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1 Introduction

The classical circle packing problem asks for an arrangement of nonoverlapping circles in
R2 so that the largest possible proportion of the space is covered by them. This problem
has a long and fascinating history with its origins in the works of Albrecht Dürer and

Johannes Kepler. The answer to this is now known: the largest proportion of the real
plane, about 90.7%, is covered by the arrangement of circles with centers at the points
of the hexagonal lattice. The first claim of a proof was made by Axel Thue in 1892,
and then once again in 1910. It is generally believed however that the first complete
flawless proof was produced only in 1940 by László Fejes-Tóth see [2], [10] for detailed
accounts and bibliography). On the other hand, the fact that the hexagonal lattice gives the
maximal possible circle packing density among all lattice arrangements has been known

Die Aufgabe, die dichteste Packung der Ebene bzw. des Raumes mit nicht überlappenden,

kongruenten Kreisen bzw. Kugeln zu finden, ist ein klassisches Problem,
mit dem sich bereits Johannes Kepler befasst hat. Im Falle der Ebene liegt seit 1940
durch László Fejes-Tóth ein vollständiger Beweis der Tatsache vor, dass die dichteste
Kreispackung der Ebene aus einem hexagonalen Gitter, d.h. aus einem Bienenwabenmuster,

hervorgeht und damit ca. 90,7% der Ebene überdeckt werden. In dem nachfolgenden

Beitrag gibt der Autor einen elementaren Beweis des in diesem Kontext wichtigen

Teilergebnisses, dass unter den Kreispackungen der Ebene, die aus Gittern
hervorgehen, das hexagonale Gitter zur optimalen Lösung führt. Was die dichteste
Kugelpackung des Raumes, die sogenannteKeplersche Vermutung, anbetrifft, so wurde diese

im Jahr 1998 durch Thomas C. Hales unter Verwendung des Computers bewiesen.
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much earlier: all the necessary ingredients for the first such proof were present already in
the work of Lagrange, althoughhe himself, while awareof the circle packingproblem, may
not have realized that he essentially had a proof for the optimal lattice packing in hands.

In fact, the notion of a lattice has not been formally introduced until the work of Gauss in
1831. A detailed history and overview of these and other developments in the direction of
the circle packing problem and its much more difficult) three-dimensional analogue, the

Kepler conjecture, can be found in the excellent recent book of G.G. Szpiro [12].

In this note we concentrate on the lattice circle packing problem. Let us first set up the
basic notation and describe the problem. Recall that a lattice in R2 is a free Z-module
of rank two, so XZ2 for some matrix X x1 x2) GL2(R), where the column
vectors x1, x2 of X form a basis for and X is referred to as the corresponding basis
matrix. The determinant of denoted by det( is defined to be | det(X)|, which does

not depend on the particular choice of a basis for Let us now construct a circle packing
associated to Define the Voronoi cell of to be

V( { y R2 : y y- x x }
where we write for the Euclidean norm on R2. In otherwords, V( is the closure of
the set of all vectors in the real plane which are closer to 0 than to any other vector of
The area of the Voronoi cell is equal to det( and

R2

y.
V( + y,

meaning that the real plane is tiled with the translates of V( Moreover, as is clear from
the definition, the interiors of these translates are disjoint. Let us inscribe a circle into each

translate V( + y of this Voronoi cell by a point of the lattice, and write r( for the
radius of this circle. No two such circles overlap, and so we have a circle packing in R2,

called the lattice packing corresponding to The density of this circle packing is now
given by

area of one circle
area of the Voronoi cell

pr( 2

det(

The lattice packing problem in R2 is to maximize this density function on the space of all
lattices. The answer has been known since the end of the nineteenth century see Fig. 1):
this density function on lattices in R2 is maximized by the hexagonal lattice

h :=
1 12

0
v3
2

Z2

Here we will present a proof of this fact, emphasizing the particular properties of h that
make it a solution to this optimization problem.

Let us say that two lattices and in R2 are similar if there exists a real constant a and
a 2 × 2 orthogonal real matrix U such that

aU
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Fig. 1 Hexagonal lattice with Voronoi cell
translates and associated circle packing

in other words, if can be obtained from by rotation and dilation. Similarity is readily
seen to be an equivalence relation, and it is easy to notice that the packing density function

is constant on each similarity class. We will prove the following classical result.

Theorem 1.1. Let be a lattice of rank 2 in R2. Then

h)
p

2v3
0.906899 1)

with equality in 1) if and only if is similar to h

2 Background and standard notation
We start by setting up some additional notation. Let B be the unit circle centered at the
origin in R2. Given a lattice we define Minkowski successive minima .1 .2 of
to be

.i inf { R>0 : n .B contains i linearly independent nonzero vectors}

where i 1,2. By definition of the Voronoi cell of its in-radius is equal to one half
of the distance from the origin to the nearest with respect to Euclidean norm) point of
which is precisely .1/2, and so

p.21

4 det(
2)

We will say that the vectors x1, x2 correspond to successive minima .1, .2 if they
are linearly independent and

x1 .1, x2 .2.

Notice that if x1, x2 correspond to successive minima in then so do ±x1,±x2. From
now on, when we refer to vectors corresponding to successive minima in a lattice in R2,
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we will always mean a pair of such vectors so that the angle between them is in the
interval [0, p/2]. Therefore cos. > 0, and so

xt1x2 x1 x2 cos. > 0. 3)

A lattice R2 is called well-rounded, abbreviated WR, if its successive minima .1 and

.2 are equal. The hexagonal lattice h is an example of a WR lattice with .1 .2 1.

Well-rounded lattices are very important in coding theory [1] and discrete optimization
problems [7]; they also come up in the context of some number theoretic problems, such
as Minkowski’s conjecture [8] and the linear Diophantine problem of Frobenius [5]. For
a detailed study of the distribution of certain types of WR lattices in R2 see [3] and [4].
In Lemma 3.7 below we show that the WR property is preserved under similarity, i.e. a

well-rounded lattice in R2 can only be similar to another well-rounded lattice, and give a

simple necessary and sufficient criterionfor twoWR lattices in R2 to be similar. Thus
Theorem 1.1 implies right away that only a WR lattice can maximize lattice packing density.

Our proof of Theorem 1.1 emphasizes the importance ofWR lattices. Specifically, we first
prove that must achieve its maximum at a WR lattice, hence this optimization problem
can be restricted to WR lattices only. Next we show that if is WR, then is given
by a particularly simple expression, and maximizing it becomes an easy problem. Our
argument is self-contained and requires no background beyond linear algebra. For further
topics in the fascinating subject of lattice packing in dimensions two and higher see [2],
[6], [7], [10], and [11]. We are now ready to proceed.

3 Properties of well-rounded lattices in R2

Our goal here is to prove that the circle packing density function on the space of all lattices
in R2 achieves its maximum at the hexagonal lattice. We start with a simple, but very
useful lemma.

Lemma 3.1. Let x1 and x2 be nonzero vectors in R2 so that the angle between them
satisfies 0 < < p/3. Then

x1 - x2 < max{ x1 x2 }

Proof. Notice that xt
1 x2 > 0 by 3). Then, since < p/3,

1

2 < cos
xt1x2

x1 x2

and hence

x1 - x2 2 x1 - x2)t x1- x2) x1 2
+ x2 2 - 2xt1x2

< x1 2
+ x2 2 - x1 x2 < max{ x1 x2 }

2

Lemma 3.1 readily implies that the angle between vectors corresponding to successive
minima in a lattice cannot be< p/3.
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Lemma 3.2. Let R2 be a lattice of full rank with successive minima .1 .2, and let
x1, x2 be the vectors in corresponding to .1,.2, respectively. Let [0,p/2] be the
angle between x1 and x2. Then

p/3 p/2.

Proof. Assume that. < p/3, then Lemma 3.1 implies that

x1 - x2 < x2 .2,

which contradicts the definition of .2 since the vectors x1 and x1- x2 are linearly
independent.

We can now prove that vectors corresponding to successive minima in a lattice in R2 form
a basis.

Lemma 3.3. Let be a lattice in R2 with successive minima .1 .2 and let x1, x2 be
the vectors in corresponding to .1, .2, respectively. Then x1, x2 form a basis for

Proof. Let y1 be a shortest vector extendable to a basis in and let y2 be a

shortest vector such that y1, y2 is a basis of By picking ±y1,±y2 if necessary we can
ensure that the angle between these vectors is no greater than p/2. Then

0 < y1 y2

and for any vector z with z < y2 the pair y1, z is not a basis for Since
x1, x2 there must exist integers a1, a2, b1, b2 such that

x1 x2) y1 y2
a1 b1

a2 b2
4)

Let .x be the angle between x1, x2, and .y be the angle between y1, y2, then p/3 .x
p/2 by Lemma 3.2. Moreover, p/3 .y p/2: indeed, suppose .y < p/3, then by
Lemma 3.1,

y1- y2 < y2

however y1, y1 - y2 is a basis for since y1, y2 is; this contradicts the choice of y2.

Define

D det
a1 b1

a2 b2

then D is a positive integer, and taking determinants of both sides of 4), we obtain

x1 x2 sin .x D y1 y2 sin .y. 5)

Notice that by definition of successive minima, x1 x2 y1 y2 and hence 5)
implies that

D
x1 x2

y1 y2

sin .x
sin .y

2
v3

< 2,
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meaning that D 1. Combining this observation with 4), we see that

x1 x2)
a1 b1

a2 b2

-1

y1 y2

where the matrix
a1 b1

a2 b2

-1

has integer entries. Therefore x1, x2 is also a basis for

completing the proof.

Remark. We note that if we replace R2 with Rd then the statement of Lemma 3.3 is no
longer true for d 5 see for instance [9]).

We will call a basis for a lattice as in Lemma 3.3 a minimal basis. The goal of the next
three lemmas is to show that the lattice packing density function attains its maximum in
R2 on the set of well-rounded lattices.

Lemma 3.4. Let and be lattices of full rank in R2 with successive minima

.1( .2( and .1( .2( respectively. Let x1, x2 and y1, y2 be vectors in and
respectively, corresponding to successive minima. Suppose that x1 y1, and angles

between the vectors x1, x2 and y1, y2 are equal, call this common value Suppose also
that

.1( .2(
Then

Proof. By Lemma 3.3, x1, x2 and y1, y2 are minimal bases for and respectively.
Notice that

.1( .2( x1 x2

y1 .1( y2 .2(

Then, by 2),

p.1( 2

4det(
p.1( 2

4 x1 x2 sin
p

4 sin.

p.1( 2

4 y1 y2 sin
p.1( 2

4det(
6)

The following lemma is a converse to Lemma 3.2.

Lemma 3.5. Let R2 be a lattice of full rank, and let x1, x2 be a basis for such that

x1 x2

and the angle between these vectors lies in the interval [p/3, p/2]. Then x1, x2 is a
minimal basis for In particular, this implies that is WR.
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Proof. Let z then z ax1 + bx2 for some a, b Z. Then

z 2 a2 x1 2
+ b2 x2 2

+ 2abxt1x2 a2 + b2 + 2abcos x1 2

If ab 0, then clearly z 2 x1 2. Now suppose ab < 0, then again

z 2 a2 + b2 - |ab|) x1 2 x1 2

since cos 1/2. Therefore x1, x2 are shortest nonzero vectors in hence they
correspond to successive minima, and so form a minimal basis. Thus is WR, and this
completes the proof.

Lemma 3.6. Let be a lattice in R2 with successive minima .1, .2 and corresponding
basis vectors x1, x2, respectively. Then the lattice

WR x1
.1
.2

x2 Z2

is WR with successive minima equal to .1.

Proof. By Lemma 3.2, the angle between x1 and x2 is in the interval [p/3, p/2], and

clearly this is the same as the angle between the vectors x1 and .1
.2

x2. Then by Lemma
3.5, WR is WR with successive minima equal to .1.

Now combining Lemma 3.4 with Lemma 3.6 implies that

WR) 7)

for any lattice R2, and 6) readily implies that the equality in 7) occurs if and only
if WR, which happens if and only if is well-rounded. Therefore the maximum
packing density among lattices in R2 must occur at a WR lattice, and so for the rest of this
section we talk about WR lattices only. Next observation is that for any WR lattice in
R2, 6) implies:

sin
p

4

meaning that sin is an invariant of and does not depend on the specific choice of the
minimal basis. Since by our conventional choice of the minimal basis and Lemma 3.2, this
angle is in the interval [p/3, p/2], it is also an invariant of the lattice, and we call it the
angle of denoted by

Lemma 3.7. Let be a WR lattice in R2. A lattice R2 is similar to if and only if
is also WR and

Proof. First suppose that and are similar. Let x1, x2 be the minimal basis for
There exist a real constant a and a real orthogonal 2 × 2 matrix U such that aU
Let y1, y2 be a basis for such that

y1 y2) aU(x1 x2).
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Then y1 y2 and the angle between y1 and y2 is [p/3, p/2]. By Lemma

3.5 it follows that y1, y2 is a minimal basis for and so is WR and

Next assume that is WR and Let and be the respective values
of successive minima of and Let x1, x2 and y1, y2 be the minimal bases for and

respectively. Define

z1 y1, z2 y2.

Then x1, x2 and z1, z2 are pairsof points on the circle of radius centered at the origin
in R2 with equal angles between them. Therefore, there exists a 2 × 2 real orthogonal
matrix U such that

y1 y2) z1 z2) U(x1 x2),

and so and are similar lattices. This completes the proof.

We are now ready to prove the main result.

Proof of Theorem 1.1. The density inequality 7) says that the largest lattice packing density

in R2 is achieved by some WR lattice and 6) implies that

p
4 sin.(

8)

meaning that a smaller sin corresponds to a larger Lemma 3.2 implies that

p/3, meaning that sin v3/2. Notice that if is the hexagonal lattice

h
1 12

0
v3
2

Z2

then sin v3/2, meaning that the angle between the basis vectors 1, 0) and

1/2,v3/2) is p/3, and so by Lemma 3.5 this is a minimal basis and p/3.

Hence the largest lattice packing density in R2 is achieved by the hexagonal lattice. This
value now follows from 8).

Now suppose that for some lattice h), then by 7) and a short argument
after it must be WR, and so

p
4sin.( h)

p
4 sinp/3

Then p/3, and so is similar to h by Lemma3.7. This completes the proof.
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