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Kleine Mitteilungen

Proof of a Conjeeture of H. Hadwiger

As part of a research problem [2], Hadwiger conjectured that every simple
closed curve in E3 admits a nontrivial inscribed parallelogram. Schnirelman's method
[4] [1] leads immediately to the following result:

Theorem: Every simple closed C2 curve in E3 admits a nontrivial inscribed rhombus.
Outline of proof: The statement for plane curves has been proved by Schnirelman

[4] [1]. Every simple closed curve in E3 is homotopie to a plane Jordan curve. If the
curve in Es is not knotted, the homotopy is in fact an isotopy. If the curve is a knot,
it may be deformed into a plane Jordan curve through a C2-homotopy jF(oc, t),
0 < a < 2n, 0 < t < 1, for which _P(a, t0) is a simple closed curve except for finitely
many values t0 for which F(ol, t0),0 < a < 2n, is a curve with one simple transversal
selfintersection. Because of the compaetness of the sets involved, a given smooth
homotopy can be locally modified to satisfy the given conditions. The parametriza-
tion can be chosen so that the Jacobian matrix of F is nowhere singulär. The theorem
will be proved if we can show that it holds for all curves F(ol, t), t0 < t < t0 + e if it
holds for F(ol, t0).

By hypothesis, there exist four distinct parameter values olv a2, a3, a4 so that for
F( F(<xi, t0) we have

1*1-31 I3~3 IH3~3l I3"3 K*0) (1)

det (F1 - F2, Fx - F3, Ft - F4) 0

where det denotes the determinant. The problem is to find four points Ff on
F(&, t),t0 < t < t0 + e, that also satisfy conditions (1). We develop in a Taylor
polynomial,

F* Fi + ?ß-A«i+^j-At + o(A*,,At)
öx{ öt

introduce the expression in (1) and develop as well. An appropriate form of the
inverse function theorem says that under our differentiability assumptions the A ol(

can be found if the linearized problem obtained by putting all o(A 0Lif A t) 0, can be
solved. From (1) one obtains a system of four nonhomogeneous linear equations
(that can immediately be written down) for the four unknowns Aql{ (i 1, 2, 3, 4).
The matrix of the system has the form
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<Pi2

0

fa

fil + ^23

fa

-?32
+ 9?34

fa

9?43 + 9?4l

fa
where

9V "3 -GH)
and the ^u. are determinant expressions derived from the last equation (1). Parentheses
denote the euchdean scalar product. In the generic case, the rank of the matrix is 4

and, therefore, the problem has a unique Solution. A dimension argument [4,1 p. 107]
shows that the curves for which a rhombus can be found for t0 < t < t0 + e are dense
in the Space of all C2 curves. A Standard convergence argument then shows that the
Prolongation property is true for all curves in question. We are not concerned with
uniqueness since all plane C2 Jordan curves admit a one-parameter family of rhom-
buses [4]. It is clear that the deformation of a nondegenerate rhombus will yield a
nondegenerate rhombus since otherwise the curvature of the curve cannot be bounded,
see [1] p. 109. The argument breaks down if F(<x, t) has a double point. However,
since the intersection is transversal, a plane through two points of F(ol, t0) that are
close to the double point of F(ol, t) and whose parameter values are close to one another,
will intersect the other are passing close to the double point at most in one point
close to that double point. Therefore, the rhombus inscribed in F(ol, t) cannot have
edges of length zero.

The method of proof is very powerful for this kind of problem. In a recent disser-
tation [5], a Student of mine, Mrs. Tropper, has used the method to prove, among
other things, the following:

For n > 3, there are infinitely many regulär crosspolytopes (for n 3, regulär
oetahedra) inscribed in any surface C2-diffeomorphic to the sphere S""1 in En.

n chords inscribed in a convex hypersurface in En are said to form an w-uple of
conjugate diameters if support planes at the endpoints of one chord parallel and

parallel to the directions of the n — 1 other chords of the w-uple. For n 2, the
existence of conjugate diameters has been proved by Heil and Krautwald [3]. The
result of [5] is:

Every convex hypersurface in En, n > 3, admits infinitely many distinct w-uples
of conjugate diameters.

Research partially supported by NSF Grant GP-27960

H. Guggenheimer, Polytechnic Institute of New York
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A Note on a Problem in the Theory of Sequences

1. Introduction. It is a well-known fact in analysis that the existence of

n

J^^** (1)

is sufficient to imply lim ak 0. That condition (1) is not a necessary condition is
k —>-00

illustrated by the sequence ak ljk. lt is only reasonable, therefore, to try to find
conditions weaker than (1) that would guarantee lim ak 0. The aim of this paperk —?¦oo

is to present a theorem giving one such condition, namely:

Theorem 1. Let (ak) be a sequence of complex numbers, such that

lim
n-*-oo k -[A»] + l

(2)

exists for every fixed X e (0,1). Then lim ak 0.
k—»-oo

It should be noted that the existence of limit (2) for a Single X e (0,1) is generally
not sufficient to guarantee that the sequence (ak) converges to zero. This can be seen,
for instance, by choosing X 1/2 and considering the sequence (an) defined as follows:

1 if n 2m

_i/2m~i ifn 2m +2/4-1, / 0,..., 2m~1-1 (m 1, 2,...)
0 if n 2m + 2 /, / 1, 2m~1 - 1

The sequence (an) clearly does not converge to zero. On the other hand, if n 2m + 4/
or n 2W + 4 / 4- 3, where ; 0, 2m~2 — 1, it is easy to prove that

n

J[^ % 0 for n > 2.
Ä [n/2] + l

Using this result, we can easily deduce that
n

Ü

*-[»/2]+l
_ 1/ m-1— /2

if n 2 w + 4 / -f 1 orn 2m + 4 / 4- 2, where / 0,..., 2m~2 - 1. Hence

< Ajn ->0 (n -> oo).i7 «ä
Ä-[«/2] + l

In fact, for any integer & > 2, we can define a sequence (an) such that (2) holds
for X l//e, but lim an # 0. The sequence (an) defined as follows has these properties:

n-*oo

k-2 if n Äm

- 1 if w - /?m ^, 2 < ^ < Ä - 1 (m - 1, 2,...)
0 if tt km q + r, 1 <q < k~l and 1 < r < km - 1
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In this case, it can be verified that
n

JT* aj 0 for n > £
;-[»/*]+1
The Situation is quite different if we consider irrational numbers in (0,1), as the

following theorem shows.

Theorem 2. Let (an) be a sequence of complex numbers such that (2) is true for
X f and X 1 — £, where f is <m irrational number in (0,1). TAm lim an 0.

Theorem 1 is clearly a corollary of Theorem 2.
""*

We might mention here that Theorem 1 has an application in the theory of
regularly varying sequences, and it was in the context of a problem in this field that
Theorem 1 was formulated (see [1]).

Some questions unresolved in this paper are the following: What can be said
about the sequence (an), if (2) is true for

(1) two or more distinct rational numbers in (0,1)
(2) every rational number X e (0,1)
(3) a single irrational number £ e (0,1)

2. Proof of Theorem 2. The proof of Theorem 2 is based on the following number-
theoretic result:

Lemma. Let X e (0,1) and let n be an integer. Then at least one of the following three

Statements is true:

(i) [A n] X n

(ii) [Att] [A(tt-l)]
(üi) [(l~A)tt] [(l-A)(tt-l)]

Proof. Since [Xn] < Xn < [Xn] 4-1, we can write

Att [Att]-r-e (3)

where 0 < q < 1. If q 0, then (i) is true. Therefore, we can assume 0 < q < 1.

If A < q, then, by (3),

A(tt-l) Att-A= [Att] + £-A
where 0 < q — X < 1. Hence [X(n — 1)] [Xn], and consequently (ii) holds. - Finally,
if q < X, then, by (3),

(1 — A) tt tt -- [Att] — g tt — 1 — [Xn] + 1 — q nx+ 1 — q

where nx — [(1 — X)n]. Therefore,

(l--A)(tt^l) (l-A)tt-(l--A)==ttA-f(l-ß)---(l--A)==ttÄ + A--^
where 0 < A - q < 1. Hence [(1 -X) {n- 1)] [(1 - X)n] and so (iii) holds.

Proof of Theorem 2. Let

^»(A)
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and let f e (0,1) be irrational Smce the sequences (An(£)) and (An(l — £)) converge
to finite hmits, they are Cauchy sequences Hence there exists Ne^ such that for
n > Ne e we have | AH(£) - An_^) |< e and | An(l - f) - _4n_x(l - f) | < e Smce

f is irrational, [£ n] ^ £ n and, consequently, by the previous lemma, we know that
either (u) [£ tt] [£(«- 1)] or (m) [(1 - £)n] [(1 - I) (tt - 1)] is true In the first
case, we have

an 27 **"
k fn|]+l

n-1
a.

fc-[(»-D-]+i
In the second case, we have

n-1

MS) - ^n-l(f) <e

a„ ^(l-D-^^l-l) <eJJ ak — ^7 a
k [n(l-|)]+l Ä [(n-l)(l-|)] + l

Thus, for tt > _Ye | we have | aft | < e and the theorem is proved
I am deeply grateful to Professor R Bojanic for his suggestions and guidance

throughout the wntmg of this paper
Rada Higgms, Ohio State University Columbus, USA

REFERENCE
[1] R Bojanic E Seneta A Unified Theory of Regularly Varymg Sequences, Math Z to

appear

Elementarmathematik und Didaktik

Ein reduziertes Erzeugenden-System der Kongruenzgruppe in der Ebene

1. Die Gruppe der Kongruenz-Abbildungen der Ebene

Unter einer Isometrie oder Kongruenz-Abbildung y m der Ebene versteht man
das Produkt aus endlich vielen Geraden-Spiegelungen. Bezeichnet ag die Spiegelung
an der Geraden g, dann ist also

y^oaoobooco ...oan. (1)

Die Achsenspiegelung ist eine mvolutonsche Abbildung, wird die Bildfigur emer
gegebenen Urfigur an der gleichen Achse gespiegelt, so ergibt sich wieder die Urfigur.
Das Produkt jeder Spiegelung mit sich selbst ist daher die identische Abbildung 1, die
jeden Punkt der Ebene auf sich selbst abbildet:

aaoaa i. (2)

Hieraus folgt, dass die Kongruenz-Abbildung y nach (1) eine inverse Abbildung y~x
besitzt:

y-i orno.. oacoaboaa. (3)

In den Produkten y o y1 und y~x o y smd namhch Produkte von je zwei gleichen
Spiegelungen vorhanden, die man wegen (2) jeweils streichen kann. Man erhalt dann
schhesshch

y o y~ und y-l o y ~ 1. (4)
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