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The impossibility of a tesselation of the plane into equilateral
triangles whose sidelengths are mutually different, one of them
being minimal

Theorem. There is no tesselation of the euclidean plane R? into equilateral triangles
whose sidelengths are mutually different, one of them being minimal.

Proof: Assume that there is such a tesselation of R? into equilateral triangles ¢, ie/,
where I is an arbitrary set of indices. We shall eventually see that this assumption
leads to a contradiction.

For iel, let /; denote the sidelength of 7. Let / be the minimum of the sidelengths.
By scaling we can attain /= 1. Then the area of each triangle is at least

1
V3

Therefore the triangle can be enumerated and we can assume /=N and /,= 1.

For each ieN led d; denote the boundary of ¢;. Further we define D to be the ‘grid’
of the tesselation: D= v {d;,ieN}.

If n and ¢ are positive real numbers, the points

n & & n n & €
P=(-3-35V3) P=(-70) B=(3-5%

and P,= (%—, O)

define a parallelogram in R? with the sidelengths ¢ and » and with angles of 60 and
120 degrees. Let S(n,&) denote the union of the three sides P, P,, P,P; and P, P,
(fig. 1).

More generally we denote by S (n,¢) any subset of the plane that can be obtained
from this special S(n,e) by translations, rotations and reflections. If any such
S (n, &) is given, let R, denote the interior of the associated parallelogram.

We show that there are a strongly decreasing sequence of positive numbers n;,jeN,
with n;<n;_;—1(j=2) and for each j a number ¢c(0,00) as well as a set Sn,
= S(n;,¢;), contained in D, such that Sy, suffices one of the following two properties
(or both):

\/‘3‘)



2 El Math., Vol. 38, 1983

Figure 1 Figure 2

a) There is a natural number k depending onj such that n,=/; and R, nt;, = ¢.
b) The ‘base’ of S, (P2P3 in fig. 1) is not a side of a tnangle of the tesselatlon

The numbers ; and the associated sets S, will be constructed by induction on j.
Since m;<n;,_;—1 for j=2, some of the numbers n; must be negative. But we
assumed that each n; is positive. Thus we get a contradiction and the theorem is
proved.

The induction is performed in two steps.

First step

We show that there is a subset S, of D for some positive real number n=n; which
has property a) or property b).

Look at figure 2. Let P;, P, and P; be the vertices of ¢,. Since #, is the smallest
triangle of the tesselation, each neighbor of ¢, (i.e. each triangle that shares a
boundary segment of positive measure with ¢;) must be larger than ¢,. It is obvious
that this is only possible if there are only three neighbors of ¢, say #,, t4 and ¢,
and if (up to symmetry) they are arranged like in figure 2.

Hence there exist three triangles in the tesselation that have only a vertex in com-
mon with ¢;. We can assume that these are the triangle 73, 5 and #; and that the
triangles ¢,, 5, 14, t5, ts and 7 are arranged around ¢, in a clockwise manner.

Let us call ¢;, i=2,...,7, the surrounding triangles. The vertices of the surrounding
triangles that are not points of #; may be called the outer corners. Clearly each sur-
rounding triangle has exactly two outer corners. For each surrounding triangle ¢, let
P,, and P,; ., be the outer corners written clockwise (see fig. 3). Since the triangles
of the tesselation have pairwise different sizes, we get the inequalities P53 Pg,
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Py+ Pgand Py3+ Pyy.
We now have to distinguish the two cases wether ¢, is larger or smaller than ¢;.

Case 1. We assume that [, > /;.

Consider figure 3. If D would contain a horizontal straight line whose right endpoint
is P;, the points Pg and P; would define a set S, = D with R, nt;= ¢.

If this is not the case, D contains a straight line which elongates P¢; P, over P; and
therefore a straight line whose left endpoint is P, too.

If P;+ Py, the points P, and P; define a set S, = D that has property b). So we may
assume P, = Pg.

Now consider all systems of straight lines that may start at Py (fig.4). In the cases i)
and ii) of figure 4 there is a set §;, = D with R, n14= ¢, defined by P; and Py. In case
iii) there is a set S, = D with R, n1,=¢, defined by P, P}, P, Py and the elongation
of Pg Py over Py. Therefore we may assume that the lines starting from Py look as in
figure 4 iv).

This implies I, > Is.

Two further quite similar argumentations - we now have /,> /5 like we had /,> /3,
and we will get [¢>/; - show that if there is not a set S, < D with property a) or b),
the conditions P;;= P, and P,= P;s must be fulfilled. Moreover, the line systems
starting at Ps, Py and P, are of type iv) of figure 4 (see fig. 5).

Let d;, d, and d; denote the (positive) lengths of PsPg, PgPiy and P3Py, TESPEC-
tively. Then each d;, i=1,2,3 is a sum of sidelengths of some triangles of the tesse-
lation. Therefore d;> [, fori=1,2,3. Hence d|+d,+ d;> 3 I;.

Comparing the sidelength of the seven triangles ¢, t,, 13, 14, t5, ts and ¢, yields the
equations L=1,+1;, h=5L+d,, L=+, ly=15+d,, l;=1,+1s, lg=1;+ d;. They tell
us that 3 /;=d,+d, + d; in contradiction to the last inequality.

Therefore in case 1 there must be a set S, = D with property a) or b).

Case 2. We assume that /, </;.

If there is not a set §; = D with R, nt,= ¢ defined by P, and Ps, the situation at P,
can only be as indicated in figure 6. Then the points P, and P, define a set S, =D
with P, Nt =¢.

Second step

A set S,,(=S,,j)cD may be given that has property a) or b). It will be shown that
there is a set S,,— D with m<n— 1 which has property a). We then put n; . :=m.

Figure 4 Figure 5 i} Figure 6
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Py P Py

Figure 7a Figure 7b Figure 7¢

After a suitable translation, rotation and reflection if necessary we can assume that
the given S, has the position shown in figure 1. With the notations of figure 1, let 7,
be the triangle of the tesselation which ‘stands on the base of S, at the left corner’,
which means that ¢, is defined by the three conditions P,et,, R,nt,+¢, P,P;
contains a side of ¢, (see fig.7a). The vertices of ¢, may be P,, Ps and P4, where
Pse P, P,. Since S, has property a) or b), P, is different from Ps.

Let z, denote the neighbor of ¢, at the side PsPg such that Psez,. We now have to
distinguish whether /, is greater or less than /,.

Case 1. If ;> 1,, the points P, and P define a set S; = D with R, n¢,= ¢ (see fig.7b).
Moreover, [,.<n—1 because S, D and /,=1. So we can define m=1,.

Case 2. 1f I, <1, let P; denote the vertex of ¢, that is not a point of 7, and let Py denote
its third vertex (fig.7c). An examination of all possible line systems starting at P
(they are listed in fig.4) shows that in each case there is a set §; = D with R, nt,= ¢,
either defined by the points Ps and P, or by P; and Pg. Moreover, [;</,<n—1. So
we can define m=1[,.
Hence the induction step is completed, q.e.d.

. Karl Scherer, Universitit Kaiserslautern
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Quelques considérations concernant le probléme de I'aiguille

de Buffon dans I’espace euclidien E,

0. Soit E, ’espace euclidien A n dimensions de coordonnées x;, ..., x,,.

La mesure élémentaire cinématique dans E,, invariante par rapport au groupe de

mouvements euclidiens, est [1]:

dK=dPAdO,_A--- AdO,, (D
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