sent Beguelin a letter [40] in which, after recalling '...cette belle

propriete, que tous les nombres qui ne sont contenus qu'une seule fois dans la formule
x x 4- y y, sont ou Premiers, ou doubles de premiers, en prenant les nombres x et y
Premiers entreux', he announced the discovery of several other forms with a similar
property: 'Or j'ai remarque que plusieurs autres formules semblables de la forme n x x 4-

y y sont douees de la meme propriete, et que, pourvu qu'on donne ä la lettre n des valeurs
convenables, telles que, par exemple, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 etc. on en tire toujours
des nombres premiers...'. Although it is not immediately clear what Euler means by
'on en tire toujours des nombres premiers', his idea is that for certain forms m x2 4-

n y2 a uniquely representable odd integer greater than one is a prime if m x and n y
are relatively prime. The main reason for the vagueness of Euler's Statement is a
rather unusual acceptation of the word 'prime' in several of his texts; another reason
is that he probably considered his meaning sufficiently clear, and trusted that
Beguelin would provide a more precise enunciation if he found it necessary.

This second explanation is suggested by a more detailed letter [21] on the same
subject, written to Beguelin on Euler's behalf by his assistant Nicolas Fuss.
There we read 'II y a des formules de cette forme, par exemple x2 4- y2, 2 x2 4- y2,
3 x2 + y2, 3 x2 4- 2 y2, 5 x2 4- y2, 5 x2 4- 2 y2 etc. dont il est demontre que tout nombre qui

27) 'Tout nombre premier, qui surpasse de runite" un multiple de 3, est compos6 d'un quarrt et du triple
d'un autre quarrt, comme 7, 13, 19, 31, 37, etc.'

u) I have already quoted from this article in my introduction.
M) An interesting account of Euler's progressive loss of eyesight may be found in Fueter [39].



82 J Steinig On Euler s Idoneal Numbers

n'y est contenu que d'une seule facon, est premier, excepte quelques cas qui sont evidens

par eux-memes ' 30) (We remark m passmg that Fuss exaggerates somewhat in
wntmg 'il est demontre', smce Euler could only prove this for the first three forms)

The first reason is mdicated by Fuss and also by Euler himself Euler points
out m one of his articles [12] that in considermg the form m x2 4- n y2 he uses the word
'prime' m a more general sense than usual ' non solum numeri primi ipsi p, sed

eham 2 p et dp instar primorum spectan queant, denotante d divisorem quempiam numeri
m n, quibus adeo certis casibus eham potestates binarn annumerare licet', all other natural
numbers he calls 'truly composite' ' omnes rehquos numeros, quos revera compositos
vocemus ' In a later text [20] he added that Squares of primes must also be
considered as primes ' hmc si p sit numerus primus, in hac mvestigatione, praeter ipsum
numerum p, eham eius quadratum p p simulque eius duplum 2 p ut primi spectan
debebunt, praeterea etiam omnes potestates binarn pro primis spectan debent'

Fuss wrote in his letter to Beguelin that' tout nombre de la forme m x x 4- y y
n'est cense etre compose que lorsque outre le facteur de 2 m il contient encore deux ou
plusieurs autres facteurs premiers entr'eux', for him a number is a 'prime' when it is of
the form tpr, where t\2m However, Euler's class of 'primes' is too small (for
instance it does not mclude integers of the form 2 b p, such as 30 52 4- 5 • l2), while
Fuss' may be reduced somewhat, in order to Interpret Euler's theorems and defini-
tions correctly, it is sufficient to call an integer 'prime' with respect to the form
m x2 4- n y2 when it is of one of the forms tp, tp2 or t 2\ where t\2mn

These two letters contain the substance of a series of five articles which Euler
had presented to the St Petersburg Academy of Sciences in March 1778, some two
months before commumcatmg his results to Beguelin They were only published in
the years 1801 to 1806, a delay which Euler certainly anticipated smce Fuss prefaced
his letter to Beguelin by explammg that 'Mr Euler m'a charge de vous en faire le

petit Extraü que vous trouverez ci-joint, considerant que la pubhcation des Mdmoires qu'il
a composes depuis peu de tems sur ce sujet, pourroit bien etre differee trop longtems'

This delay is best explamed by the following passage from the eulogy [41] which
Fuss pronounced on Euler in 1783 'M Euler s'etait engage plus d'une fois envers le
Comte Orlof, de fourmr ä l'Academie assez de mdmoires, pour remphr les Actes ]usqu'a
vmgt ans apres sa mort, %l etait homme ä tenir sa parole'

The most important of these five articles is Deformuhs speciei mxx + nyyad
numeros pnmos explorandos idonets earumque mirabihbus propnetatibus [12], which
appeared in 1801 In the openmg section Euler states the theorem which we have
already encountered in §2 ' constat omnes numeros, qui in tah forma m x x 4- ny y
duplici modo conhnentur, certe non esse pnmos, siqmdem numeri m et n ambo fuerint
posihvi ' He then raises the following question smce primes have at most one
representation, may one affirm that an integer with exactly one representation is a 'prime'
m the sense explamed above This is generally untrue, as evmced by the form 7 x2 4- 2 y2

which represents 15 m a Single manner and with (x, y) 1 Thus, as Euler writes,
'Ex quo manifesto apparet istam proposihonem mversam, quod numen unico tantum
modo in tah formula mx x 4- ny y contenti eham smt numen primi, in genere verüate
non esse consentaneam' But the fact that this proposition is true for the forms x2 4- y2

m) lt was Euler's custom to wnte mx% 4 ny2 with m > nf the notation m < n was introduced by
Gauss,
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and x2 4- 2 y2 suggests the possibility of finding other values of m and n for which the
form mx2 -\- ny2 has the property that an odd, uniquely representable integer greater
than unity is a prime if (m x, n y) 1. Examples of such forms are 3 x2 4- y2, 3 x2 4- 2 y2,
5 x2 4- 3 y2 and so on, of which Euler writes '... iam demonstratum, vel saltem obser-
vatum est, quod omnes numeri in quapiam earum unico tantum modo contenti etiam certe
sint primi, si modo paucissimi casus, per se perspicui, excipiantur; scilicet quando numeri
vel sunt pares, vel cum numeris m et n communem divisorem recipiunt. Quin etiam in
cerlis formulis evenire potest, ut adeo potestates binarii unico modo contineantur, veluti
numerus 8 in formula 5 x x 4- 3 y y quibus ergo casibus potestates binarii numeris
primis aequivalere sunt censendae...'.

Euler calls such forms 'congruent', and gives the following definition: 'Quando
numeri m ein ita sunt comparati, ut omnes numeri unico modo in formula m x x 4- ny y
contenti sint vel ipsi primi vel tantum binarium vel quempiam factorem numerorum m
et n involvant, vel etiam certis casibus sint potestates binarii, tales formulas in sequentibus
formulas congruas appellabimus; ubi quidem per se perspicuum est ambos numeros xety
inter se primos accipi debere'.

The latin 'vel' is not exclusive, so that Euler calls a form m x2 4- n y2 congruent
(or later idoneal) when every positive integer representable by it in exactly one way,
and that with (x, y) 1, is one of p, 2 p, 6 p, 2 6 p (where ö | m n) or 2A. It must be
noted that Euler forgets to mention integers of the form d 2A, such as 56 72 4- 7 • l2
or 24 32 4- 15 • l2. Thus, if we exclude even numbers and the integer l31), the only
integers uniquely representable and with (m x, n y) 1 are primes. He similarly
defines congruent or idoneal numbers: 'Omnes numeros, quos loco producti mn
assumere licet, ut formulae mxx -\- ny y evadant congruae, in posterum appellabimus
numeros idoneos vel etiam congruos, dum reliquos omnes incongruos vocabimus'.

Then Euler lists the sixty-five integers which he knows to be idoneal: this list
was also included in his letter to Beguelin but contained a misprint (44 instead of 45).
These numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30,
33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133,
165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462,
520, 760, 840, 1320, 1365, 1848.

At first he had imagined the sequence of idoneals to be infinite, and he registers
his surprise at not finding more than sixty-five:'... hoc phaenomenon maxime mirandum
se obtulit, quo! multitudo istorum numerorum neutiquam in infiniium excrescat, verum
adeo non plures quam 65 huiusmodi numeros complectatur'.

How did Euler determine whether a given positive integer is idoneal or not
In this article he explains his criterion, which consists in examining all integers of the
form mn 4- y2 and smaller than 4mn (i.e. with y2 < 3 mn). If they are all 'primes',
that is to say of one of the forms tp, tp2 or 12X with t \ 2 mn, then mn is idoneal:
'Si numerus m n ita fuerit oomparatus, ut omnes numeri in formula mn 4- y y contenti
et minores quam 4mn sint vel primi vel primis aequipollentes, tum iste numerus certe

erit idoneus et formula mn x x + y y congrua'.
In his letter to Beguelin, Euler had given a slightly different version of his

criterion (which he later repeated in another article [20]), by adding the restriction

n) Euler apparently forgets the trivial case l2 4 tn n • 02 1, but this can be included among the
integers of the form 2\ with A 0.
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that y and mn be relatively prime. He illustrated his method for Beguelin with
mn 60: one must test all integers 60 4- y2 with y2 < 180 and (y, 60) 1. The only
natural numbers y satisfying both conditions are y 1, 7, 11 and 13, and since
60 4- l2 61, 60 + 72 109, 60 4- ll2 181 and 60 4- 132 - 229 are all primes,
Euler concluded that 60 must be an idoneal number. Thus, although he correctly
listed sixty-five idoneal numbers, his method for obtaining them is not quite clear and
no proof is known for his criterion in either form.

Euler continues his article by formulating ten theorems concerning idoneal
numbers and forms; they are all correct, but several of his proofs are insufficient and
were later corrected by Grube [42], who also proved a criterion very similar to Euler's.
These ten theorems are the following:

1) The form m x2 4- n y2 is congruent if and only if x2 4- m n y2 is congruent.
2) The only idoneal numbers which are Squares are 1, 4, 9, 16, and 25.

3) If an integer 4 k — 1 is idoneal, so is 4 (4 k — 1).

4) If 4 i is idoneal and i is odd, then 16 i is also idoneal.
5) If X is some integer and X2 i is idoneal, then i is also idoneal.
6) When an integer 3 k — 1 is idoneal, so is 9 (3 k — 1).
7) When an integer 4 k 4- 1 {k > 1) is idoneal, then 4 (4 k 4- 1) is not idoneal.
8) If 4 k + 2 is idoneal, so is 4 (4 k 4- 2).
9) If i is odd and 8 i idoneal, 32 i is not idoneal.

10) If i is odd and 16 i is idoneal, 64 i is not.

Euler was clearly disturbed by the fact that there appears to be no greater
idoneal number than 1848; his aim in proving these ten theorems was probably to
render this more plausible by showing that when searching for idoneals, certain
classes of integers (such as Squares greater than 25) may be excluded right away.

He concludes this important essay by indicating that he has examined the positive
integers up to 10000 without encountering any new idoneals: 'Quia autem usque ad
decies mille nulli alii se mihi obtulerunt, multo magis verisimillimum videtur, post hunc
ierminum nullos praeterea existere...'.

The next article to be printed [20] was De variis modis numeros praegrandes
examinandi, utrum sint primi necne, in 1802. Here Euler repeats his list of idoneal
numbers and gives a proof of his criterion; unfortunately this proof contains several

important errors. He then determines several arithmetical progressions which contain
only a few idoneal numbers. The following example i^typical: the only idoneals of the
form 3 ß 4- 2 are 2,5, and 8. Indeed, according toEuler's criterion a necessary condition
for the integer 3 k 4- 2 to be idoneal is that 3 (k 4- 1) be of one of the forms tp,tp2 or
12\ with 11 2 (3 k -f- 2). But it is readily seen that these cases occur only when
k 0, 1 or 2, and we know that for these values 3 k 4- 2 is idoneal. The same result
can be established with Grube's criterion.

Two of the articles submitted by Euler in March 1778 appeared together in 1805

and are devoted to the search for large primes by means of idoneal forms.
In Facillima methodus plurimos numeros primos praemagnos inveniendi [43] he uses

the idoneal number 232 to find all primes of the form 232 a2 4- 1 with a < 300 by
excluding all values of a for which 232 a2 4- 1 232 x2 4- y2 with y > 1.

In Methodus generalior numeros quosvis satis grandes perscrutandi utrum sint primi
necne [24] Euler shows that 100003 is a prime, since it is uniquely expressible by the
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idoneal form 10 x2 4- 3 y2 as 100003 10 • 1002 4- 3 • l2. This integer is also (uniquely)
representable by the idoneal form 40 x2 + 3 y2:100003 40 • 502 4- 3 • l2, and Euler
remarks that the larger the idoneal number a ß, the easier it is to see whether there
is more than one representation by the form a x2 4- ß y2. 'Ex posteriori autem huius
numeri examme intelhgere licet in genere eo maius lucrum expectan posse, quo maiores
numeros pro <x.etß accipere hceat'; hence his disappointment at not finding any idoneals
beyond 1848. Similarly, 1000003 is a prime since it has only one decomposition
by the idoneal form 19 x2 4- 3 y2, namely 1000003 19 ¦ 82 + 3 • 5772, and (19 • 8,
3 • 577) 1

He discovers a very large prime by using the idoneal form 1848 x2 4- y2: the
integer AT - 18518809 1972 4- 1848 • 1002 is a prime since it has no other representation

by this form and (197, 1848 • 100) 1.

In a final section to this article, Euler gives a list of the 22 primes of the forafi
1848 a2 4- 1972 in the ränge 1 < a < 100.

Euler's last article on idoneal numbers appeared only in 1806, twenty-three
years after his death. It is entitled Illustratio paradoxi circa progressionem numerorum
idoneorum sive congruorum [44]; in it he again attempts to give some plausible
reasons for the finite number of idoneals.

6. The Idoneal Numbers in Mathematicai Literature
As we have noticed in examining Euler's various papers on binary quadratic

forms and idoneal numbers, his definitions and the formulation of his theorems vary
slightly from one article to the next. This is probably due to the blindness from which
he suffered during the last sixteen years of his hfe. His proofs are not all correct, and
indeed the greater part of his discovery is presented without proof, since the only
forms which he could show to be idoneal were x2 4- y2, x2 4- 2 y2 and x2 4- 3 y2 32).

Erroneous versions of Euler's theorems abound in mathematicai literature.
There are roughly two types of mistake, the one deriving from his unusual meaning
for the word 'prime', and the other resembling the error of syntax in his article [11]
of 1758 devoted to the form x2 4- y2. However, all sorts of combinations of these and
other errors can be found by a diligent searcher. For instance, many authors seem to
believe that Euler's articles contain proofs for the idoneity of all his sixty-five
numbers.

One of the earliest examples of the first sort of mistake appears in the summary
preceding Euler's last article [44] concerned with idoneal numbers; mentioning his

previous Methodus generalior numeros quosvis satis grandes perscrutandi utrum sint
primi necne [24], the author of this r6sum£ writes 'Ce memoire renferme une table de

tous les nombres &ß tels que tous les nombres contenus d'une seule maniere dans la

forme a x2 4- ß y2 soyent premiers'. This not only omits the important condition
(oc x, ß y) 1, but also neglects the particular meaning which must be read into the
expression 'nombre premier' in several of Euler's texts. The same error occurs in [23]
and in texts [45] through [47].

8a) Although Euler did not mention the fact, the idoneity of x2 + y2 implies that of x2 + 4 y2. Euler's
methods can also be applied to the form x% 4- 7 y2, which has the property that if (x, 7 y) 1, all its odd
divisors are expressible m the same manner. To prove the idoneity of the sixty remammg numbers requires
the theory of binary quadratic forms.
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A Ferrier committed an error of the second sort when he wrote [48] that 'Pour
qu'un nombre 4 n 4- 1, non carre, soit premier, il faut et ü suffit qu'il soit, et d'une
seule maniere, somme de deux carres premiers entre eux'33)

L E Dickson gave a rather confused account m Volume I of his History of the

Theory of Numbers [29] and m his Introduction to the Theory of Numbers ([50] or [51])
'In 1778 Euler found that these 65 idoneal numbers D are the only ones < 10000 havmg
the property that if ab D, every number represented byf=ax2-\-by2 (with a x prime
to by) is a prime, the square of a prime, the double of a prime, or a power of two If a
number is represented by f in a Single way, it is a prime

This is quite wrong, the quahfication 'in a Single way' should also be included in
the first sentence, while the second sentence should read Tf an odd number greater
than one ' Finally, it can be shown34) that if ab D, the only idoneal form a x2 +
b y2 which represents Squares of primes is x2 4- D y2, so that if p is a prime and p2 is
representable as x2 4- D y2 with x > 0 and y > 0, this representation is unique only if
we exclude the case y 0 Otherwise we may omit the phrase 'the square of a prime'
A corrected version of Dickson's statement would accordmgly be In 1778 Euler found
that these 65 idoneal numbers D are the only ones < 10000 havmg the property that if
ab — D, every number represented in a Single way by a x2 4- b y2 in nonnegative integers x
and y, and that with (a x, b y) 1, is a prime, the double of a prime or a power of two
Thus, if the number is odd and greater than one, it is a prime

A Aubry gave an Interpretation [52] which betrays a complete mcomprehension
of Euler's results ' Euler parle pour la premiere fois de ses fameux numeri idonei,
qu'il caractense par cette propriete qu'un nombre premier quelconque ne peut Ure re-
presente que d'une seule maniere par la forme x2 -f- k y2, si k est un numerus idoneus',
this property is the one expressed by Euler's theorem of §2, and in no way charac-
tenzes idoneal numbers

Many other references to false mterpretations of Euler's discovery are mentioned
m Melnikov's article [19]

In concludmg, we observe that Euler's results find their natural settmg m
Gauss' theory of binary quadratic forms (Disquisihones Anthmehcae, 1801) In the
language of this theory, an idoneal number is a positive integer D such that for the
discrimmant — 4 D there is a Single class of forms in each genus By applying this
theory, Grube [42] was able to prove almost all of Euler's propositions Only one
of his conjectures concerning idoneal numbers has^ never been verified although
S Chowla proved [53] that there are only finitely many, it is not yet known whether
1848 as the largest Results of J D Swift [54J indicate that there is none between
1848 and 2500000, while W E Briggs and S Chowla have shown [55] that there is
at most one idoneal number beyond 1065 J Steinig, Zürich
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