Hypo-eulerian and hypo-traversable graphs

Autor(en): Kapoor, S.F.
Objekttyp: Article
Zeitschrift: Elemente der Mathematik

Band (Jahr): 28 (1973)
Heft 5

PDF erstellt am:
12.07.2024

Persistenter Link: https://doi.org/10.5169/seals-29459

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Proof. Let T_{0} be a simplex of minimal volume containing K. By the theorem of Day [2], the centroids of the facets of T_{0} touch K. Let t be the simplex whose vertices are those centroids, and let T be the simplex parallel to t and circumscribed about K. Then $t=\left(n^{-n}\right) T_{0}$ and $T \geq T_{0}$, so

$$
\begin{equation*}
K^{n} \geq t^{n-1} T \geq\left(n^{-n(n-1)} T_{0}^{n-1}\right)\left(T_{0}\right) \tag{11}
\end{equation*}
$$

so $T_{0} \leq\left(n^{n-1}\right) K$, as we wanted to prove.
G. D. Chakerian, University of California, Davis

REFERENCES

[1] G. D. Chakerian and L. H. Lange, Geometric Extremum Problems, Math. Mag. 44, 57-69 (1971).
[2] M. M. Day, Polygons Circumscribed About Closed Convex Curves, Trans. Amer. Math. Soc. 62, 315-319 (1947).
[3] C. H. Dowker, On Minimum Circumscribed Polygons, Bull. Amer. Math. Soc. 50, 120-122 (1944).
[4] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum (Berlin 1953).
[5] L. A. Lyusternik, Convex Figures and Polyhedra, Moscow 1956 (Russian; English translation, New York 1963,).

Hypo-Eulerian and Hypo-Traversable Graphs

Introduction

If a graph G does not possess a given property P, and for each vertex v of G the graph $G-v$ enjoys property P, then G is said to be a hypo-P graph. Recently, studies have been made where P stands for the graph being hamiltonian, planar, and outerplanar (e.g., see [3]). Here we obtain a characterization of hypo-eulerian and hypo-randomly-eulerian graphs, and investigate in this respect some of the other concepts arising out of Euler's solution of the classical Königsberg Seven Bridges Problem.

Preliminaries

Following the terminology of [2], a graph will be finite, undirected, without loops or multiple edges. A walk of a graph G is an alternating sequence $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots$, v_{n-1}, e_{n}, v_{n} of vertices and edges of G, beginning and ending with vertices and where the edge $e_{i}=v_{i-1} v_{i}$ for $i=1,2, \ldots, n$. This is a $v_{0}-v_{n}$ walk, and is usually denoted $v_{0} v_{1} v_{2} \ldots v_{n}$; it is closed if $v_{0}=v_{n}$ and open otherwise. A walk is a trail if all its edges are distinct; it is a path if all its vertices are distinct. A closed trail is a circuit and a circuit on distinct vertices is a cycle. A cycle on p vertices is denoted C_{p}, and C_{3} is called a triangle.

If for every two distinct vertices u and v of a graph G there exists a $u-v$ path, then G is connected. A component of G is a maximal connected subgraph of G. A vertex
v is a cutpoint of G if $G-v$ has more components than G. An eulerian circuit of a graph G is a circuit which contains all the vertices and edges of G, and an eulerian trail of G is an open trail which contains all the vertices and edges of G; in either case G has to be connected. We will assume that an eulerian circuit or an eulerian trail has at least one edge in it.

The number of edges incident with a vertex v is the degree of v which is written as deg v. Let $\delta(G)=\min _{v} \operatorname{deg} v$ and $\Delta(G)=\max _{v} \operatorname{deg} v$. A graph G is regular of degree r (or \boldsymbol{r}-regular) if $\delta(G)=\Delta(G)=r$. A cubic graph is 3-regular. We use $p(G)$ and $q(G)$ (often simply p and q) for the number of vertices and edges of a graph G. The trivial graph has $p=1$ and the complete graph K_{p} on p vertices has $q=p(p-1) / 2$. The complete bipartite graph $K(m, n)$ has its vertex set partitioned into nonempty sets V_{1} and V_{2} containing m and n elements respectively such that $u v$ is an edge of $K(m, n)$ if and only if $u \in V_{i}$ and $v \in V_{j}, i \neq j$.

An edge $x=u v$ of a graph H is said to be subdivided if it is replaced by a new vertex w together with the edges $u w$ and $w v$. A graph G is homeomorphic from a graph H if G can be obtained from H by a finite sequence of such subdivisions. Two graphs G_{1} and G_{2} are homeomorphic if there exists a graph G such that G_{1} and G_{2} are both homeomorphic from G.

Let $\theta(G)(\xi(G))$ consist of the vertices of G having their degrees odd (even). Let the number of elements in $\theta(G)$ be called the euler number of G, and let this be written as $\in(G)$. Then $\in(G)$ is a nonnegative even integer.

Hypo-eulerian Graphs

A graph G on $p \geq 3$ vertices is defined to be eulerian if it possesses an eulerian circuit. The next result is well known.

Theorem (Euler). Let G be a connected graph. Then G is eulerian if and only if $\in(G)=0$.

By definition, a graph G is hypo-eulerian if G is not eulerian, but the graph $G-v$ is eulerian for each vertex v of G.

Theorem 1. Let G be a connected nontrivial graph. Then G is hypo-eulerian if and only if $G=K_{2_{n}}, n \geq 2$.

Proof. Clearly, $\in\left(K_{2 n}\right)=2 n>0$ and $\in\left(K_{2 n}-v\right)=\epsilon\left(K_{2 n-1}\right)=0$ imply the sufficiency part. So let G be a nontrivial connected hypo-eulerian graph. As $G-v$ is eulerian, $p(G) \geq 4$.

First we show that every vertex of G must be odd. Assume that $\xi(G) \neq \phi$, and let $u \in \xi(G)$. Now u must be adjacent with only odd vertices otherwise $\in(G-u)>0$. On the other hand if $v \in \theta(G)$, then for the same reason v must also be adjacent with only odd vertices. This contradicts $\xi(G) \neq \phi$. Hence $p(G)=\epsilon(G)=2 n$ for some $n \geq 2$.

Secondly, we assert that G is complete. For if not, there exist two nonadjacent odd vertices u and v in G. Now the vertex v has odd degree in $G-u$ and contradicts $\in(G-u)=0$. This completes the proof.

If G is an eulerian graph with $p \geq 3$ and v is any vertex of G, then $G-v$ necessarily contains odd vertices and must be noneulerian. This we mention next.

Theorem 2. Let G be a connected nontrivial graph. Then G is hypo-noneulerian if and only if G is eulerian.

Ore [4] called an eulerian graph G randomly eulerian from a vertex v if every trail of G beginning at v can be extended to an eulerian circuit of G; a graph G is randomly eulerian if it is randomly eulerian from each of its vertices. Ore characterized graphs which are randomly eulerian from a vertex v as those graphs in which v belongs to every cycle of G. This leads to the result that G is randomly eulerian if and only if G is a cycle.

Theorem 3. A graph G is hypo-randomly-eulerian if and only if $G=K_{\mathbf{4}}$.
Proof. Since a cycle is obtained by deleting any vertex of K_{4}, this graph certainly has the desired property. Conversely, let G be a hypo-randomly-eulerian graph. Observe that in view of Theorem 2, G and $G-v$ cannot be both eulerian for any vertex v. Hence G is necessarily hypo-eulerian, and by Theorem $1, G=K_{2 n}$ for some $n \geq 2$. Moreover, since $G-v$ must be a cycle for each vertex v of $K_{2 n}$, we conclude that $G=K_{4}$.

Chartrand and White [1] proved that if G is an eulerian graph which is randomly eulerian from k vertices, then $k=0,1,2$ or $p(G)$, and following this we will denote a graph which is randomly eulerian from k vertices as an $R E(k)$ graph. A study of $\operatorname{hypo}-R E(k)$ graphs is now in order. Let G be a graph which is not $R E(k)$, but let $G-v$ be randomly eulerian from k vertices. Then, as stated earlier, G must be a hypo-eulerian graph with the additional property that for all $v, G-v$ is an $R E(k)$ graph. So by Theorem 1, $G=K_{2_{n}}$ and $G-v=K_{2_{n-1}}, n \geq 2$. When $n \geq 3$, for every vertex u of $G-v$ we can find a cycle, namely a triangle, which avoids u, and so $G-v$ is an $R E(o)$ graph. The case $n=2$ yields that $G-v$ is an $R E(p)$ graph. Also, $G-v$ is not an $R E(k)$ graph for $k=1$ and $k=2$. These remarks lead to the next result where we note that the hypo- $R E(p)$ graphs have already been described in Theorem 3.

Theorem 4.
(a) A graph G on $p \geq 4$ vertices is hypo- $R E(o)$ if and only if $G=K_{2 n}, n \geq 3$.
(b) No graph is hypo- $R E(1)$ or hypo- $R E$ (2).
(c) A graph G on $p \geq 4$ vertices is hypo- $R E(p)$ if and only if $G=K_{4}$.

We conclude this section by stating a result analogous to Theorem 2.
Theorem 5. A graph G is hypo-non $R E(k)$ if and only if G is an $R E(k)$ graph.

Hypo-traversable Graphs

A graph G on $p \geq 2$ vertices is said to be traversable if G has an eulerian trail, i. e., G has an open trail which contains all the vertices and edges of G (and in view of the next result, this trail begins at one of the odd vertices and ends at the other).

Theorem (Euler). Let G be a connected graph. Then G is traversable if and only if $\in(G)=2$.

Let G be a hypo-traversable graph. Then $\in(G) \neq 2$, and $\in(G-v)=2$ for each vertex v of G. It is clear that G is a block, and $\delta(G) \geq 2$. Also, $\in(G)$ is even and $0 \leq \in(G) \leq p$. From the first possible value we readily get the following.

Theorem 6 . Let G be any connected graph which has euler number 0 . Then G is hypo-traversable if and only if G is a cycle.

Proof. The sufficiency is immediate, and for the necessity we note that $\in(G)=0$ implies that $V(G)=\xi(G)$. Now $\in(G-v)=2$ for any vertex v of G gives deg $v=2$. By connectedness, G has to be a cycle.

Now let $\in(G)=2 m, m \geq 2$, and let G be hypo-traversable. Let $u \in \xi(G)$ and $v \in \theta(G)$. Then it can be seen that $\operatorname{deg} u=2 m-2,2 m$ or $2 m+2$ and $\operatorname{deg} v=2 m-3$, $2 m-1$ or $2 m+1$, otherwise $\in(G-w) \neq 2$ for some vertex w of G. This fact is useful in considering individual cases. Should $m=2$, the possible values of deg v will be 3 or 5 since $\delta(G) \geq 2$. It can be verified that for $p \leq 5$, cycles are the only hypo-traversable graphs. Figure 1 shows all graphs on 6 vertices which are hypotraversable.

Figure 1
Hypo-traversable graphs on 6 vertices.
The preceding theorem dealt with the case when the graph had all vertices even. The next result treats graphs possessing no even vertices.

Theorem 7. Let G be any connected graph having euler number $\in(G)=p(G) \geq 6$. Then G is hypo-traversable if and only if G is regular of degree $p-3$.

Proof. Here $\boldsymbol{\xi}(G)=\phi$ and $p=2 m=\in(G)$. By the above remarks, every vertex of G is odd and has possible degrees $2 m-3$ or $2 m-1$. But if any vertex is adjacent with all the other $p-1$ vertices, its deletion gives an eulerian graph. The necessity now follows.

Conversely, let G be a connected $(p-3)$-regular graph and $\in(G)=p(G) \geq 6$. Then $\in(G-v)=2$ for all v, and the proof is complete.

Theorem 8. Let G be a connected graph having euler number $\in(G)=p(G)-1$, and let $p(G) \geq 5$. Then G is hypo-traversable if and only if the even vertex u of G has degree $p-3$, the vertices a and b that are nonadjacent with u have degree $p-4$, and every other vertex has degree $p-2$.

Proof. Let $\xi(G)=\{u\}$, and assume that G is hypo-traversable. Since every vertex adjacent with u becomes even in the traversable graph $G-u$, we need $\operatorname{deg} u=p-3$. Let a and b be the vertices nonadjacent with u, and let $v \in \theta(G)-\{a, b\}$. Now the traversable graph $G-w$ contains exactly 2 odd vertices, for each $w \in V(G)$.

Hence $\operatorname{deg} v=p-2$ and $\operatorname{deg} a=\operatorname{deg} b=p-4$. For the sufficiency we note that $\in(G) \geq 4$, and by hypothesis, $\in(G-w)=2$ for each vertex w of G.

It is possible that a complete classification of hypo-traversable graphs may get involved with discussing individual cases, and this suggests scope for further research.

Let G be a hypo-nontraversable graph, i.e., $\in(G)=2$ and $\in(G-v) \neq 2$ for each vertex v. Moreover, since it is meaningful to require that $G-v$ be connected, we further assume that G has no cutpoints and $p \geq 4$ (so that $\delta(G) \geq 2$). Designate the two odd vertices of G as a and b. If $a b$ is not an edge in G, then $\in(G-a)$ and $\in(G-b)$ are 4 or more. On the other hand, if a and b are adjacent, we must have $\operatorname{deg} a \geq 5$ and $\operatorname{deg} b \geq 5$. Now let $v \in \xi(G)$. This imposes the following restrictions: If $\operatorname{deg} v=2$, then v is adjacent with either both or neither of a and b; if $\operatorname{deg} v=4$, then v is not simultaneously joined to both a and b. These present a set of necessary conditions for G to have the desired property, and it can be verified that they are also sufficient.

Theorem 9. Let G be a block with $p \geq 4$. Then G is hypo-nontraversable if and only if $\theta(G)=\{a, b\}$ and
(i) $a b \varepsilon E(G) \Rightarrow \operatorname{deg} a \geq 5$ and $\operatorname{deg} b \geq 5$,
(ii) $\operatorname{deg} v=2 \Rightarrow v$ is joined to both or neither of a, b, and
(iii) $\operatorname{deg} v=4 \Rightarrow v$ is not joined to both a and b.

In [1] a traversable graph G is called randomly traversable from a vertex v if every trail in G with initial vertex v can be extended to an eulerian trail of G. Clearly, a traversable graph can be randomly traversable from $k=0,1$ or 2 vertices, and we may, as before, denote this class of graphs as $R T(k)$, where $R T(2)$ will refer to the class of randomly traversable graphs. It was also proved in [1] that if a and b are the two odd vertices of a traversable graph G, then G is randomly traversable from a if and only if every cycle of G contains b. Moreover, a graph G is in $R T(2)$ if and only if the two odd vertices of G lie on every cycle of G. This suggests the problem of studying hypo-RT(k) and hypo-non $R T(k)$ graphs.

We conclude by presenting a complete classification of $R T(2)$ graphs.
Theorem 10 . Let G be a traversable graph with $\theta(G)=\{a, b\}$. Then G is randomly traversable if and only if G is homeomorphic from $K_{2}, K(2,2 m-1)$ or $K(2,2 m)+a b$, where $m \geq 1$.

Proof. It is obvious that the graphs described are randomly traversable. To prove the converse, first we note that if $\operatorname{deg} a=1$, then any $b-a$ path must be G itself, otherwise there exists a cycle which avoids a or b. Thus, $\operatorname{deg} b=1$, and the graph G is homeomorphic from K_{2}. So we assume that each of a and b has degree at least 3.

Let v be any vertex of G other than a or b. Since G is connected, there exist $v-a$ and $v-b$ paths. Clearly these paths have v as their only common vertex otherwise some cycle of G avoids a or b. Moreover, the union of these paths gives an $a-b$ path which contains v. With every vertex $v \in V(G)-\theta(G)$ we can associate an $a-b$ path $P(v)$ such that $P(v)$ contains v. Let us consider the collection of all $a-b$ paths, where, for obvious reasons, any two paths are disjoint, i.e., the only vertices common to them are a and b. So $P(v)$ is unique, and the union of all these
paths must be G itself. We therefore conclude that every vertex other than a and b has degree 2, and $\operatorname{deg} a=\operatorname{deg} b$ is odd. Also, if a and b are adjacent, then $G-a b$ is homeomorphic from $K(2,2 m)$; and if a, b are nonadjacent, then G is homeomorphic from $K(2,2 m-1)$, where $m \geq 1$.
S.F. Kapoor ${ }^{\mathbf{1}}$), Western Michigan University, USA

REFERENCES

[1] G. Chartrand and A.T. White, Randomly Tvaversable Graphs, El. Math. 25, 101-107 (1970).
[2] F. Harary, Graph Theory (Addison-Wesley, Reading 1969).
[3] J. Mitchem, Hypo-Properties in Graphs, The Many Facets of Graph Theory (G. Chartrand and S. F. Kapoor editors), Lecture Notes in Mathematics No. 110 (Springer-Verlag, Berlin 1969), p. 223-230.
[4] O. Ore, A Problem Regarding the Tracing of Graphs, El. Math. 6, 49-53 (1951).
${ }^{1}$) Research partially supported by National Science Foundation grant GP 9435.

Kleine Mitteilungen

New Quadratic Forms with High Density of Primes

Let $p_{\min }$ be the smallest prime contained in a quadratic form of the shape $f(x)=A x^{2}+A x-C$ and let $n_{i c p}$ be the number of initial consecutive primes of $f(x)$, then, by means of a CDC 6400 computer, all $f(x)=A x^{2}+A x-C$ were investigated for $A<10, C<2.10^{5}$, and $p_{\text {min }}>47$. In Table 1, the number below C is the number of all primes of $f(x)$ for $x<100$, and $p_{\text {min }}$ is the number in parentheses.

For each form $x^{2}+x-C$ we have also a form $9 y^{2}+9 y-(C-2)$, because the substitution $x=3 y+1$ transforms $x^{2}+x-C$ into $9 y^{2}+9 y-(C-2)$; hence, each third term of $x^{2}+x-C$ (starting with the second) belongs to $9 y^{2}+9 y-(C-2)$. Similarly, for each form $2 x^{2}-C$ we have also a form $8 z^{2}+8 z-(C-2)$, because the substitution $x=2 z+1$ transforms $2 x^{2}-C$ into $8 z^{2}+8 z-(C-2)$; hence, each second term of $2 x^{2}-C$ (starting with the second) belongs to $8 z^{2}+8 z-(C-2)$. For the forms $2 x^{2}-119131$ and $2 x^{2}-186871$, related to the forms with $A=8$ in Table 1, we have 64 and 61 primes, respectively, for $x<100$.

Table 1 gives the impression that there might be no forms with $A=4$. This is not so. In a test run with $A<10,10^{8}-5000<C<10^{8}$, and $p_{\min }>47$, the forms $x^{2}+x-99995659,9 x^{2}+9 x-99995657$, and $4 x^{2}+4 x-99996937$ were discovered, all with $p_{\text {min }}=53$.

The form $x^{2}+x-53509$ with $p_{\text {min }}=61$ is due to N.G.W.H. Beeger [1] in 1938, the forms $x^{2}+x-90073$ with $p_{\text {min }}=53$ and $x^{2}+x-169933$ with $p_{\text {min }}=59$ are due to the author [2] in 1967.

Two hundred years ago, Euler published his famous quadratic form $x^{2}+x+41$ with $p_{\text {min }}=41$ and $n_{i c p}=40$. This form was believed to have the highest density of primes of all quadratic forms $A x^{2}+B x \pm C$ discovered till now. Many forms were found with $p_{\text {min }}>41$ and the second differences greater than 2 ; but the corresponding

