
On the coloring of signed graphs

Autor(en): Cartwright, D. / Harary, F.

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 23 (1968)

Heft 4

Persistenter Link: https://doi.org/10.5169/seals-26032

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-26032


D. Cartwright and F. Harary : On the Coloring of Signed Graphs 85

LITERATURVERZEICHNIS

[1] Bereis, R., Über das Raumbild eines ebenen Zwanglaufes (kinematische Abbildung von
Blaschke und Grunwald), Wiss. Z. TU Dresden 13, 7-16 (1964). - Hier findet sich auch
weitere Literatur uber Netzprojektion, z.B. [2] und [4],

[2] Bereis, R. und H. Brauner, Schraubung und Netzprojektion, El. Math. 12, 33-40
(1957).

[3] Bereis, R. und W. D. Klix, Parabolische Netzprojektion, Wiss. Z. TU Dresden 15,
453-458 (1966).

[4] Eckhart, L., Konstruktive Abbildungsverfahren (Wien 1926).
[5] Hermes, O., Über homologe Tetraeder, Crelles Journal 56, 222 (1859).
[6] Schur, F., Über besondere Lagen zweier Tetraeder, Math. Ann. 19, 429-432 (1881).
[7] Strubecker, K., Geometrie in einer isotropen Ebene, Math.-nat. Unterr. 15 (1962).
[8] Strubecker, K., Über Parabeln 2. bis 4. Ordnung, Praxis d. Math. 4 (1962).
[9] Strubecker, K., Über eine Kreisfigur, Crelles Journal 169, 79-86 (1933).

On the Coloring of Signed Graphs1)

A graph G consists of a finite set of points V(G) together with a prescribed subset
of the collection of all lines, i.e unordered pairs of distinct points. A signed graph S

is obtained from a graph G when each line of G is designated either positive or negative.
An n-coloring ofG is a partition of the point set V(G) into n subsets (called color sets)
such that every two points joined by a line are in different color sets. An n-coloring ofS
is a partition of V(S) into n subsets such that (1) every two points joined by a negative
line are in different color sets and (2) every two points joined by a positive line are
in the same color set. We say that S has a coloring, or is colorable, if it has an n-coloring
for some n. It follows immediately from these definitions that if a signed graph 5 has

only negative lines, the problem of coloring 5 is the same as that of coloring a graph.
If, however, S has some positive lines, it may not be colorable. We characterize
colorable signed graphs, and relate them to complete colorings of graphs.

Colorability
Let S+ be the spanning subgraph obtained by removing all negative lines from S.

By a component of a graph we mean a maximal connected subgraph. The positive
components of S are the components of S+. It follows from this definition that two
distinct points of 5 are in the same positive component if and only if they are joined
by a path consisting entirely of positive lines (called an all-positive path). Clearly, the
positive components of S partition V(S) into subsets such that each positive line
joins two points in the same subset, and S has exactly one such partitioning.

We now present two equivalent conditions for a signed graph to be colorable. The

equivalence of Statements (1) and (3) of the theorem is given in [2].
Theorem 1. The following Statements are equivalent for any signed graph 5.

(1) S has a coloring.
(2) S has no negative line joining two points in the same positive component.
(3) S has no cycle with exactly one negative line.

x) Work reported here was supported by Grant MH 10834 from the National Institute of Mental Health.
We wish to thank Dr. Gary Chartrand for the formulation of Theorem 4.
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Equivalence of (1) and (2). If 5 has a coloring, any two points in the same positive
component are in the same color set, for they are joined by an all-positive path.
Since no two points of the same color set are joined by a negative line, none in the
same positive component are. Now, if S has no negative line joining two points of the
same positive component, the partition of V(S) by the positive components of S
satisfies the definition of a coloring.

Equivalence of (2) and (3). By definition, a cycle with exactly one negative line
consists of an all-positive path joining two points vt and v3 together with a negative
line vt Vj. The equivalence of (2) and (3) follows immediately from the Observation
that two points are joined by an all-positive path if and only if they are in the same
positive component.

This theorem is illustrated in Figure 1 which shows a colorable signed graph S

(in which negative lines are represented by dashes). Its three positive components are
evident in S+, and its point set V(S) can be partitioned into the color sets {vlf v2},
{vz}, {v4, v5}. Clearly, S has no negative line joining two points of the same positive
component nor does it have a cycle with exactly one negative line.
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Figure 1

As an interesting and immediate special case, we have a criterion for colorability
of a complete signed graph.

Corollary 1a. A complete signed graph S has a coloring if and only if S has no
3-cycle with exactly one negative line.

The condensation of S by its positive components, denoted S*, is the signed graph
whose points are the subsets Plt P2, Pn determined by the positive components
of S and whose lines are determined as follows: there is a line joining points Pt and P3

of the new graph if and only if there is at least one line joining a point of Pt and a

point of Pj. The construction of S* from S is illustrated in Figure 1. It is understood
that S* may contain loops. Specifically, a point Pt of S* will have a loop if and only
if there are in S two points of Pt joined by a negative line. It follows immediately
from Theorem 1 that S is colorable if and only if S* contains no loops.

From the construction of S* it is clear that it has only negative lines. Hence,
all results on coloring a graph G apply to coloring S*, provided, of course, that S* has

no loops.

Balanced Signed Graphs

In an attempt to formalize a psychological theory proposed by Heider [5], we
defined a signed graph S as balanced if every cycle has an even number of negative
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lmes [1, 4] We then showed that S is balanced if and only if V(S) can be partitioned
mto two subsets V± and V2 such that every positive lme joms two points in the same
subset and every negative lme joms a pomt of V± with one of V2 Clearly, m terms of
our present termmology Vx and V2 are color sets Thus, S is balanced if and only if
it has a 2-colormg (is bicolorable) Now it is readily apparent from the definition of
balance that S is balanced if and only if S* has no odd cycles Since the problem of
coloring 5* is the same as that of coloring an ordmary graph G, our theorem turns out
to be the same as the charactenzation of bicolorable graphs, first advanced by
Konig [6]

G is bicolorable if and only if it has no odd cycles
To compare bicolorable graphs with 3-colorable graphs, we note that a bicolorable

graph can have cycles only of even lengths while a 3-colorable graph may have cycles
of any length n > 3 It remams a flendish unsolved problem to charactenze n-colorable
graphs for n > 2, even the case n 3 does not appear to be easy

Complete Golorings and Unique Golorings

The chromatic number x(G) of a graph G is the smallest n for which G has an n-
colormg The chromatic number x(S) of a colorable signed graph S is defined similarly
By the definition of coloring 5 and the construction of S* it follows that x(S) x(S*)
Smce all results on coloring a graph G apply to coloring S*, theorems about x(G) are
applicable to x(S) In a complete coloring of G or S, for any two colors, there is a line
jommg a pair of points with these colors It is easy to see that every x(G)-coloring,
and hence every x(S)-coloring, is complete The following theorem for graphs, given
m [3], also holds for signed graphs

Theorem 2 If G has a complete w-colormg and x(G) < t < n, then G also has a
complete .-coloring

We say that S has a unique coloring if there is only one partition of V(S) into
color sets The next theorem gives a criterion for a signed graph to have a unique
coloring

Theorem 3 Let S be a signed graph with a coloring This coloring is unique if and
only if S* is complete

Proof of necessity By hypothesis, S has a unique coloring If in 5* two points are
not joined by a negative lme, then m 5 no two points from two correspondmg positive
components are joined by a negative line Thus, the two pomt sets determined by
these components can be assigned to the same color set But these two point sets can
also be assigned to different color sets since there is no positive line joming two points
in different positive components The assumption that S has a unique coloring is thus
contradicted

Proof of sufficiency Consider a coloring of S m which each set of points determined
by a positive component is assigned to a distmct color set Clearly, there can be no
other coloring in which two points from the same positive component are assigned to
different color sets The only remainmg coloring is one m which the point sets of two
positive components are assigned to the same color set But smce 5* is complete, for
every two positive components m S there is a negative lme jommg a pomt from each

Hence, this coloring is impossible, and the given coloring is unique
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Figure 1 illustrates this theorem. It can be readily seen that S has a unique
3-coloring. And in keeping with the theorem, S* is a complete signed graph with three
points.

Theorem 3 may be rephrased in terms of color sets. A colorable signed graph 5
has a unique coloring if and only if the points in each color set induce a positive
component and the points in any two color sets induce a connected subgraph.

Corollary 3a. Among all signed graphs with p points and a unique coloring into n
color sets, the minimum number of positive lines is p — n, and the minimum number

of negative lines is [

Proof. For S to have a minimum number of positive lines, each positive component
Pj must be a tree. Let P3 be the number of points in P3 so that the tree P3 has p3 — 1

lines. On summing from 1 to n, we find that the number of positive lines in S is
27 (Pj - 1) p - n.

On the other hand, S has a minimum number of negative lines when every two
positive components Pt and Pj are joined by exactly one negative line so that there

[n\
are j negative lines in all.

Clearly, the sum of these two expressions gives the smallest possible number of
lines among all signed graphs with p points and a unique n-coloring, namely
p + n(n- 3)/2.

We turn now to the concept of a uniquely colorable graph G. It is convenient to
distinguish between complete and noncomplete graphs. If G Kp, the complete
graph with p points, then x(G) p and G has only one partition into color sets If G is

not complete, then it always has a unique partition into p color sets, one point in each.
Hence we say that a graph G has a unique coloring if (1) G is complete or (2) G is not
complete and there exists a unique partition of V(G) into n color sets, where n < p.
Note that unique coloring has been defined differently for graphs and for signed graphs.
While there is no characterization of uniquely colorable graphs, a necessary condition
is known which resembles Theorem 3 for signed graphs.

Theorem 4. If G has a unique coloring into n color sets, then the subgraph induced
by the union of any two color sets is connected.

Proof. It is given that G has a unique coloring into n color sets. Assume that the
subgraph induced by the union of two of these, Vt and VJt is not connected, and
consider a component G' of this subgraph whose point set is denoted V. Now every
line joining a point vt in Vt O V and a point v3 in V3 n V must lie in G'. Thus, we may
assign all points of Vt O V to Vj and all points of V3 O V to Vl to obtain another
n-coloring of G, Which is a contradiction.

By Theorem 4, every unique coloring of G is complete. That the converse of
Theorem 4 is not true is shown by the 3-colorable graph in Figure 2. One coloring of
this graph has as color sets:

Vi K> vb}, V2 {v2, vi}, Vs {v3, ve}.

It is readily seen that the subgraph induced by any two of these color sets is connected.
But there is another coloring with color sets:

Vl {»i> v4} * V2 {v%, t/6}, VB {v„ vb}.
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Figure 2

Corollary 4a If G has a unique coloring into n color sets, then n x(G)
Proof By hypothesis, G has a unique colormg mto n color sets Assume that

x(G) < n Then there exists a partition of V(G) mto x(G) color sets However, this
partition has more than one refmement mto n color sets, contrary to the hypothesis

We conclude with a corollary of Theorem 4 that is analogous to Corollary 3a

Corollary 4b Among all graphs with p points and a unique colonng mto n color

sets, the mmimum number of lmes is p (n — 1) —

Proof Among all graphs with p points and a unique colormg into n color sets,
a graph G has a mmimum number q of lmes if every pair of color sets mduces a tree Tx

Let pt be the number of points in Tt Smce the number of lmes in Tt is pt — 1,

a £ (Pt — 1) It can readily be seen that 2J Pt p (n — 1) Since there are

trees induced by pairs of color sets,

q p(n-l)- (2 p - n) (n- 1)

To show that such a graph exists, we construct one with n—l color sets, each

contammg a Single pomt, and another color set contaming p — n + 1 points We join

each pair of points from different singleton color sets, obtaining I lmes We then

join each point of every singleton color set to every pomt of the remainmg color set
and obtain (p — n -f- 1) (n — 1) lmes The total number of lmes m the graph is
therefore (n- 1) (n- 2)

+ (p - n + 1) (n - 1)
(2 p - n) (n~ 1)

2 ' vr ' ' y > 2

D Cartwright and F Harary, Umv of Michigan, Ann Arbor, USA
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