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Theorems related to Wallace's (Simson's) Line

Part I. A «dual» Theorem

If P, Q, R are points where a tangent to the inscribed circle of a triangle ABC
meets the diameters of this circle which are perpendicular to the bisectors of the angles
at A, B, C, respectively, then the lines AP, BQ and CR are concurrent.

The very close relation of this theorem to Wallace's theorem can be made quite
clear when both theorems are generahzed, i.e. stated in terms of projective geometry.
It is then seen that each theorem is the dual of the other.

Below we hst the steps which lead to the generalised theorem of Wallace and the
dual steps to the theorem stated above.

1. In the plane let there be a line - /oo - and on that line two (isotropic) points /
and/.

la. In the plane let there be a point - 0 - and through that point two (isotropic)
lines i and /.

2. Let there further be three points A, B, C so that no three of the points A, B, C,

I, J are collinear.
2a. Let there further be three lines a, b, c so that no three of the lines a, b, c, i, j

are concurrent.
3. There is one conic through A B C I f viz. the circumcircle of the triangle ABC.
3a. There is one conic touching a, b, c, i, j. This is an ellipse or hyperbola with

focus 0; if the polar of 0 with respect to the conic is taken as loo, the conic is either the
inscribed circle or one of the escribed circles of the triangle a, b, c.

4. Let T be a point on the conic. Draw three lines through T at right angles to BC,
CA and AB, i.e. join T to points on loo which are separated harmonically from the
points in which loo is eut by BC, CA, AB respectively by the isotropic points I and /.

4a. Let t be a tangent to the conic. Cut t with three lines at right angles to OA,
OB, OC, where A is the intersection of b and c, etc.; i.e. eut t with three lines through 0
which are separated harmonically from lines joining 0 with the intersection of (bc),

(ca) and (ab) respectively by the isotropic lines i and /.
5. Cut these three lines through T by the lines BC, CA, AB respectively. The three

intersections lie on a straight line w. (Generahzed Theorem of Wallace.)
This juxtaposition not only leads to the theorem stated above but at the same

time constitutes a proof of this theorem.
It is interesting to continue the comparison of the two cases a bit further.
6. If the point T moves along the conic the line w will envelop a curve which

because of its one to one correspondence with a conic must be of genus 0, too.
6a. If t moves along the conic the point W will describe a curve of genus 0.
7. It is evident that the sides and altitudes of A ABC must be tangents to the

curve, which therefore must be of class three at least.
From Figure 1 it is evident that to each point P on the line AB there are two and

only two points P' and P" on the circumcircle for which the Wallace line passes
through P and is distinct from AB; i.e. there are three and only three Wallace lines
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Figure 1

passing through P. If P coincides with K or L the points K' and K" respectively U
and L" coincide and the corresponding Wallace line touches the envelope at K
respectively L.IiP coincides with M one of the corresponding Wallace lines is the
line AB) therefore AB touches the envelope at M.

A curve of genus 0 and of class 3 must be of order 4. We will refer to the envelope

7a. In the dual case a similar reasoning leads us to a curve of class 4 and order 3: r\.
8. A curve of genus 0 and order 4 must have 3 cusps or nodal points. However

nodal points are incompatible with a class lower than 4. Hence C\ must have 3 cusps.
8a. The corresponding curve of genus 0 and class 4 must have 3 points of inflexion.
9. Since the class of C\ is 3 it must have a bitangent or a point of inflexion. Looking

at Figure 2 it is not hard to decide that loo must be a bitangent. It is easily proved
that / and / are the points of contact.

9a. It is evident that the tangents to the inscribed circle i.e. the isotropic lines
through 0 eut the perpendicular to the angle bisectors at 0 and that therefore the
point 0 is a double point of _TJ. From the statement in 9 it then follows that the
isotropic lines at 0 are the nodal tangents at 0.

Part II. Given a Family
of Wallace Lines, to Find the Corresponding Triangle

It is a well known fact that any point of the quadruple formed by the vertices
ABC of a triangle and its orthocentre H may be considered to be the orthocentre of
the triangle formed by the other three. Also it is known that these four triangles
though having different circumcircles (of the same radius) have their ninepoints circle
and the family of Wallace lines in common.

Now one may pose the question: Given the set of Wallace lines and their envelope
find the triangle and its orthocentre.
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Figure 2

The answer is not difficult if one knows, that the envelope - a hypocycloid with
three cusps - has the same centre as the ninepoints circle and touches this circle in
three points; further that the ninepoints circle is the locus of points where two of the
three Wallace lines meet at right angles.

Now to find the triangle we choose an arbitrary point A. One of the three Wallace
lines through A we call ha. This line ha cuts the ninepoints circle in two points, in one
and only one of the two there will be a Wallace line orthogonal to ha. Call this last
line a. Where a is eut by the other two lines through A lie the other two vertices B
and C of the required triangle. It transpires that there are oo2 triangles which generate
the same family of Wallace lines.

The set of quadruples of orthogonal points related to the set of Wallace lines form
an involution of the fourth degree in the plane.

Consider one arbitrary Wallace line say ha and its orthogonal line a, then each
carries a second degree involution where each pair A, H on ha is conjugated to one
pair B, C on a. To realise that this is so, just let A slide along the fixed ha, the two
other Wallace lines 6, c through A will change position and eut a at different pairs B, C.
The position of H on ha relative to each pair Bt C may then be fixed.

The second degree involution on each Wallace hne is such that the two double points
of the involution coincide. The locus of these double points is the nine points circle.
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To prove these two Statements consider Figure 3

31

Figure 3

Assume the mne points circle and ha and a, two Wallace lmes which meet at right
angles at Nt, as given Choosmg an arbitrary pomt A on ha describe a circle, centre _V2,

radius N2 A This circle cuts the nme points circle at _V3 and _V4 (the footpomts of the
altitudes of /\ ABC from B and C) and it cuts ha at A and H (the orthocentre of
/\ ABC) It is evident that as A approaches N2 that H will approach at the same
speed Hence the mvolution has _Y2 as comcidmg double points As A approaches Nt,
B will approach Nx Of course Nx may be considered also as the comcidmg double
points of the mvolution on the third Wallace lme passmg through Nt

Part III. The Wallace Theorem
and its Dual Connected Through a Twisted Cubic

The previous theorems may be lmked together by a twisted cubic
The osculating planes of a twisted cubic envelope a ruled surface of the fourth

degree The intersection of this surface with an arbitrary plane is a fourth degree curve
with three cusps Moreover the curve is of class three

Automatically now the question anses whether this plane curve and its tangents
may be regarded as the projection of a three-cusp hypocycloid and its Wallace lmes

That this is so may be proved m the following way Consider the coordinate-
tetrahedron 0x020z0i and the twisted cubic

xx t2 + t + 1 (t - b) (t - b2) yi~3t
%% ___ b t2 + b2 t + 1 b (t - b2) (t - 1) y2 3 t2

xz b* t* + b t + 1 - b* (t - 1) (t - b) y3 - 3

x^„t*+l--(t--l)(t-b)(t-b2), yt 3 (1 - t*)

where b (- 1 + *j/J)/2 hence 1 -f b + b2 0.

(1)
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The equation of the osculating plane at the point with parameter t is

(t - l)3 xx+ (t- bf x2+(t- b2f xB + 3 Xi 0 (2)

Osculating planes at t 0 and l\t 0 are xx + x2 + xB 3 #4 and xx + x2 + xB 0

respectively.
These planes intersect along

f xx + x2 + xB 0

The family of lines in x4 ¦== 0 has coordinates:

{(* - l)3, (t - 6)3, (* - b2Y)

Parameter equation of the envelope is:

Q %x t* + 2 tz + 3 t2 + 2 t + 1

q x2 b t* + 2 b21* + 3 t2 + 2 b t + b2 (3)

q xB= b2 t* + 2b t* + 3 t2 + 2b2 t + b

The envelope touches xx + x2 4- xB 0 at {1, b2, b} and at {1, b, b2}.

Eliminating t from (3) we find:

Z» \XX +~ X2 +~ XBj Xx X2 Xq Xn Xn "T* Xq X-t + X-% Xn \'J

Using the transformation

3>i % + b x2 + b2 xB

y2 *i + b2 x2 + b xz

3 % yi + y% + y3

(5) 3x2 b2y1 + by2 + yB (5a)

y3 ^i + ^ + ^ J 3 xB 6 yx + b2 y2 + yB

the equation (4) may be replaced by:

y\ - 6 ylvx y, + 4 ys (yl + yl) - 3 £ yl 0 (6)

Consider a point ü with ^-coordinates (hx, h2, hB,0). To find the osculating planes
passing through H we have to solve the equation

hx (t - l)3 + *,(*- &)3 + K (* - &2)3 0

or

(hx + h% + hB) t*-3t2 (hx + bh2+b2hB) + 3t (hx + b2h2 + b hB) - (hx + h2 + hB)~0

or HB t* - 3 Hx t2 + 3 H21 - HB 0

where Hx, H2 and HB are the y-coordinates of H.
Writing the last equation HB (t — a) (t — ß) (tf — y) 0 where

/_ /. 3 ni 1 1.1 3 n»«0y-l. oc + ^ + y -^-. - + J + 7 -^.
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considermg the osculating planes at t — o>,t —ß,t= —ywe find that the
mtersection of the last two with %4 0 is the pomt _4 with y-coordinates (Ax, A2, AB)

The values of A are found from

Az (- ß* - 1) - 3 Ax ß2 - 3 A2 ß 0

AB(-y*-l)-3Axy2-3ABy 0

whence

_i1
ßy ß-y <x-ß-y, A2 ßy A. 3.

The third hne through A is found from

A3 (t + ß)(t + y)(t-i)=0
where ß y | 1

-0 + y) + f=-^-
_i _ _L _i - 3^2
7 7 + T ~^7

cc- ß-y
1 1

obviously | a satisfies these equations
We have now six points on the twisted cubic, with parameter values ± oc, ± ß, i y.

The corresponding osculating planes eut #4 0 as in the following diagram.

-P

Figure 4

The equation of the locus of points where two of the quadruple A, B,C,H coincide
is found from

a-b ß +
OLß

*ß

1 1- + J + «ß 3

1 *
R

3 ' /* ___E_L J_E±
l/a"

whence 9 yx y2 y| This conic corresponds to the nme points circle in the Euchdian
case.
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Briefly considering the dual case, we find that a plane through the points with
parameter values (— a), (— ß) and (— y) has the equation

yi27a ß + y^E* + ^ (i + <* ß y) - y4 o,
for (— a) • (— ß) • (— y) — 1 this becomes

yi27a /* + y227a + 2 ^ - y4 o.

Obviously the four planes passing through the triplets

(-«)(-/?) (-y) (-«)(+ 18) (+y) ,(+«)(-/?)(+ y) and (+«)(+/?)(-y)
all pass through (0, 0, 2,1).

Projecting the twisted cubic from (0, 0, 2,1) onto y4 0 produces a plane cubic r\
y1 t s* y2 t* s

y% -4r^- Lj^~ or y» + y^ 2 yi y2 y3 y4 0

Figure 5

which has a double point at (0, 0, 1, 0) and which cuts the four planes mentioned
above as in Figure 5

To find the dual to the nine points circle note that through each point on this
circle pass two Wallace lines which are perpendicular to each other. So now we have
to find a line that cuts F\ in three points of which two have a double ratio — 1 with
the intersection of the lines i and / with that line. From previous results we may
expect, that the projection of the points with parameter values a and — a are such

a pair. This is easily verified.
The line joining the points

(oc, oc2, -i±if!_, o) and - (- oc, oc2, ~^-, o)

meets _T4 also at

(....it^.o).
Its equations are

a4yi + y2-2a2y3-0, y4 0

It is tangent to the curve

yi-i. y^*4. y3=~a2 or yxy%^y\

which is a conic with one focal point coinciding with the double point of F\.
E. T. Steller, University of Queensland, Australia
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