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1 Motivation

Time or frequency-dependent sines (henceforth referred to as signals) are often used by
students and researchers to analyze idealized models and obtain bounds for practical
systems. The simplicity of the sine dual, the rectangle signal, indeed makes it an attractive
choice in order to deal with diverse problems such as interpolation, signal reconstruction,
pulse shaping, intersymbol interference, and channel characterization to name a few. As a

consequence, results related to the sine become appealing to academicians in general and

to the Signal Processing and Communication Engineering community in particular. In this

work, we use the standard definition for the sine, namely

sinc(x)
sin(x)/x for jc 7^0
1 for x 0.

An dieser Stelle wurde schon mehrfach über das verblüffende Phänomen der Baillie-
Borwein-Integrale berichtet. Der Autor der vorliegenden Arbeit verwendet Parsevals

Identität und die Faltung von Fourier-Reihen, um nochmals einen neuen Einblick zu

gewinnen. Beim iterierten Falten eines Rechteckimpulses mit sich selber tritt ein
horizontaler Verschmierungseffekt auf, der das Verhalten der Baillie-Borwein-Integrale
anschaulich erklärt. Wir verweisen auch auf den Artikel von Hanspeter Schmid aus

dem Jahr 2014, der in ähnlicher Weise mit iterierten Faltungen die vertikale Erosion
des initialen Plateaus untersucht hat.
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In 2006, this author independently presented some novel results related to sine sums [1].

Shortly after, Baillie and the Borweins published results on surprising sine sums and

integrals [2] that drew his attention to their earlier reports in 2001 [3]. Recently, Schmid [4]

presented a graphical proof of this remarkable sine behavior introduced by the Borweins
in 2001, namely that

rtrü*)*-'* m

for N 0, 1,2, 3,4, 5, 6. However, for N > 6, the result of Eq. (1) suddenly becomes

less than n/2. Schmid's proof is based on expressing the integral in Eq. (1) as the Fourier
transform at the origin of the integrand being the convolution of (N + 1) sines. Hence,
he repeatedly convolved two unit-area rectangular pulses but with different widths. The

resulting initial plateau gets gradually eroded with more convolutions. He derived the same

condition as the Borweins that makes the convolution peak (at the origin) drop below

unity, hence causing the integral to break. Shortly after, Almkvist and Gustavsson [5] used

the Poisson summation formula to establish the result of Eq. (1) amongst others. Baillie
and the Borweins [2] also reported other interesting results related to sums and integrals

involving sines. Defining

00

SN ^sinc(«)^ (2)

n=l
and

r oo

IN / sinc^ (/) df (3)
Jo

they reported that while In is a rational multiple of k for all non-zero integers N, Sn is

— 1/2 plus a rational multiple of n for N 1,2,3,4,5,6. However, Sn suddenly changes

to a polynomial in n of degree N for N > 6. More specifically,

Sn fyv - - (4)

for N 1, 2, 3,4, 5, 6 but not for N > 6. To explain this surprising sine sum behavior,

they established a general condition relating sine sums to integrals, in addition to simple

arguments using trigonometric identities and properties of Bernoulli polynomials.

Our aim in this work is to provide yet another graphically-illustrated and intuitively-
simplistic explanation of the results in Eq. (4). We approach the problem with a signal

processing background, motivated by Schmid's recent report [4], who too, had a similar
approach to the problem. Even though our method bears some similarity to Schmid's, it is

used in a different context that has been presented at an earlier time [1]. We use a repeated

convolution of a rectangular pulse with itself in order to construct periodic waveforms. We

use the Fourier series expansion along with Parseval's theorem [6] to provide alternative
derivations of some of the sine sums reported by Baillie and the Borweins. The sudden

break in the sine sum is clearly illustrated through an aliasing phenomenon that is due to
the smearing effect of the repeated convolution. Hopefully, the reader shall find the dual
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use of the repeated convolution effect rather entertaining. While Schmid focused on the

vertical effect of a repeated convolution, we shall focus on its horizontal effect in order to

explain this interesting sine behavior. Even though our illustrated approach is applied to

only specific cases of the sine sums, we hope that it is appealing enough with its clarity,
simplicity and intuitive approach.

2 Alternative derivations

In the following we focus on the sine sum Sn of Eq. (2) for N 2,4, 6, and 8. We use

the Fourier series expansion along with Parseval's theorem to provide alternative ways
to evaluate these sums. In this process, we shall graphically illustrate through an aliasing
effect the reason for which S& breaks the trend and changes from a rational multiple of
7u to a polynomial in n of degree 8. Our approach follows a previous work [1] wherein a

series of four periodic waveform 5/ (t) (i 1,..., 4) is constructed by duplicating base

pulses pi(t) (i 1,..., 4) at multiples of the period T (taken to be unity). Hence,

5,(0
00

z
n=—oo

Pi(t — ri) for i 1,... ,4 and t e

with p\(t) a rectangular pulse of unit amplitude and width a (0 < a < 1) defined by

p i(0
1 for |/| < a/2

0 for |/| > a/2
(5)

and p2(0> P3(0> P4(0 are pulses resulting from the successive convolution of p\(t) with
itself and are found to be

P2(t)

Rl(0

and

P4(t)

— |d + a for \t\ < a

0 for \t\ > a

—t2 + 3a2/4 for |f| < a/2

(1/2) |r| - 3a/2] for a/2 < |r| < 3a/2

0 for |f| > 3a/2

(6)

(7)

|03/2 — at2 + 2a3/3 for < a

— \t\3/6 + at'
0

2a2\t\ +4a3/3 fora < |r| < 2a

for \t\ > 2a.

(8)

Figure 1 depicts si(/) with the base pulse p\(t) shown in bold. Signals Sj(t) (i 2, 3,4)
have plots analogous to Figure 1 except that they use base pulses pt(t) (i 2, 3,4). For
the sake of conciseness, we omit the plots of Si (t) (i 2, 3,4) and instead we depict in

Figure 2 the normalized base pulses p2(t), pi(t), and pt(t) each respectively divided by

a, a2, and a3 (for a 0.2). Note that for all four signals Si(t) (i 1,..., 4), a should

not exceed a certain value in order for their repeating base pulses not to alias. Going
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Fig. 1 Periodic signal s\(t) showing in bold the base pulse p\ (/).

Fig. 2 Base pulses P2(t), P3(t), and p+(t) (respectively scaled by 1 /a, 1/a2, and 1/a3) gener¬
ated by the successive self-convolution of the rectangular base pulse p\ (r) for a 0.2.

from s\ (t) to S4(t), the range of a for alias-free signals is progressively reducing since
each convolution widens the resulting pulse by a. Hence, the condition on a for alias-free

signal Si(t) (i 1,..., 4) is 0 < a < 1 //.
It is easy to check that the nth coefficient (n is integer) of the Fourier series expansion of
s\(t) is cin a sine (ann). Using the convolution property of the Fourier series [6], the

coefficients cin of signals Si(t) (i 2, 3,4) each time keep multiplying by a sine (ann).
Hence, Cin is directly found to be

Cin sine'{ann) for / (9)

Parseval's theorem states that

/ 1/2 00

\si(t)\2dt V \cin\2 for / 1,..., 4 (10)
1/2 n=—oo
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where the modulus on both sides of Eq. (10) may be omitted since c/n is real owing to the

fact that 5/(0 is real even symmetric [6]. In the absence of aliasing, 5/(0 pi(t) for |r| <
1 /2. Hence, using Eqs. (5)—(8), the LHS of Eq. 10) for i 1,..., 4 respectively evaluates

to a, 2a3/3, lla5/20, and 15la7/315. Using Eqs. (9) and (10), the even symmetry of
sinc(-), and the fact that sinc(0) 1, we get for i 1

00

^ a2 sinc2(a7rn) a

n=—oo

oo

1 + 2 ^ sinc2(a^A2)

n=l
a for 0 < a < 1

00
1 1

<£>• 52(a) ^ sine2(ann) forO < a < 1.^ 2a 2
n=1

OD

Similarly for i 2, we get

0«

54(a) ^sinc4(a7T/î) ^ forO < a < 1/2 (12)
1 1

3a 2
n=l

and for i 3

5ö(a) sine6(a7rn) ^^ forO < a < 1/3 (13)

and finally for i 4

58(a) ^ sinc8(a7rn) forO < a < 1/4. (14)

11 1

40a 2
«=1

151 1

630a 2
n=1

To relate our derivations to those of Baillie et al. [2], we consider the special case of
a \/n. Hence, referring to Eqs. (2) and (11)—(14), Sn is given by 5/v(1/7t) for N
2,4, 6, but not N 8. This is because the non-aliasing conditions on a given at the end
of Eqs. 11)—( 14) are true for N 2,4, 6, but fail for N 8 since 1/4 < 1/7r < 1/3.
Hence, we get

52= S2(l/*)= tt/2-1/2
54 54(1/tt) 7c/3 — 1/2

S6 56(1/tt) 11^/40-1/2.
However,

5g= 58(1/tt)= 151TT/630- 1/2 + 6 (15)

where e is an excess term resulting from aliasing. We now set to illustrate this sud-
A

den change in 58 by extending 58(a) for 1/4 < a < 1/3 (that we shall denote by
«

58(a)) leading to the evaluation of 6 as a polynomial in n (as reported by Baillie and the
Borweins [2]). For 1/4 < a < 1/3 the periodic signal 54(f) now undergoes an aliasing
phenomenon. Let 54a (0 denote this aliased signal. Assume that a ô + 1/4 where
0 < S < 1/12. Figure 3 illustrates 54a(0 for the case ô 0.08. For clarity, the vertical
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axis is scaled by 1/a3. It is important to note that for —1/2 < t < 1/2, 544(0 is not equal
to P4(t) but rather to P4a(0 (highlighted in bold in Figure 3) given by

'

|r|3/2 — at2 + 2a3/3 for |r| <cc

-\t\3/6 + at2-2a2\t\+4a3/3 fora < \t\ < (1/2)-23
PAA\t) o -j (16)

2ôt2 — 2ô\t \ + 8<53/3 + <5/2 for (1/2) - 23 < \t\ < 1/2
0 for Ul > 1/2

2/3

Fig. 3 Periodic signal 544(f) illustrating the aliasing effect with /744(f) highlighted in bold line. The
extra-bold lines correspond to the aliased region that is behind the excess term e causing the sudden

break in 5s. In this plot, a 0.33 ö 0.08, and the vertical axis is scaled by 1 /a

The last non-zero term in the definition of £44 (0 in Eq. (16) is highlighted by an extra-
bold line in Figure 3. It is this aliasing region that is exactly responsible for the excess term
e in Eq. (15) which is behind this sudden break in Sg. It turns out that the aliasing does not
affect the Fourier series coefficients of 544(0 [6] (given by Eq. (9) asc4„=a4 sine4 (ann)),
but changes the LHS of Eq. (10) which is now given by

1/2 ri/2r/z 9 ' 9
/ s4A(t)dt / p4A(t)clt

J-1/2 7-1/21/2 J-1/2
151a7 1

.5- + 252ö[~ l+28a_ 336a2 + 2240a3 - 8960a4 + 21504a:
(J?)

- 28672a6+ 16384a7]

151a7 1
7

315
+ 252Ö ß) '

Using Eq. (17) and the fact that C4,, a4 sine4 (ann) in Eq. (10), we get

* ^ x, 151 1 (—1 + 4a)7
„

1 1

S,<«) X- <«»») ^ - J + 5040„8
for j < « < j (18)

n=1
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Comparing Eqs. (14) and (18), we note that the excess term resulting from aliasing turns
out to be a polynomial of 1 /a and is given by

A, ^
(-1+4«)7 1 ^1e(a) ——5— for - < a < - (19)v 7 5040a8 4-3

In particular, for the special case of a 1 /n, the excess term e in the evaluation of Ss in

Eq. (15) is given by (19) as

«^(1/,) *(4—>'
(20)v ' 7

5040
v 7

which is a polynomial in n of order 8, as stated by Baillie and the Borweins. In reference

to their derivations [2, Eqs. (26)—(35)], we may follow their procedure to elaborate on Ss

(instead of 57) and find

^ sinc8(«)

-128*8[^(0)+ i2V>

-rAèh^m]
where <f>s(x) is the 8th normalized Bernoulli polynomial given by

1 X2 X4 X6 X1 Jt8

~ ~
1209600

+
60480

~
17280

+
8640

~
10080

+ 40320'

It is easy to check that the substitution of Eq. (22) in Eq. (21) expresses Ss as an 8th
a

order polynomial in n that is identical to Ss (1/tt) given by Eq. (18). In Eq. (21), "8" in
the argument of the last term was replaced by (8 — 2k) because the numerators of the

arguments in the Bernoulli polynomial must not exceed 2n. As pointed out by Baillie and

the Borweins, it is exactly this fact that explains the sudden change in Ss because 8 > 2n.
Hence, the excess term e in Eq. (15) may alternatively be expressed according to Baillie
et al. [2, Eq. (35) except N 8 is used instead of N 7 and the typographical error "64"
removed] as

f=*8h(è)-*(^rL)]- (23)

Using the standard identity related to Bernoulli polynomials

(x - n*-1
4>N{x) - <f>N(x - 1)

_

6 in Eq. (23) can be written as

-(A iV =n (4-?r)
(7)! \tt 5040



22 Z. Bahn

which is identical to Eq. (20). Therefore, the 2n congruence in the argument's numerator
of the Bernoulli polynomials that was used by Baillie and the Borweins to justify this
sudden break in S% may alternatively be explained by the aliasing phenomenon previously
illustrated by the extra-bold-highlighted region of Figure 3.

As a final reference to the reports of Baillie and the Borweins [2, Example 3, Eq. (3)], we
turn our attention back to Eq. (4) in order to relate the integral of sines to their sums in a

simple and intuitive manner. We now drop the periodicity condition on the previous signals
(i.e., pi(/) Si(t) for all t). In this case, there is no constraint on a. We obtain the Fourier
transforms of s; (t) that turn out to be identical to the Fourier series coefficients found
earlier [6] except that the index "n" is replaced with the continuous frequency variable

Applying the continuous form of Parseval's theorem [6], we obtain very analogous
results related to the sine integral, namely, if we define

noo

In (a) / sineN (anf)df
Jo

then /2(a), /4(a), /6(a), and /8(a), respectively evaluate to 1/2«, 1/3«, 11/40a, and

151/630 a leading to the conclusion (refer to Eqs. (11)—(14)) that

SN(a)= îN(a)-~ fora <2/N and N 2,4,6,8. (24)

The process of successive convolutions and application of Parseval's theorem may thus be
A

continued leading to the conclusion that In iß) is a rational multiple of 1/« (irrespective
of non-zero a) for all non-zero positive even integers N. This implies that In in Eq. (3)

/V

(equal to In (I/tc)) is also a rational multiple of k for all non-zero positive even integers
N. In fact, since Sn (a) is only defined for the non-aliasing range a < 2/N Eq. (24) also

holds true for all non-zero positive even integers N. The problem lies with Sn which is
A

equal to Sn (1/?t) only for N 2,4,6 but not for N 8 because 1 /n > 1/4. For this

reason Sn In — 1/2 for N 2,4,6, but breaks into a polynomial in n for N > 8

3 Conclusion

In this work, we presented a simple illustrated explanation of some remarkable results
previously reported about sine sums and integrals. We approached the problem with a signal
processing background frequently utilizing tools such as convolution, Fourier series

expansion, and Parseval's theorem. We illustrated the sudden break in sine sums through the

aliasing effect due to the horizontal smearing of a repeated self-convolution of a rectangle.
Even though our illustrated approach was applied to only the first four even powers of
sine, we hope that it provided yet another simplistic and intuitively appealing explanation
of this remarkable sine behavior.
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