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How to find your soulmate:
Set your goal vs. aim at dating sites

Tamas Lengyel

Tamâs Lengyel received his Ph.D. from Eötvös University of Budapest. His
mathematical interest span a range of subjects from combinatorics, number theory, and

game theory to probability theory, mathematical statistics, and their applications. He
has been a faculty member at Occidental College in Los Angeles for 27 years.

1 Introduction
We discuss problems regarding meeting probabilities on undirected graphs with two
distinguished vertices, under different planning strategies. We assume that there are maps of
the shortest paths between the two vertices and these paths are of equal length. One person
is positioned at each vertex and both people select from the stack of maps. They follow
the selected paths and move at the same speed. The selection is made uniformly at random
and without any prior knowledge of the details of the maps. We call this the goal-oriented
approach. The two people may or may not meet en route to their destinations.

In an alternative setup there are two stacks of maps of shortest paths leading from the

original starting points only to the set D of potential meeting points, halfway to the original
destinations. Again, the two people may or may not meet as they arrive at D. This approach
is referred to as the meeting-oriented one. The main goal is to determine the probability of
meeting under the two scenarios.

Alice und Bob bewohnen je einen Knoten da respektive vg eines ungerichteten
Graphen. Alle endlich vielen kürzesten Wege zwischen va und üb sollen gerade Länge
aufweisen. Alice und Bob wählen nun zufällig je einen dieser Wege aus (alle sind

gleich wahrscheinlich) und laufen gleichzeitig und gleich schnell von zuhause los. Wie

gross ist die Wahrscheinlichkeit, dass sie sich treffen? Ein zweites Szenario: Alice
und Bob wählen einen zufälligen kürzesten Weg von zuhause zu einem der möglichen
Treffpunkte auf den kürzesten Pfaden aus. Ist die Wahrscheinlichkeit, dass sie sich auf
diese Weise treffen grösser, kleiner oder gleich gross wie beim ersten Szenario? Wer
die Antwort wissen will, findet sie in der vorliegenden Arbeit.
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The motivation comes from the following problem, cf. [3, Problem 3/34] and [5, Problem

929]:

"Alice and Bob live at opposite corners of the illustrated grid (cf. Figure 1). Each

departs for the house of the other at the same time, walking along the grid at the

same speed, and choosing one of the many shortest-length paths uniformly at

random. What is the probability that they will meet en route? You can assume
that Alice and Bob each have a stack of maps. On each map one of the possible
shortest routes is highlighted, and the stack consists of all possible such maps.
Before leaving, Alice and Bob each choose one of the maps at random, with
equal probability, and they follow the indicated route."

Bob

Alice

Figure 1 Alice and Bob meet

Our scenario is a bit different. We assume a situation where the shortest paths have even

length. This allows two different goals: getting from one place to the other vs. meeting.
The former one is the goal-oriented approach with a definite destination while the latter

one focuses on "dating" at any of the potential meeting sites. This distinction leads to
the notion of full-paths and half-paths that are explained in the following theorem. Note
that the selections are made uniformly at random and without any prior knowledge of the

details of the maps.
The main goal is to determine the probability of meeting under the two scenarios. We

prove that the meeting probability is higher under the goal- (i.e., full-path based) than

the meeting-oriented (i.e., half-path based) strategies under some general conditions. We

might be also interested in the complementary problem: what if the two people had a

fallout and want to avoid each other. Of course, the corresponding probabilities are simply
the complements of the meeting probabilities; thus, in this case, somewhat surprisingly,
the meeting-oriented approach (i.e., half-path based) gives better probabilities.
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We use the following notations and assumptions.

Let G (V, E) be an undirected graph with two distinguished vertices Va and Vß.
Assume that all shortest paths in G connecting Va to Vß have the same number / of edges
which is an even integer. Two walkers each selects a path uniformly at random: one going

from Va to Vß (Alice) and the other one going from V/; to Va (Bob). As they walk,
they complete exactly one edge during every step; thus, both will need exactly I steps to

complete their respective routes.

Let f(G) denote the probability that the two walkers will meet during their travels en route
to the opposite endpoint, Vß and Va, respectively. These routes are called full-paths.

Let D denote the potential meeting sites, i.e., the vertices of G where meeting can take

place and let V (1,2,..., |D|} denote the index set of the vertices {Vi, V2, • V\D\)
in D. Under another scenario, the two walkers choose paths from Va to D and Vb to D,
respectively, uniformly at random. These paths are called half-paths. Let h(G) denote the

probability that the two walkers will meet during their travels, at a vertex in D.

Theorem 1.1. Let a, and b, be the number ofpathsfrom Va to V, e D and Vb to V, e D,
respectively. In general, we have the inequality h(G) < f(G) and equality holds exactly if

with some positive constants c\ and C2 in which case h(G) f(G) 1/|D|.

The main Theorem 1.1 establishes the fact that in order to maximize meeting probabilities

it is better to plan full trips than half trips; thus, claiming the main premise of the

introduction. (Although Theorem 1.1 applies to general graphs, the presented examples
are all grid graphs.) Theorem 2.2 gives asymptotic results on the underlying probabilities
and demonstrates that the asymptotic ratio is \/2 between the two probabilities for large
n x n symmetric grid graphs.

Remark 1.2. One can be interested in identifying the most likely meeting site. The site

or sites in question can be found by maximizing the products a,A;, i e X>; however, this
would assume that the parties are aware of the geography of the graph G.

Our main tool is the use of inequalities for certain power sums. In this paper we assume
that x (x\, JC2, • • xn), X, > 0. We set

and M/fx) Mxk (x). Besides the usual inequalities we will use the following one.

Theorem 1.3 ((2.10.1), p. 28, in [2]).

at c 1 and bj C2 for i e V (1)

Map(x)Mcr(x) > Mhq(x) (2)

with b a + c, ap + cr bq, a,c > 0, and 0 < p < q < r. The inequality in (2) is

strict unless x is a permutation of (t,..., t, 0,..., 0) with t > 0.
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We present three special cases in Examples 2.1, 3.1, and 3.2 in Sections 2 and 3. In Section

5, we discuss an alternative strategy planning which might result in even higher meeting

probabilities. The main theorem, Theorem 1.1, considers only cases where the number
of steps is even. We briefly mention cases when this number is odd in Section 6.

2 Full grids
We start with a simple example where the graph is the n x n grid.

Example 2.1. Let the graph Gn be the n x n grid with n e N. With the notations of
Theorem 1.1 we have that / 2n, D consists of the n + 1 vertices in the NW-SE diagonal,
and aj bi — ("i)> i 1,2,n + 1 (when listing the vertices of D from NW to SE)
by a block walking argument (leading to the Pascal triangle). On Figure 2 there are two
labels next to each vertex: the left (right) label shows the number of paths leading to the

vertex from the point of view of Alice (Bob).

Bob

1 4 1 10 1 20

4 3 3 6 2 10

10 2 6 3 3 4

20 1 10 1 4 1

Alice

Figure 2 A 3x3 grid

We prove that for grids Gn,n >2, mentioned in the above example, we always have the

inequality h(Gn) < f(Gn).

Theorem 2.2. We use the notations of Theorem 1.1. Let the graph Gn be the n x n grid
with n e N. Let /;„ h(Gn) and fn f(G„) be the respective meeting probabilities
when picking a half-path and arriving at, or when picking a full-path and passing th rough
vertex i e V {en route from V,\ to Vg or Vg to Va)- We have
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and

and

This yields

fn

as n -> oc. We have hn < f„ for n >2, and h \ f\ fi 1/2.

3 Partial grids with partial symmetry
We include two examples of partial grids with partial symmetry. We call a symmetry partial
if a, / bi for some i e V where a, and b, are defined in Theorem 1.1 and of course, a

grid is partial if it is not full.

Example 3.1. Figure 3 shows a grid with /(G) h(G) 1/2.

Bob

2 1 6 I 12 1

2 3 4 2 6

1 6 2 6 2 3 2

12 6

Alice

Figure 3 A partial grid with partial symmetry

Example 3.2. Figure 4 shows another partially symmetric grid with /(G) 1/2 >
h(G) 12/25.
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Bob

7 1 12 1

3 5 2 3

5 2 5 3 2

12 1 7 1 2

Alice

Figure 4 Another partial grid with partial symmetry

4 Proofs

ProofofTheorem 2.2. We easily get the probabilities hn and /„, and the inequality hn <
fn turns into

e) • ^cr
We set x (Q, ("),..., (")). Clearly, M{ M{ (*) 2" and M2 M2(x) (2"). We

apply (2) of Theorem 1.3

< m}m\

and note that equality applies only if « 1.

The asymptotic results follow by standard calculations, cf. [1, Exercise 38 on p. 90]. For
example,

\ n ^—0

as n —> oo.

For the proof of Theorem 1.1 we need some preparation. We introduce the notation AB
(a\b\, a2b2,..., a„bn), where A — (ai, a2,..., a„), and B (b\, b2,..., bn). The
Cauchy inequality claims

Mi(AB) < JM2(A)M2(B)
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The Lagrange identity [4, p. 84] includes the term that turns the alternative form of the

Cauchy inequality into an equation:

1 "
M\{AB) +

2 X {a'bj ~ ajbi)1 M2(A)M2(B).
U= 1

It also provides an option for determining the condition under which equality holds in the

inequality.

Proofof Theorem 1.1. When using full-paths, the probability that Alice travels through
vertex i e V en route to Vb is

ajbi

TjeVaJbj'
thus, the probability of meeting at i e T> is

/ ciibi Y
\HjeVaJbj) '

and the overall probability of meeting is

f^ H(Ta,b'
;

In a similar fashion, when both Alice and Bob use half-paths, the meeting probability is

Zdj bi

V ;
ieV ^jeVaj 2L,jeVbj

The relation h(G) < f(G) is equivalent to

M^(AB) < M2(AB)M[(A)M\(B) (3)

with n \D\, which is implied by inequality (2) and the Lagrange identity. In fact, by the

Lagrange identity, we get that

1
|D|

Mi(A)Mi(B) Ml2(AB)+- ^(v^7- ^Jbi)2 > M2[/2{AB). (4)

i,j=1

On the other hand, inequality (2) results in

M\{AB) < M2(AB)Mi/2(AB)\ (5)

thus, (4) implies (3).

Equality applies in (3) if it does in (5) and the second term vanishes in (4). The former
one requires that all the terms a,bj are equal to some positive number (since the zero terms

can be ignored), while the latter one requires that B is some positive multiple of A. In
conclusion, it means that a\ cq and b\ c2, i eP, for some positive constants ci and

C2- In this case, every vertex in D will be visited with the same probability (cf. Example 3.1

with ci 2, C2 3, |D| 2, and f(G) h(G) 1/2).
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Remark 4.1. If ajbj d for i e V then we also have that /(G) 1/|Z>| (cf. Examples

3.1 and 3.2 both with d 6, \D\ 2, and /(G) 1/2).

5 Different perspectives
What if Alice wants to go from Va to Vß while Bob only wants to "meet the girl?" This is

a somewhat asymmetric situation. It turns out that this is a better plan than simply aiming
at D by both Alice and Bob. Let

a'b> b'
S(G) X ^ 7-^ 7-

/, p ZjeVajbj HjeVbj
denote the probability of meeting. We have the inequality g(G) > h G since

M\(A)M\{AB2) > M\(AB)
with n — \D\, by the Cauchy inequality

ieV ieV \ieV
Equality applies exactly if all bj& are equal.

It can also happen, from the point of view of meeting probabilities, that this plan is better
than if both of them are goal-oriented, although numerical experimentation suggests that

/(G) > g(G) more often happens than the other way around.

Remark 5.1. If a;bj — d for i eV then /(G) g(G) \/\D\.

6 Meeting between two vertices of the grid
The problem mentioned in Section 1 (cf. Figure 1) is represented by the graph G (V, E)
and has / 11 edges in each map. Calculation shows that /(G) 0.2913. In fact, there

are four edges where meeting might take place. These edges connect two sets of vertices

Da and I)u. The sets Da and Du consist of the vertices that are reached by Alice and

Bob, respectively, with index sets Va and V/j of the corresponding vertex sets D,\ and

Dß. An edge (V/, Vj) e E is a potential meeting location if i e Va and j e Vß. Now let

ai and bj be the numbers of paths from Va to V,; e Da and Vß to Vj e Dß, respectively.
There are ajbj paths connecting the vertices Vj and Vj en route from Va to Vß (and vice
versa). We set

S X a/bj
(Vj,Vj)eE

icVa ,j *Db
and

/(G) Z {f)2-
(Vi,Vj)eE

^ '
ieT)A,j

For the mentioned graph we have S 290 and /(G) (30/290)2 + (60/290)2 +
2(100/290)2 245/841 0.2913. There is no meaningful definition of half-paths if
/ is odd.
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