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Developments from Ernst Specker’s Work in Set Theory

Andreas Blass 1

Andreas Blass graduated from the University of Detroit, where he was a Putnam
Fellow, in 1966 with a B.S. in physics. He received his Ph.D. in 1970 from Harvard
University with a thesis on orderings of ultrafilters. He is currently a professor at the
University of Michigan. His research is primarily in mathematical logic, particularly
set theory, but it extends into other areas, including finite combinatorics, category
theory, and theoretical computer science.

I first met Ernst Specker at the 2010 Zürich conference in honor of his 90th birthday, so

I am not in a position to contribute reminiscences. Like all set theorists, however, I met
Specker’s mathematics early and often in my mathematical career. At the Zürich meeting

I reported briefly on some of his contributions to set theory and on some recent
developments that build on those contributions. I thank Norbert Hungerbühler and János
Makowsky for giving me the opportunity to contribute this note, based on my Zürich talk.

The time constraints of the talk and the space constraints of this note require me to limit
myself to just three of Specker’s set theory papers. Each of the three sections that follow
concerns one of the papers and the subsequent developments flowing from it.

1 Sur un problème de Sikorski

Unpublished work of Specker closely related to this paper [18] showed the existence of
Specker lines. These are linearly ordered sets of cardinality 1 such that no uncountable
subset is well-ordered, anti-well-ordered, or embeddable into the real line R with the
usual order).

1. Partially supported by NSF grant DMS-0653696

Ernst Specker hat richtungsweisende Beiträge in verschiedensten Gebieten der Mathematik

geleistet: Topologie, Algebra, Mathematische Logik, Mengenlehre, Kombinatorik

und Algorithmik. Es ist nicht möglich einen kurzen Überblick über sein Werk zu
geben. Im vorliegenden Beitrag zeigt Andreas Blass jedoch für drei ausgewählte
Arbeiten von Ernst Specker zur Mengenlehre auf, welche weiteren Entwicklungen die
darin enthaltenen Resultate initiiert haben.
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The existence of Specker lines was the key to the proof by Galvin and Shelah [8] of the
negative partition relation

1 - [.1]
24

That is, one can partition the set of 2-element subsets of a set A of size 1 into four pieces
in such a way that every uncountable subset of A contains pairs from all four pieces.
Indeed, such a partition can be obtained by choosing three linear orderings of A: a
wellordering 1, an ordering 2 embeddable into R and an ordering 3 as a Specker line.

22

The two-element subsets {a,b} of A are then classified according to which of 1, 2, and

3 agree on {a,b}. It is easy to see that any uncountable subset must contain pairs from
at least three of the four classes; with more work, Galvin and Shelah improved this from
three to all four.

Without a Specker line, this approach would yield only the weaker, classical theorem of
Sierpiński [16] that 1 - [.1] Later, a different approach enabled Todorcević [21] to
prove the strongest possible result of this sort, 1 - [.1]

2
1

Saharon Shelah [15] solved a long-standing problem by proving the existence of a
Countryman line, i.e., a linear order L, of cardinality 1 such that L × L, with the
componentwise partial order, is the union of countably many chains. It is not hard to see that
every Countryman line is a Specker line. It is even easier to see that there cannot be an
isomorphism between an uncountable subset of a Countryman line and a subset of the same

line with the reverse order. The graph of an isomorphism, as a subset of L × L, would
meet each chain of L × L at most once.) These facts make Countryman lines an important
ingredient of the basis problem for uncountable linear orders: How large must a family B
of linear orders of size 1 be so that every linear order of size 1 contains an isomorphic
copy of one from B
The generalized continuum hypothesis GCH) implies that the smallest possibility for |B|
is 2.1. A set of size 1 has, under GCH, 2.1 linear orderings no two of which have
uncountable subsets that are isomorphic.

In contrast to this, Justin Moore [11] proved that it is consistent relative to large cardinals)
and it follows from the proper forcing axiom that there is such a basis B with just five
members:

– .1 the shortest well-ordering of cardinality 1),

– .*1 .1 with the ordering reversed),

– an 1-sized subset of R

– a Countryman line C, and

– C*, the same Countryman line with the reverse order.

This result is optimal, since no two of these five orderings have uncountable subsets that
are isomorphic.
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2 Additive Gruppen von Folgen ganzer Zahlen

This paper [19] contains some still) surprising 2 properties of the additive group

ZN

of all sequences of integers and its monotone subgroups. “Monotone” means that, if a

sequence xn is in the subgroup M and if yn satisfies |yn| max{1, |xk| : k n}
for all n, then yn M. The smallest monotone subgroup is the group B of bounded
sequences; the largest is itself.

Specker proved that, for any monotone M other than B every homomorphismh : M Z
factors through a finite subproduct. That is, h has the form

h( xn

r

n=0

anxn

for some finite r and some integers a0, ar

It follows that M is not free. Indeed, since M has the cardinality of the continuum, any
free basis for it would have the same cardinality, and then any of the 2 functions from the
basis to Z would extend uniquely) to a homomorphism. But Specker’s result shows that
M admits only countably many homomorphisms to Z two exponentials lower than the 2
that it would have if it were free.

Specker also showed that the continuum hypothesis CH) implies that B is free. Later,
Nöbeling [14] removed the need for CH. Nevertheless, the proofmakes essential use of the
axiom of choice, and in fact all “well-behaved” homomorphisms B Z factor through
a finite subproduct [2]. Here the “well-behaved” homomorphisms include all those that
are Borel with respect to the topology that B inherits as a subspace of the product of
discrete spaces Z And it is consistent, in the absence of the axiom of choice, that all
homomorphisms are well-behaved.

All monotone subgroupsof have cardinality Could smaller subgroups still of infinite
rank) have the same property that all homomorphisms to Z factor througha finite subproduct?

Countable subgroups of are free, so they cannot have this factorization property,
but, in the absence of CH, one can ask about subgroups of cardinality strictly between 0
and Katsuya Eda [5] showed that the answer is independent of ZFC plus not-CH. I
subsequently showed [1] that, if is the cardinality of a subgroup of with this factorization
property, then there are sets in R of Lebesgue measure zero whose union does not have

Lebesgue measure zero. The underlying combinatorics, which connects the factorization
property to Lebesgue measure, has appeared again in other contexts.)

Generalizing a notion introduced by Loś, call an abelian group G slender for a monotone
subgroup M of if every homomorphism M G factors through a finite subproduct.
So Specker’s theorem says that Z is slender for all M except B

2. A few years ago, I gave a colloquium talk in my department, and mentioned, in the abstract circulated
beforehand, that is not free. Two of my colleagues independently came to my office to ask whether I really
meant that, since it seemed clear to them that must be free.
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There are 2 monotone subgroups of How many notions of slenderness do they
produce? Göbel and Wald [9] showed that there are at leat four. Assuming Martin’s Axiom,
they got the maximum possible number, 2 But it is consistent [3] that there are only four.

There are combinatorial methods, called -invariants, for measuring how far an abelian
group is from being free; see for example [6]. By this measure, monotone subgroups of
other than B are as far from free as possible.

3 Zur Axiomatik der Mengenlehre
Fundierungs- und Auswahlaxiom)

Part II of this paper [20] contains a reformulation and abstraction of the Fraenkel-Mostowski

method of permutation models for the negation of the axiom of choice. Fraenkel [7]
andMostowski [12] worked with a version of set theory that allows atoms also called
Urelemente), which are not sets but can be members of sets. A universe V of sets built over a

family A of atoms admits automorphisms induced by arbitrary permutations of A. Permutation

models M are composed of the atoms together with some, not all, of the sets that can
be formed from them; sets are allowed into M if they and their elements, elements of
elements, etc.) are sufficiently symmetric, i.e., invariant under enough automorphisms of V

Specker introduced two modifications of the Fraenkel-Mostowski method. The lesser of
the two was to replace the atoms, which are not sets, with sets of a special sort, namely
ones that satisfy a {a}. The effect is to reinstate the axiom of extensionality, “things
with the same members are equal,” which had been violated by the atoms. The price for
this reinstatement is that one loses the axiom of foundation, which prohibits, among other
things, sets having themselves as members. The net effect is a gain, since extensionality
plays a far larger role in mathematics than foundation.

The more important of Specker’s modifications concerns the notion of invariance under

“enough” automorphisms. In the work of Fraenkel and Mostowski, “enough automorphisms”

meant “all automorphisms induced by permutations that fix a small family of
atoms and preserve some additional structure on the atoms”; the notion of “small family”

and the relevant additional structure were chosen, in each particular construction, to
accomplish the desired technical results, for example verifying some weak version of the
axiom of choice in M. Specker saw that both smallness and extra structure can be more
naturally expressed in terms of the group of permutations and a filter of subgroups. He
made this group-theoretic viewpoint the center of his development of the theory, thereby
achieving the proper, natural level of abstraction for this work.

Later, when Cohen [4] proved the independence of the axiom of choice from full Zermelo-
Fraenkel set theory including the axioms of extensionality and foundation), the
grouptheoretic viewpoint was still used, but, instead of permuting atoms or self-member sets),
the group acted by automorphisms on the forcing conditions used in constructing and
describing Cohen’smodels. Thegroup-theoretic viewpointmade evident an analogy between
Cohen’s constructions and the earlier Fraenkel-Mostowski-Specker permutation models.

It turns out, however, that there is more than an analogy here; Cohen’s models can be

constructed directly, by forcing over permutation models, with no additional use of
symmetry. This approach is presented in [22]. Here is an example: Start with the basic Fraenkel
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model as in [7] or [10, Chapter 4]) with its set A of “atoms” a {a}. Adjoin, in the usual
way, an A-indexed family of Cohen-generic reals, by forcing with finite partial functions
A ×. 2. The well-founded part of the resulting forcing extension is the basic Cohen
model as in [4] or [10, Chapter 5]).

In Part III of the same paper [20], Specker analyzed various properties of ordinals that
become possible when the axiom of choice is not assumed. He showed that some of these

situations imply that the first uncountable ordinal .1 is, in Gödel’s constructible universe,
an inaccessible cardinal. In particular, he deduced this conclusion from the hypothesis that
there is no function assigning, to each countable limit ordinal a, an .-sequence of smaller
ordinals converging to a. Every countable limit ordinal a admits such an .-sequence; the
issue is whether there is a function choosing one such .-sequence for each a.) This
hypothesis therefore has consistency strength at least that of an inaccessible cardinal, strictly
greater than ZF alone.

It turns out that this hypothesis holds in some of the most important models of ZF without

choice, including Solovay’s model [17] for “all sets of reals are Lebesgue measurable”
which has exactly the consistency strength of an inaccessible cardinal) and models of

Mycielski’s axiom of determinacy [13] which has considerably higher consistency strength).
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R. Göbel, L. Lady, A. Mader) Springer-Verlag, Lecture Notes in Mathematics 1006 1983) 371–374.

[6] Paul Eklof and Alan Mekler, Almost Free Modules: Set-Theoretic Methods, North-Holland Mathematical
Library 46 1990).

[7] Abraham Fraenkel, “Der Begriff “definit” und die Unabhängigkeit des Auswahlaxioms,” Sitzungsberichte
der Preußischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse 1922) 253–257.

[8] Fred Galvin and Saharon Shelah, “Some counterexamples in the partition calculus,” J. Combin. Theory
Ser. A 15 1973) 167–174.
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