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1 Introduction
Let T, (a j'\'), / 1 > 2, be a given set of the points in the plane, with
their corresponding weights w, > 0. We need to determine the point T — (u,u) e R2 such

that the weighted sum of Euclidean distances between the points T, and T be minimal, i.e.,
we need to minimize the functional F: R2 —»• R,

m 111

F(«1,H2) T(lIU„2)) X'"'V (Al° - "02 + (4° - "2)2
1 1 1 1

The point T with the above property is called the weighted geometric median of points

T, =(.x|'),4')),/
This problem and its generalizations often occur in a variety of applications, such as

determining the location of schools, medical emergency centers, fire stations, bus stations or

garages, telecommunication centers, etc. (see [4], [5]).

In the scientific literature (for example, see [ 11 J), it is considered that Pierre de Fermat

(1601-1665) first started to deal with this problem by considering the problem of
determining the geometric median of three points in the plane. The Italian mathematician

Ein bekanntes Problem der Elementargeometrie besteht darin, in der Ebene denjenigen
Punkt zu finden, welcher die Abstandssumme zu drei gegebenen Punkten minimiert.
Bereits Pierre de Fermat und Evangelista Torricelli beschäftigten sich mit dieser

Fragestellung. Verallgemeinernd kann man den geometrischen Median bei m Punkten im
/i-diinensionalen Raum fur eine gewichtete Abstandssumme untersuchen. Die Autoren
befassen sich in der vorliegenden Arbeit just mit diesem Problem und wenden dabei ihre

Aufmerksamkeit auch dem Weiszfeld-Algorithmus zur Bestimmung der Lösung zu.
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Evangelista Torricelli (1608-1647) also considered this problem, hence the geometric
median is sometimes called Torricelli point. This problem was also addressed by the Italian
mathematician Battista Cavalien (1598-1647), the English mathematician Thomas Simpson

(1710-1761), etc. The problem became interesting again in the twentieth century when

it was realized that it lies m the background of many practical problems. The Hungarian
mathematician Endre Vaszonyi Weiszfeld is of particular interest as he also defined the

first numerical iterative algorithm for finding the geometric median for a set of points m
a 3-space in 1936 (see [13]). Amending some of Weiszfeld's arguments, Kuhn ([9], [10])
proved in 1962 that the optimal solution is at one of the given points, but such a claim was
valid only with some additional hypotheses. Drezner (see [2], [3]) constructed Weiszfeld's
accelerated algorithm, and m 1974 Katz (see [8]) showed that m general, the convergence
of Weiszfeld's algorithm is linear.

2 Determining the geometric median of three non-collinear
points in the plane

Let A, B,C e R2 be three non-collinear points in the plane which define the triangle
ABC. A term of an oriented angle, which we need for proving the basic theorem for
determining the geometric median of the triangle ABC. is specified below. Specifically,
if the points A.B.C e R2 are collinear, the geometric median is any point in the convex
hull of these points.

Definition 1. An oriented angle, which is formed by the lines /i and h and denoted by

/{l\, h), is an angle for which we need to rotate the line l\ in positive orientation so that
it coincides with the line I2 or it is parallel to the line /2.

An oriented angle /(BA, BC) is an angle which is formed by the lines AB and BC. or an

angle for which we need to rotate the line AB around the point B in positive orientation
so that it coincides with the line BC.

Remark 1. The size of an oriented angle /(BA, BC) can be equal to /ABC or to its
supplement.

If the triangle ABC is positively oriented, it is easy to see that the oriented angles

/(BA, BC), /(CB, CA), /(AC, AB) are equal to the corresponding outer angles of the

triangle, while the inner angles are /(BC, BA), /(CA, CB), /.{AB, AC).

Lemma 1. The points P, Q, R, S are concychc if and only if /{P R, PS) /(QR, QS).

The proof of Lemma 1 is contained in [7].

Remark 2. There are well-known claims that inscribed angles of the same circular arc are

equal, and that the opposite angles of a convex quadrangle are supplementary if and only
il its angles are concyclic points. These two claims can be consolidated into one theorem.

Namely, if four points P, Q, R, S lie on one circle, then /RPS and /RQS are equal or
supplementary, depending on wether the points P and Q are lying on the same side or on

opposite sides with respect to the RS and vice versa.
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Let us note that, if P and Q are in the same half-plane with respect to RS, then

Z(PR, PS) — Z(QR, QS),

and vice versa. However, if P and Q are in different half-planes with respect to RS, then

ZRPS and ZRQS are supplementary, but Z(PR, PS) — Z(QR, QS), and vice versa.
The equality Z(PR, PS) Z(QR, QS) is a necessary and sufficient condition that the

four points lie on the circle.

Theorem 1. If ABC', BC A', CAB' are equilateral triangles on the outer side ofa given

triangle ABC, then the lines AA', BB', CC' and the circles circumscribed around the

triangles ABC', BCA', CAB' intersect at one point T e R2. In addition,

d(A, A') d(B, B') d(C, C'),

and the lines CC', BB', A A' form angles of 60° (Figure 1).

Fig 1

Proof. Assume that the triangle ABC is positively oriented. Then the triangles ABC',
BCA', CAB' are negatively oriented. Rotation around the point A by 60° maps the point
C' to B, and the point C to B'. This implies

d(C, C') d(B, B') and Z(CC', BB') 60°.
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Analogously,

d(A,A')=d(C,C') and A(AA', CC') 60°,

d(B,B')=d{A,A') and A(BB',AA') 60°.

Assume that BB' fl CC' T. As A(TC', TB) — 60° A(AC', AB), and according to

Lemma 1, T lies on the circle around the triangle ABC', from which follows

A(TB,TA) — 60° A{C'B, C'A). (1)

As

A(TC, TB') 60° A(A'C, A'B),

according to Lemma 1, T lies on the circle BCA', from which follows

A(TB, TA') A(CB, CA') 60°. (2)

From (1) and (2) we can see that A(TB,TA) A(TB, TA'), from which it follows that
the lines TA and TA' are identical, i.e., the points A, A', T are collinear.

The point T from the previous theorem is called Torricelli point of the triangle ABC, and

the lines AA', BB' and CC' are called Simpson lines.

Corollary 1. Let A, B,C el2 be three non-collinearpoints in the plane.

(i) If CABC has no angle greater than 120°, then the Torricelli point S lies within
AABC.

(ii) If AABC has an angle equal to 120°, then the Torricelli point S is the vertex at that
angle.

(iii) If AABC has an angle greater than 120°, then the Torricelli point S lies outside
A ABC.

Proof. Let a ABAC (Figure 2). Since AABC', ABCA', and AC AB' are equilateral
triangles, we have ABAC' AC AB' — 60°.

(i) If a + 60° < 180°, then the lines BB' and CC' intersect at the vertex T within
AABC (Figure 2a)).

(ii) If« +60° 180°, then the lines BB' and CC' intersect at the vertex A (Figure 2b)).

(iii) If a + 60° > 180°, then the lines BB' and CC' intersect at the point T outside
A ABC (Figure 2c)).

By Theorem 1. the point T B B' n CC' lies on the line A A' which corresponds to the

Torricelli point.

Theorem 2. The geometric median of three non-collinearpoints A, B,C e R2 is located
within the triangle ABC.
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Fig. 2

Fig. 3

Proof. We will show that for any given point outside A ABC there exists a point G on one
of the edges of that triangle such that the sum of distances from G to vertices of AABC
does not exceed the analogous sum for the given point.

Look at Figure 3. We distinguish two cases:

1. Choose an arbitrary point G\ outside AABC, in the area E, and let G BCH AG\.
We will prove that

d(G, A) + d(G, B) + d(G, C) <d(GuA)+ d(Gi, B) + d(G\, C). (3)
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From the triangle ABG\C we see that

d(G,B) + d(G,C) d(B,C)<d(Gi,B) + d(Gi,C), (4)

and obviously
d(A,G) <d(GuA). (5)

Adding (4) and (5) gives (3).

2. Let Gj be an arbitrary point outside A ABC in the area F. We will prove that

d(A, A) + d(A, B) + d(A, C) < d(G2, A) + d(G2, B) + d(G2, C). (6)

Depending on the angle y — ZDAG2 we have two cases:

i) If y +ß > (a — y)+ß, then ZBAG2 y +ß is the greatest angle in ABAG2,
hence

d(A, B) < d(G2, B). (7)

On the other hand, from AACG2 we see that

d(A,C) <d(A,G2)+d(G2,C)- (8)

Adding (7) and (8) gives (6).

ii) If y + ß < (a — y + ß, then ZCAG2 — (a — y) + ß is the greatest angle in

ACAGi, hence

d(A,C) <d(G2,C). (9)

From AABG2 we have

d(A,B) <d(A,G2)+d(G2,B), (10)

and adding (9) and (10) again gives (6).

Theorem 3. Let A, B, C e IR2 be three non-collinearpoints in the plane.

(i) IfAABC has no angle greater than 120°, then the geometric median ofpoints A, B,
and C agrees with the Torricelli point.

(ii) IfAABC has an angle greater than 120°, then the geometric median ofpoints A, B,

and C is located at the vertex corresponding to that angle.

Proof, (i) Assume that AABC has no angle greater than 120°. Let P be an arbitrary point
within A ABC (Figure 4a). We will show that the following holds:

d(P, A) + d(P, B) + d(P, C) > d(T, A) + d(T, B) + d(T, C).

Let P' e R2 be a point such that ACPP' is an equilateral triangle. Rotation around C by
—60° transforms AAPC onto AB'P'C, so AAPC AB'P'C. Therefore

d(P, A) + d(P, C) + d(P, B) d(B', P') + d(P', P) + d(P, B) > d(B, B'), (11)
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From AA'CA ABCB' and AABA' ACBC' it is easy to see that

d(A, T) + d(B, T) + d(C, T) d(B, B'). (12)

(11) and (12) gives

d(P, A) + d(P, B) + d(P, C) > d(A, T) + d(B, T) + d(C, T).

(ii) Assume now that one of the angles of A ABC, say the one at A, is greater than 120°

(Figure 4b)),
120° < ABAC < 180°. (13)

Simpson lines intersect in the point T which does not belong to A ABC. We show the

following

d(A, A) + d(A, B) + d(A, C) < d(T, A) + d(T, B) + d(T, C), (14)

and for all 7) e A ABC

d(A, A) + d(A, B) + d(A, C) < d(Tu A) + d(Tu B) + d(Tu C). (15)

Firstly, let us prove (14). From ABAC' AC AB' — 60° and (13) it follows that 60° <
AC'AB' < 120°. Two cases are possible:

a) AT AC' > 30°
In this case, AB AT > 90° is the greatest angle in AB AT, so we have

d(B, T) > d(A, B). (16)

Using the triangle inequality d(A, C) < d(A, T) + d(T, C) and (16) we get (14).



28 D Jankov Masirevic and S Miodragovic

b) ATAB' > 30°
In this case, AC AT > 90° is the greatest angle in ACAT, so

d(C, T) > d{A, C).

Using iJ (A, B) < d(A, T) + d(T, B) and (17) we obtain (14).

All that remains is to prove (15). Let T\ be an arbitrary point m AABC and let Tj e
be such that Aß7) T) is an equilateral triangle (Figure 5).

Z\ B'

(17)

Rotating ABAT\ by —60° around B, we get ABC'Ti. Therefore ABAT[ ABC'T2,
hence

d(Tu A) + d(Tu B) + d(Tu C) d(T\, C) + d{Tu T2) + d{T2, C).

It is easy to see that

d(A, C') + d(A, C) < d(C', T2) + d(T2, T{) + d(Tu C),

i.e.,

d(A,B) + d(A,C) <d(T\,A)+d{T\,B)+d{T\,C).

3 Geometric median of m points in the plane
In the previous chapters we considered the problem of finding the geometric median of
three non-colhnear points in the plane. Next, we will consider the problem of determining
the geometric median of finitely many points in a finite-dimensional space.
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3.1 Weiszfeld's algorithm

Let T, — (a|'\ v'/'), i 1,..., m, in > 2, be a given set ot points in R", with their
corresponding weights w, > 0. We have to find a point T* — (;/*,..., u*) e R" such that
the sum of weighted Euclidean distances from these points to T* is minimal. This problem
reduces to the problem of minimization for the functional F. R" —>• R given by

1=1

F(u i,..., Ufj) ^ u„),

p,(u i,. ,«„)

(18)

'^(xj)-UJ)2, 1 1 ,111

\J=1

The following lemma lists some properties of the functional F (see, e.g., [1]).

Lemma 2. Let T, (a x,,'') e R", i — 1,... ,m, m > 2, be a given set ofpoints,
with tlieir corresponding weights w, > 0, and let F: R" —> R be as in (18). Then

(I) F is continuous.

(II) F is convex.

(ill) There exists a point T* (i/*, it*) R" at which F attains its global minimum.

As one of the methods for finding the geometric median, we are going to briefly describe
Weiszfeld's iterative procedure for determining the global minimum of the functional F,
which is highly regarded in applications (see [5]). To simplify the notations, we consider

the case n 2. So, we are given the points T\ — (*{'', x^), ,Tm (x\"'\Xj"')
and their respective non-negative weights wi,..., u>m, and we have to find a point T* —

(it*, it*) e R2 at which the functional F attains its global minimum. Equating the gradient
of F to zero, we get the following system of equations

dF(tl 1, »2) "Jj (" 1 ~ *{'')
_ Q

dF(lt\,ll2) _y W,(ll2 — x^)
0

^"1 Pi ("i, "2) ' du2 ^ p, (111, u2)

(19)
(Obviously, the partial derivatives do not exist at T\,..., Tm.)

In general, system (19) cannot be solved explicitly for an m > 3. If we write it in the form

u 1 <p(u\, u2), «2 t//(m 1, u2), (20)

1 ^ 1 ^ 1/;, *2'*

^ Pi ("i' "2)' * ^ f~{Pi("\,u2y
l=lp,(ui,u2) ,=iP,(n\,in)

then, according to the method of simple iterations (see [6]), we can define Weiszfeld's
iterative process

tp(u\k\ ttf^), uf+l^ i//(u\k\ it2^), k — 0,1,... (21)
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As an initial approximation, we can take, for instance, the centroid of the given points

4 Examples

We will present three examples illustrating the properties and applications of the geometric
median in the plane. Examples 1 and 2 illustrate the difference between the geometric
median and the centroid for three non-collinear points A, 5, and C, depending on the

distances between these points. In Example 3, we give a problem of location, in which, by

applying Weiszfeld's algorithm, we find the optimal solution.

Example 1. Take the points A(5.00, 4.21), 5(2.96, 1.90), C(7.04, 1.90) in the plane. The
mutual distances between them are not significantly different (see Figure 6a)), and thus

the Torricelli point T is inside A ABC and it coincides with the geometric median of these

points. The centroid of these points is D(5.00, 2.67) and d(T, D) 0.41.

Example 2. For the next example take the points A(2.80, 3.17), 5(1.19, 1.88), C(10.74,
1.88) which are such that AABC has one of the angles greater than 120° (see Figure 6b)).
The Torricelli point T is now located outside AABC and it does not coincide with the

geometric median G of the given points A, 5, C. The centroid of these points 5>(4.91, 2.31)
is quite distant from the geometric median: d(G, D) — 2.26.

Example 3. (See [12].) A fire station needs to be built in one region of the State of
Massachusetts so that a fire-fighting vehicle, arrives in a maximum of six minutes from the

time it receives a call to the place of fire. It is presumed that the call requires one minute,
and the same amount of time is required until fire-fighters are ready to go.

Fet us observe 15 settlements, whose position in the coordinate system is determined by
the points T, (x,, y,), with corresponding weights w, I, i — 1,..., 15 (see Table 1).

If we assume that the average speed of a fire-fighting vehicle is 100 km/h, meaning that for
the remaining 4 minutes the vehicle can travel 6.7 km.

We want to determine a point G which will represent a fire station so that the sum of
distances from that point to points T, — (x,, y,), i 1,..., 15, is minimal. The process

is performed by using Weiszfeld's algorithm. As an initial approximation, we take

(22)

Fig 6
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i l 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x, 13.24 9 14 2 4 11.56 8 17 1 6 9 13 6 5 14

y> -4.13 -6 -5 6 1 -2.86 -1 -4 -4 -3 1 1.15 -2 4.35 -3

Table 1

the centroid of the provided data which are calculated by using formula (22), which is

£>(8.85333, —1.43267). We follow an iterative process described by formulas (19)—(21).
We observe the required number of iterations for which the norm of differences between

every two successive approximations of the solution G would be less than some predefined

precision e. We can see that, with the increasing precision, the number of iterations
increases linearly (see Table 2), which confirms the theoretical result mentioned in the

introduction, which states that the convergence of Weiszfeld's algorithm is linear.

Precision (e) 10"1 10"2 10~3 10"4 10"5 10"6 io-7 10"8

Number of iteration 3 9 16 23 30 38 45 52

Table 2

Fig. 7

In Figure 7, settlements are represented by black points.

The grey point G (8.56372, —1.40877) (which the arrow points to) is the geometric
median, which determines the position of the fire station and which was determined by
Weiszfeld's algorithm after 52 iterations. If we plot a circle of radius 6.7 km centered at
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the geometric median, we can see that some of the settlements are not within the circle;
hence, they cannot be well covered by the fire station. We conclude that for the purpose of
fire protection of good quality in all 15 settlements, more than one fire station needs to be

built The problem of area coverage with an optimal number of fire stations is a completely
different problem (for example, see [12])
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