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Avoiding arithmetic progressions in cyclic groups

Lorenz & Stephanie Halbeisen

Stephanie Gloor und Lorenz Halbeisen lernten sich 1995 kennen, als sie beide
Assistenten an der ETH Zurich waren. Vertieft wurde ihre Beziehung, wahrend sie

an der Universität Zurich promovierte und er Postdoc-Aufenthalte in der Normandie
und in Katalonien absolvierte. Nach einem gemeinsamen zweijährigen Aufenthalt in
Berkeley sind sie 2001 als kleine Familie nach dem anderweitig bekannten Belfast

gezogen, wo sie kurzlich ein Nachdiplomstudium in Informatik abgeschlossen hat

und er Dozent an der Queen's University Belfast ist.

0 Introduction

Van der Waerden's theorem tells us that for any colouring of the positive integers with two
colours, there are arbitrarily long non-constant arithmetic progressions in one colour, i.e.,
for every length I there are positive integers a and d such that all the numbers a, a +
d, a + 2d, a + (I - l)d have the same colour. Such arithmetic progressions are

called monochromatic. As a consequence, for any positive integer r there exists a positive
integer n such that each colouring of the numbers 1,2,...,« with two colours contains a

monochromatic non-constant arithmetic progression of length r. In other words, we cannot
avoid arithmetic progressions of length r in both colours simultaneously.

Let us try to colour the numbers 1, 2,..., 9 with two colours in such a way that neither
colour contains an arithmetic progression of length 3. Let o and • denote the two colours
respectively. Without loss of generality we may assume that 1 is coloured • We now

Ein Satz von van der Waerden besagt, dass bei jeder Färbung der natürlichen Zahlen
mit zwei Farben zu beliebigem I > 1 positive natürliche Zahlen a, d existieren, so

dass a, a + d, a + 2d a + (t — [)d gleich gefärbt sind, hi der vorliegenden
Arbeit untersuchen die Autoren Variationen dieses Resultats: Sie ersetzen N durch die

zyklische Gruppe Zn der ganzen Zahlen modulo n. Hier gibt es keine „Randeffekte";
anderseits kann eine arithmetische Folge dieselbe Zahl mehrfach belegen, Gefragt wird
nach der maximalen Grosse einer Teilmenge AcS„ die keine arithmetische Folge
der gegebenen Länge r trägt. Beispielsweise ist diese maximale Grosse für r n
gleich «(1 - l/p), wobei p die kleinste Primzahl ist, die n teilt.
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proceed by colouring successively the numbers 2, 3,... such that neither colour contains

an arithmetic progression of length 3. This leads to the following graph:

1 5 8

Firstly, this graph shows that it is possible to colour the numbers 1, 2,..., 8 with two
colours such that neither colour contains a non-constant arithmetic progression of length 3.

Secondly, we see that no matter how we colour the numbers 1, 2,..., 9 with two colours,
there is always a monochromatic non-constant arithmetic progression of length 3.

For given positive integers « and r we can always ask how large a subset of {1, 2,...,«}
may be such that it does not contain any arithmetic progression of length r. To find
optimal upper bounds for the cardinality (i.e., size) of such a set is still an open problem,
even in the case of r 3. In order to make the problem more symmetric and to avoid
"boundary effects", we shall consider the cyclic set (Z/wZ) Z„, instead of the linear
set 1,2,...,«, and ask for the maximum cardinality of a subset in Z„ which does not
contain any non-constant arithmetic progression of a given length. More precisely, a non-
constant arithmetic progression with respect to Z„ of length r is a non-constant sequence
in the cyclic group (Z„, +) {i.e., modulo«) of the form a, a + d, a + 2d, a + {r — \)d,
where a e Zn and 1 < d < n. Notice that we do not require all elements of the sequence
to be different. Seeking for large sets in cyclic groups which do not contain arithmetic
progressions of a given length leads to the following question:

Given a cyclic group Z„ and a positive integer r. What is the maximum
cardinality of a set A ç Z„ such that A does not contain any non-constant
arithmetic progression with respect to Z„ of length r?

In order to give partial answers to this question we shall use finite affine planes, a result
in finite geometry, hypergraphs (a general form of graphs), a result for the linear case, as

well as some combinatorics.
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First we like to reformulate our question above in terms of hypergraphs, but before we can

do so, we have to introduce some terminology.

A hypergraph H (V, E) is a finite set V of "vertices" together with a finite set E
of "edges" (sometimes called "hyperedges"), which are arbitrary non-empty subsets of
V (for a systematic study of hypergraphs we refer the reader to [1]). If all edges of a

hypergraph H have the same cardinality r, then the hypergraph H is called r-uniform.
In particular, a graph without loops is a 2-uniform hypergraph. A hypergraph is called

regular if all vertices belong to the same number of edges. A set of vertices of a hypergraph
H which does not (completely) contain any edge of H is called an independent set.

The complement of an independent set is a set of vertices which meets each edge of the

hypergraph. Such a set is called a transversal. For a hypergraph H, the independence
number a(H) (in the literature also called stability number) is the maximum cardinality
of an independent set of H (see [1]). The transversal number r(H) of a hypergraph H
is the smallest cardinality of a transversal of H. If each vertex of H is contained in at least

one edge of H, then the complement of a maximal independent set (i.e., an independent
set which is not properly contained in another independent set) is a minimal transversal

(i.e., does not properly contain another transversal) and vice versa. In particular, we get
that a(H) + r(H) is equal to the number of vertices of//.
Let us now turn back to our question:

For a positive integer n, we identify the elements of the cyclic group Z„ with the set

{0, 1,..., n - 1}. For a positive integer r with r < n, let Hns (Vn, Er) be the

hypergraph defined as follows: Vn := Zn and a finite set e ç vn belongs to Er if and

only if there is a non-constant arithmetic progression P in Zn of length r, so that the
elements appearing in P are exactly the elements of e. Since Z„ is completely
symmetric, Hn.r is always a regular hypergraph, but, in general, //„.r is not r-uniform, e.g.,

H4,3= {{0,1,2}, {1,2,3}, {2,3,0}, {3,0, 1}, {0,2}, {1, 3}}. On the other hand, Hn.r is

always r-uniform for n > r and n prime. To see this, let (fli, Ü2, ¦¦¦, ar) be an arithmetic
progression with respect to Z„, where n > r and n prime. Let d ci2 - fli and assume that

m ai for some 1 < k < I < r. Then (k — V)d 0 mod n, and since n is prime, this

implies that d 0 or d n, and therefore, the sequence (ai, ai,..., ar) is constant in Z„.
Since the set of edges of //„.r corresponds to the set of all non-constant arithmetic progressions

in Z„ of length r, it is easy to see that a(Hn,r) is equal to the maximum cardinality
of a set A ç Z„ such that A does not contain any non-constant arithmetic progression of
length r. So, to keep the notation short, let a(n, r) := a(Hn.r).
For small numbers n and r, the value a(n, r) can be easily calculated by computer,
using for example a fast Prolog program. However, for general statements like a(p2, p)
(p - I)2 (for p prime) we have to seek combinatorial proofs. The following result for
hypergraphs gives us a lower bound on a(n, r) for n > r and n prime.

If n > r and Hnr is r-uniform, e.g., if n is prime, a lower bound for a(n, r) is given by
the formula

a(n, r) > -—" m(Hn.r)V
where m(Hn,r) denotes the number of edges of //„.r (see [1, p. 136]). Let us give some

examples: For n 1 and r 3 we get a(l, 3) > ^73 ^ 2.54, therefore, a(l, 3) > 3,
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and indeed, a(l, 3) 3. However, for n 25 and r 5 we get a(25, 5) > ^75 ^ 8.25
and therefore, a(25, 5) > 9, but we will see later that a(25, 5) 16.

In the next section we will give some other lower bounds for a(n, r) and in the last section

we will compute exact values ofa (n, r for certain numbers n and r. As a matter of fact, we
like to mention that a(n, r) is increasing in r, i.e., if r > r' > 1, then a(«, r) > a(n, r').
But on the other hand, a(n, r) is not increasing in n. For example, a(19, 3) 6 but
a(20, 3) 5.

1 Lower Bounds

For positive integers n, a, r let («, a, r) be the following statement: There is a set A ç Z„
of cardinality a which does not contain any non-constant arithmetic progression of length
r. As mentioned above, a(n, r) denotes the largest integer a with (n, a, r).

A set A ç Z„ of cardinality a witnesses («, a, r) if it does not contain any non-constant
arithmetic progression of length r.

Remark If B ç Z„ witnesses (n,b,r) and a(n,r) > a > b, then, in general, it is

not true that there exists a set A ^ b which witnesses (n, a, r); or in terms of hy-
pergraphs, not every maximal independent set of Hns must have cardinality a{Hns).
For example, B {0, 1, 3,4, 11, 20} witnesses (27, 6, 3), a(27, 3) 8, but there is

no A 2 B which witnesses (27, 7, 3). A witness for (27, 8, 3) is, for example, the set

{0, 1,3,4,9, 10, 12, 13}.

Theorem 1.1. For all positive integers n, m, a, b andr we have:

(n,a,r) and (m,b,r) implies (nm, ab, r).

Proof. For a sequence z (zo, • • •, z«-i) of 0's and l's, let xi '¦= U : zi 1} Ç Z„.
Further, let 0„ (0,..., 0). Suppose that x (xo, ¦ ¦ ¦, xn-i) and y {yo,..., ym-i)

«—times

are such that Xx and Xy witness (n, a, r) and (m, b, r), respectively, then /^, where

B (Byn, ...,Bym with By. \ I Jv yo' ym-i^ 1 o otherwise,

witnesses (nm, aft, r). Indeed, if xjj contains an arithmetic progression (ai,... ,ar) of
length r, then, since Xx witnesses (n, a, r), the sequence (fli mod«,... ,ar mod«) is

constant. Thus, for every 1 < i < r we have a; ki ¦ n + c, where 0 < ki < m and
0 < c < n. By construction, the k;'s belong to Xy and since Xy witnesses (m, b, r), all
the Aii's must be equal, and therefore, the sequence {a\,..., ar) is constant. Hence, Xb
witnesses (nm, ab, r), which completes the proof. D

As an immediate consequence of Theorem 1.1 we get the following:

Corollary 1.2. For allpositive integers n, m, and r we have

a(nm, r) > a(n, r) ¦ a(m, r).
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Remark In general, the lower bound for a(nm, r) given in Corollary 1.2 is not sharp. For

example, a(4, 4) 2, but a(16,4) 6, witnessed by {0, 1, 2, 4, 5, 7}; and a(6, 3) 2,
but a(36, 3) 8, witnessed by {0, 1, 3,4, 9, 10, 12, 13}. Moreover, this lower bound is

not even sharp if n and m are two distinct prime numbers. For example, a(5, 3) 2 and

a(l, 3) 3, but a(35, 3) 9, witnessed by {0, 1,3,4, 10, 12,22,26,28}.

For any positive integers n and r > 3, another lower bound for a(n, r) is given by the

following:

Proposition 1.3. For any positive integers n and r, where r >3,we have

Ln/2j
a(n, r)

|_n/2jc(j)/(lnL«/2J)s/s+1
'

[_n/2\ is the greatest integer which is less than or equal to n/2, s is a positive integer
such that 2s < r < 2S+1 and c(s) > 0 is a constant depending only on s.

Proof. Let m [n/2], [m] {0, 1,..., m - 1} and let vr(m) be the cardinality of
a largest set A ç [m], so that A does not contain any non-constant arithmetic progression

with respect to [m] of length r. Now, Robert Rankin proved in [5] that vr(m) >
mi-c(s)/(\am) ^ where s is such that 2s < r < 2s+l and c(s) is a constant depending

only on s. Hence, if A ç [m] is such that A does not contain any non-constant arithmetic

progression with respect to [m] of length r, then, since n > 2m, A does not contain any
non-constant arithmetic progression with respect to Zn of length r, which completes the

proof. D

2 Exact Values

The table on the following page shows some exact values of a(n, r) for some small numbers

n and for r 3 and r 5, respectively. The values of a(n, r) as well as the witnesses

we found with the help of the programming language Prolog.

In the following we compute the exact value of a(n, r) for certain positive integers n and

r. Let us begin with the case n r.

Fact 2.1. If p is prime, then a(p, p) p - 1.

Proof. Obviously, we have a(p, p) < p. On the other hand, since p is prime, the set

{0, 1,..., p - 2} witnesses (p, p - 1, p). D

Theorem 2.2. If n m ¦ p, where p is the smallest prime number dividing n, then

a(n, n) m(p - 1) n{\ - l/p).

Proof. For each h with 0 < h < m, let eu ¦= [h + mi : 0 < i < p). Notice that each en

is equal to the set h + mZp [h + mi : i e Zp], which gives us an arithmetic preserving
bijection between Zp and en, and thus, each eu is an arithmetic progressions preserving
copy of Zp. Therefore, each e% is an infinite non-constant arithmetic progression in Zn
with common differenced m. Consider thehypergraph Hnn (Zn, En), where En is
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n

9

10

11

12

17

18

19

20

24

25

27

9

10

11

12

17

18

19

20

24

25

27

r
3

3

3

3

3

3

3

3

3

3

3

5

5

5

5

5

5

5

5

5

5

5

a(«, r)
4

4

4

4

5

5

6

5

6

7

8

5

5

6

6

9

8

10

10

11

16

15

witness

{0,1,3,4}
{0,1,3,4}
{0,1,3,4}
{0,1,3,4}
{0,1,3,7,8}
{0,1,3,7,8}
{0, 1,3, 12, 14, 15}

{0,1,3,4,9}
{0,1,3,4,9,10}
{0,1,3,4,9,10, 12}

{0, 1,3,4,9, 10, 12, 13}

{0,1,2,3,5}
{0,1,2,4,8}
{0,1,2,3,5,6}
{0,1,2,3,5,10}
{0,1,2,3,5,6,7,8, 10}

{0,1,2,3,5,6,7,8}
{0, 1,2,3,5,6,7,8, 10, 12}

{0, 1,2,4,5,7,8,9, 13, 16}

{0,1,2,3,5,6,7,8, 10,11,21}

{0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18}

{0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 25}

the set of all arithmetic progressions of length n in Z„. Since each e% has p elements and

p < n, en e En. Further, since p is prime, by Fact 2.1 we have a(p, p) p - 1, which
implies that for any j with 0 < j < p — l,eh\[h +mj] £ En. Finally, since there are m

edges eh and the e^'s are pairwise disjoint, we get a(n, n) < m(p - 1).

On the other hand, the set A {0, 1,..., m(p — l) — l] witnesses (n,m(p — l), n). Indeed,

assume that {ci\,..., an) is a non-constant arithmetic progression with common difference
d < n, built with elements of A. Since \A\ m (p - 1), the arithmetic progression
uses at least one element of A twice. Let 1 < ko < n be the least number such that

fli «fco fli + (&o - 1)^- Then (fco — l)d £«, which implies that {fli + fc| : 0 < fc <
^o} {fli : 1 < i < ko}. Because of the gap of length m in A, f > m, but since m is the

greatest proper divisor of«, this is a contradiction.

Therefore we have a(n, n) m(p — 1), which completes the proof. D
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As an immediate consequence of Theorem 2.2 we get the following:

Corollary 2.3. For any positive integer m we have a{2m, 2m) m.

Moreover, combining Fact 2.1 and Corollary 1.2 we get the following:

Corollary 2.4. For any prime number p and any non-negative integer k, a{pk, p) >
{p - l)k.

Moreover, by Proposition 1.3, for large numbers k and for prime numbers p > 2 we
have a{pk, p) > {p — l)k. To see this, let e(k) 4^ and note that smce

„k S/S+l
lim^co In \_*y\ -> oo we get lim^co e{k) -> 0. Therefore, by taking the
logarithm on both sides of the following expression, one verifies that for k large enough we
have

2

and since a{pk, p) > (|_^r_l) (by Proposition 1.3), it follows that for k large enough

we have a(pk, p) > {p — l)k. Thus, the lower bound for a(pk, p) given in Corollary 2.4

is, in general, not sharp. On the other hand, this lower bound is sharp for k 2. Before we
can prove this result we have to introduce some terminology.

An affine plane of order p, where p is prime, is a set P containing p2 points, together
with p + 1 so-called parallel classes consisting of subsets of P which are called lines,
such that the following hold:

(i) Each parallel class contains p pairwise disjoint lines.

(ii) Each line contains p points of P.

(iii) For any two distinct points of P, there is exactly one line in some parallel class

which contains these two points.

Theorem 2.5. For any prime number p we have a{p2, p) {p - I)2.

Proof. By Corollary 2.4 we get a{p2, p) > {p — I)2. Now, Robert Jamison in [3] and
Andries Brouwer and Alexander Schrijver in [2] have shown that a set which intersects
each line of the affine plane of order p, i.e., a transversal, must contain at least 2p - 1

points. Notice, that the complement of a set which intersects each line of an affine plane
cannot contain a line. Thus, in order to prove Theorem 2.5 it is enough to prove that there
exists an affine plane of order p such that each line forms an arithmetic progression with
respect to "Lp2, since we then can conclude that a{p2, p) < p2 - {2p — \) {p — I)2.

So, let us show that there is an affine plane of order p such that every line forms an

arithmetic progression of length p. Let [a;j : 0 < i, j < p) be the set of points, where

a;j := i + jp (for all 0 < i, j < p). The p2 + p lines £ are defined as follows: For
0 < j < p and 0 < s < p let £-u$ := {a;^s;+j) mod p : 0 < I < p] and let t-up := {a}A :

0 < i < p}. By construction, for fixed /, {£j.s : 0 < s < p] is the set containing the p + 1

lines going through aoj, and for any s with 0 < s < p, the set Cs [£j,s : 0 < j < p]



Avoiding arithmetic progressions in cyclic groups 121

consists of p parallel lines, i.e., is a parallel class. Now, for every 0 < j < p and every
0 < s < p, £j\s forms an arithmetic progression with respect to Z^2. Indeed, for 0 < s <
p, £j\s forms an arithmetic progression with common difference sp + 1 and t-hV forms
an arithmetic progression with common difference p. Further, for any two distinct points,
there is exactly one line (in some parallel class Cs) which contains these two points.

Thus, for every prime number p there exists an affine plane of order p such that each line
forms an arithmetic progression with respect to Z„2, which completes the proof. D

The proof of the Jamison-Brouwer-Schrijver result is algebraic, using polynomial equations

over a finite field, and no combinatorial proof is known (cf. [4, Problem 3.13+]). In
the case of p 3 or p 5, we were able to prove the equation a(p2, p) (p - I)2
in a purely combinatorial way. However, since the proof is already awkward for p 5,

it is difficult to see how it could be extended to larger primes. In the following we like to

present a combinatorial proof just for the case of p 3:

Proposition 2.6. a (9, 3) 4.

Proof. By Corollary 2.4 we get a (9, 3) > 4. So, assume towards a contradiction that there
is a set Ä ç Z9 which witnesses (9, 5, 3), or in other words, assume that Ä ç Z9 is a

set with five elements which does not contain any non-constant arithmetic progression of
length 3. Let M9 be the 3 x 3-matrix

M9

and let Ri, R2 and R3 be the rows of M9. Since each row Ri is equal to the set i + 3Z3,
each row is an arithmetic progression preserving copy of Z3, and since a (3, 3) 2 for
each 1 < i < 3, we have \Ä n Rt\ < 2 (where \Ä C\ Ri\ denotes the cardinality of the
set Ä n R{). Further, since |Â| 5, there must be two rows, say R\ and R2, such that
|Â n Ri\ \Ä n 7?2| 2, which - by checking the 9 possible cases - implies that
A n R3 0, and hence, A does not witness (9, 5, 3), which completes the proof. D

As we have seen above, for any prime number p > 2 and sufficiently large k we have

a(pk, p) > (p — l)k. On the other hand, we also have seen that a(p2, p) (p - I)2
holds for any prime number p. Thus, it still might be the case that the equation a(p3, p)
(p-l)3 holds for all prime numbers p. A first step towards this conjecture is the following:

Proposition 2.7. a(27, 3) 8.

Proof. By Corollary 2.4 we get a(27, 3) > 8. So, assume towards a contradiction that
there is a set Ä ç Z27 which witnesses (27, 9, 3). Let Mzi be the 3 x 9-matrix

0 3 6 9 12 15 18 21 24

M27 I 1 4 7 10 13 16 19 22 25

2 5 8 11 14 17 20 23 26

and let R \, R2 and R3 be the rows of M21. Since each row Ri is an arithmetic progressions
preserving copy of Z9 and a(9, 3) 4, for each 1 < i < 3, |Â n R;\ < 4. We partition
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Z27 into the three pairwise disjoint sets

7i {0,1,2,9,10,11,18,19,20},
T2 {3,4,5,12,13,14,21,22,23},
T3 {6,7,8,15,16,17,24,25,26}.

Let j, k, I e {1, 2, 3} be three distinct numbers. The three sets T\, T2 and T3 are such that
for each i with 1 < i < 3 we have

Ri n A 0 and Ä; n A n rt / 0 implies fi,nAnîi (Ö)

Indeed, let a e Ri P Tj and b e Ri P T^. Then, there are three different arithmetic
progressions of length 3 through a and b, say {a, ft, c\), {a, b, c2) and [a, b, C3}, and by
construction we have {c\, c2, C3} Ri P T\. Since |Â| 9, there must be two rows, say
R\ and R2, such that \ÄP R\\ > 3 and |Â n R2\ > 3. Hence, by (ft), there must be

;'i, ;2 e {1, 2, 3} such that |tf 1 n À n T^ | \R2 P Ä P Th \ 2. Consider the hypergraph
#27,3 (Z27, E), where £ consists of all instances of arithmetic progressions of length 3

in Z27. For a e Ai n À n T^ and b e R2 P À P TJ2 let Sa,b {c e R3 : {a, ft, c} e £}.
Then, \Sa,b\ 3 and it is easy to see that \Sa,b P T\\ \Saj> P T2\ \Sa,b n 73I 1.

Moreover, for {a\, a2] Ri n A P Tjt and

SaiM U Sai,b2 U ^
2] R2 P A P Tj2 we have

which implies that Ä P R3 0, and hence, Ä does not witness (27, 9, 3). Let us illustrate
(*) with the following example: Let j\ 1, a\ 0, a2 9, and j2 3, and consider the

six arithmetic progressions of length 3 going through a\ or a2, R2 P T3, and R3 P T3:

fll

0

0

0

R2P

1

16

25

T3 R3P

17

8

26

T3 a2

9

9

9

7

16

25

T3 R3 P

8

26

17

T3

Hence, no matter which two numbers b\ and b2 we take from R2P T3, we always have

(R3 P T3) (Som P T3) U (So,b2 P T3) U (S%bl P T3) U (59,62 n r3),

which, by symmetry, is true for any choice of a\ and a2 from R\PT\. Thus, we have

(R3 P T3) (SaiM P T3) U (Sai,b2 P T3) U (Sa2,bl n r3) U (5a2,fc2 n T3).

Considering the six arithmetic progressions of length 3 going through a\ or a2, R2 P T2,

and R3PT2, we get

(R3 P T2) (Sai T2) U (Sai,b2 P T2) U (Sa2,bl P T2) U n r2).

Similarly, by considering the six arithmetic progressions of length 3 going through a\ or

a2, R2 P T\, and R3 P T\, we get

(R3 P Tx) {Sa.

Thus, we finally have

R3 (R3 P ?i) U

P Ti) U {Sai,b2 P Ti) U {Sa2M P T{) U {Sa2,b2 P T{).

3 n T2) U (A3 n T3) SaiM U 5aii62 U Sa2,bl U 5a2i&2 D
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3 Summary
The function a(n, r) is monotone in r but not monotone in n. However, for any positive
integers n, m and r we have a(nm, r) > a(n, r) ¦ a(m, r). In particular, for any positive
integers«, k, andr wehavea(n*, r) > a(n, r)k, which implies that for any prime number

p, a(pk, p) > a(p, p)k (p — l)k. On the one hand, for each prime number p > 2

there are integers k such that a(pk, p) > (p - l)k, but on the other hand, for every prime
number p we have a(p2, p) (p - I)2 and a(p, p) (p - 1). In addition, we have seen

that a(33, 3) 23 (Proposition 2.7) but the authors were not able to prove a(53, 5) 43,

since the proof of Proposition 2.7 seems not generalisable. This leads to the open question
whether a(p3, p) (p - I)3 for all primes p larger than 3 (the authors could not agree
what they expect to be the answer). Further, we have seen that for any positive integer n,

a(n, n) n{\ — -), where p is the smallest prime number dividing n. In particular, for

any positive integer m we have a(2m, 2m) m.
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