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Placing and moving spheres in the gaps
of a cylinder packing*)

Abstract. The closeness of a packing is defined as the reciprocal of the supremum of the
radius of a ball contained in the complement of the packing. It is known that the
maximum closeness of any packing of R3 with infinite circular cylinders of radius 1 equals
q'1 3 + 2 y/3, and, up to an isometry, the packing of maximum closeness is unique. We

prove that if in a packing no two cylinders are parallel, then, for any two balls of radius

g non-overlapping with any of the cylinders, each of the balls can move between the

cylinders to assume the other ball's place, without overlapping with any of the cylinders
during the motion.

Introduction

First, let us describe the content of this paper in a less rigorous, but more intuitive and
Visual manner.
Imagine a forest in which trees are cylinders, each being infinite in both directions and
of unit radius. Two such cylinders are allowed to touch, even along a line, but not to
overlap. There are various types of forests possible. If all cylinders are parallel, we say
that the forest is straight, and if no two cylinders are parallel, we say that the forest is

chaotic. A straight forest in which every cylinder touches six others is of special impor-
tance to us. We will call it the thickest forest. Our forests shall be inhabited with
porcupines which are animals of spherical shape. If the ball centered at P and with radius

r does not invade any of the cylinders of a given forest, then we say that there is room
at P for an r-porcupine.
Notice that the maximum radius of a porcupine that can live in the thickest forest is

q (2A/3) -1 (see Fig.l).

Figure 1

*) Partially supported by the Hunganan National Foundation for Scientific Research, grant number 1238
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We prove that in every forest there is room for a g-porcupine and, in fact, every point
which lies outside all of the cylinders is within >/2/3 0.816 from a point at which
there is room for a g-porcupine. Moreover, if there is no room for a porcupine of size

greater than q, the forest is the thickest one. In this part we duplicate to some extent the
result of [4], but our approach is slightly different and we use it for further conclusions.
Turning to chaotic forests, we prove that a g-porcupine can move freely in it, avoiding
all cylinders and being able to arrive at any place at which there is room for it.
A reader familiär with discrete geometry will recognize the concept of packing and its
closeness in the above description. Given a set K9 then a family of sets Ki9 each congruent
to K9 whose interiors are disjoint, is called a packing with copies ofK (A forest is a packing
with copies of a unit cylinder). Sometimes we identify the packing with the union of all
of its members. This identification creates no confusion if K is the closure of its interior.
The closeness ofa packing is measured with the reciprocal ofthe supremum ofthe radius
ofa ball contained in the complement ofthe packing (see L. Fejes Töth [3], A. Bezdek [1],
K. Böröczky [2], and J. Horvath [4] for definitions and results concerning this notion).
The following sections will be devoted to stating and proving the results described in the
introduction, in a more rigorous manner and in the usual, geometrie terminology. The
number (2/^/3) — 1, crucial in our investigations, will be consistently denoted by q.

1. Lemmas

Lemma 1. Among all triangles with all sides of length > 2, the equilateral triangle of side

2 is contained in a circle of minimum radius.
This lemma is a well-known fact in elementary geometry with an easy proof.

Lemma 2. If a disk of radius r intersects three non-overlapping unit disks (all in one

plane), then r>q and the equality occurs only if the three unit disks are tangent to each

other.
This lemma follows directly from Lemma 1.

Lemma 3. If a ball of radius r intersects three non-overlapping unit balls (in 3 dimensions)
then r>Q, and the equality occurs only ifthe three unit balls are tangent to each other.

Proof. This lemma is reduced to Lemma 2 by projeeting the four balls on the plane of
the centers of the three unit balls.

Main Lemma. Ifa ball of radius r intersects of three non-overlapping unit cylinders, then

r _> g and the equality occurs only if the three cylinders are parallel and tangent to each

other.

Proof. In each of the cylinders there lies a unit ball (inscribed in the cylinder) which meets

the ball of radius r (see Fig. 2). Obviously, the three unit balls do not overlap. This reduces

the proof to Lemma 3. Notice that if the three unit balls are tangent to each other, then
the corresponding unit cylinders are perpendicular to the plane ofthe centers ofthe balls

(and therefore parallel to each other) and are tangent to each other.
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Figure 2

2. Theorems

Theorem 1 (see also [4], p. 220). For every packing ofR? with unit cylinders there exists
a ball of radius q not overlapping with any of the cylinders.

Proof. Start with a ball in the complement of all of the cylinders of the packing. Enlarge
the size of the ball keeping the ball non-overlapping with the cylinders and moving the
center ofthe ball if necessary. Observe that the enlargement process terminates only when
the ball touches at least 3 cylinders. By the Main Lemma, at that moment the radius of
the ball is already large enough.

Remark. A careful analysis of the procedure described in the above proof results in the

following Statement: Every point in the complement of all of the cylinders of the packing
lies within y/2ß from the center of a ball of radius q9 non-overlapping with any of the
cylinders. The number >/2/3 is the smallest possible in this context, as it can be seen on
the example of two tangent, perpendicular cylinders.

Theorem 2 (see also [4], p. 220). Suppose P is apacking with unit cylinders such that every
ball of radius r> q overlaps with one ofthe cylinders. Then all cylinders in P are parallel
and each of them is tangent to six others.

Proof. Let C be one of the cylinders of P and let A be a point on the surface of C but not
on any of the other cylinders. Start with a small ball tangent to C at A and not overlapping

with any ofthe cylinders and enlarge it, keeping it tangent to C and moving its center
in a continuous fashion until the ball no longer can be enlarged (as in the proof of
Theorem 1). At the final stage ofthe enlargement, the ball is tangent to C and to two other
cylinders, and its radius is q. By the Main Lemma, the three cylinders are parallel and

tangent to each other. Since point A on the surface of C is arbitrary, this proves that C
is touched by six other cylinders, parallel to each other and to C.

Main Theorem. Suppose P is a packing with unit cylinders in which no two cylinders are
parallel, and suppose that B0 and Bx are two balls ofradius q each and each non-overlapping
with any ofthe cylinders ofP. Then there exists a path p: [0,1] -? R3 such that p(x) is the

center of a ball Bx of radius q9 non-overlapping with any of the cylinders of Pt for every
X€[0,1].



50 El. Math., Vol. 46, 1991

Proof. Denote by C, (i 1,2,...) the cylinders of P and let Lt be the axis of revolution
of C{. Let Cf denote the open cylinder of radius 1 + g 2/N/3, coaxial with Ci9 and
let P+ be the union ofthe cylinders Cf+.

Observe that a point X lies in the complement of P+ if and only if the ball of radius g
centered at X does not overlap with any of the cylinders Ct. Thus, in order to prove the
theorem it is enough to show that the complement of P+ is pathwise connected. Consid-
ering the simple local strueture of the complement of P+, all we need to show is its
connectedness.
For each pair of intersecting cylinders Cf, Cf (i + j)9 let B(j denote the shortest segment
connecting the skew lines L{ and Lj. Obviously, Btj lies in Cf, Cf. Denote the union of
all lines Lt and all segments Btj by G. Since G is a one-dimensional set in R3 (in fact G
is a locally finite graph), the complement of G is connected. Since no two cylinders Cf, Cf
are parallel, their intersection is always a bounded set. Topologically, the set is an open
3-cell, if not empty. Furthermore, by the Main Lemma, no three cylinders of P+ intersect,
thus no two of these 3-cells have a point in common. Therefore P+ is a so-called regulär
neighborhood of G in R3 (see [5], Ch. 3). In particular, G is a deformation retract of P+

(in fact, a deformation retraction of P+ onto G can be constructed explicitly, without
reference) which implies that P+ is homotopically equivalent to G. Since Separation of R3

is a homotopy invariant, P+ does not separate R3.

Remark 1. The Main Theorem can be strengthened somewhat as follows. Instead of
assuming that no two cylinders are parallel it is enough to assume that no two cylinders
which are touched by the same ball of radius g are parallel. The proof remains valid
without a change.

Remark 2. The Main Theorem has another proof, a more elementary and constructive
one, producing an algorithm for finding a path from B0 to Bx. However, this alternate
proof requires more space as it involves many special cases. We chose the proof presented
above because of its brevity.

Remark 3. In relation to the Main Theorem, one might consider the question of whether
there exists a constant k such that the length of the path leading from B0 to Bx never
exceeds k times the distance between the centers of the balls. It turns out that no such

constant exists. This can be seen on the following example. Let Cf be the unit cylinder
whose axis passes through the point (2i,0,0), is perpendicular to the x-axis and forms an

/ IV
angle 90 + 7

1 with the x y-plane (1 1,2,3,...). The cylinders Ct form a "wall" between

the points Pt (2i,2,0) and Qt (2i, - 2,0), and the shortest path from Pt to Q( along
which a ball of radius g can travel avoiding each Cf is of length increasing to infinity as

i increases to infinity.

Remark 4. The Main Theorem and Remark 1 can be generahzed to n dimensions (n > 3)

by defining an n-dimensional cylinder as a set congruent to the Cartesian product of an

1.
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Moreover, this value of gn appears to be the greatest possible in the context of the
generahzed Main Theorem.

A. Bezdek, Cornell University, Ithaca and Hungarian Academy of Sciences, Budapest
W. Kuperberg, Auburn University, Auburn
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Konvergenz von Teilen der harmonischen Reihe

1. Einleitung

Es seien M die Menge der natürlichen Zahlen, in deren Dezimaldarstellung keine «9»

auftritt, und P die Menge der Primzahlen. Dann ist wohlbekannt, daß (i) _£ n'1 konver-
neM

giert, wobei (ii) _£ n"1 divergiert. Ergebnis (i) geht wohl auf Kempner (1914) zurück;
neP

einen einfachen Beweis, der die Abschätzung £ n"l < 90 liefert, findet man in Honsber-
neM

ger (1982), S. 89 ff. Irwin (1916) und Wadhwa (1975) geben untere und obere Schranken
für die analoge Reihe an, die durch Weglassen aller eine «0» enthaltenden Terme entsteht.
In dieser Arbeit wollen wir für eine ganze Klasse nach diesem Muster gebildeter Reihen
eine einfache Abschätzung herleiten. Dieses Ergebnis werden wir dann anwenden, um zu
zeigen, daß es für jedes k > 0 eine Primzahl gibt, deren Dezimaldarstellung eine gegebene
Ziffer (etwa «9») mehr als k-mal enthält, und um eine obere Schranke für die kleinste

derartige Primzahl zu gewinnen.

2. Teilreihen von _£ n l

Im folgenden seien eine natürliche Zahl d > 2, ein; e {0,1,..., d — 1} und eine ganze Zahl
k>0 fest gewählt. Für jedes neN gibt es eine eindeutige d-adische Darstellung
n a0 + axd + a2d2 + mit a0,als ...e{0,l, ...9d— 1}. Die Koeffizienten at nennen
wir die Ziffern von n. Sei nun M die Menge aller natürlichen Zahlen, in deren d-adischer

Entwicklung die Ziffer j höchstens k-mal auftritt.
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