Das Rauracien im Nordwesten des Riffgürtels

Objekttyp: Chapter

Zeitschrift: Eclogae Geologicae Helvetiae

Band (Jahr): 58 (1965)

Heft 2

PDF erstellt am: 27.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Das Rauracien im Nordwesten des Riffgürtels

DAS PROFIL VON ST. URSANNE UND SEINE LITHOSTRATIGRAPHISCHEN EINHEITEN (vgl. Fig. 2 und 3; Tafel I, Profil 2)

Die Aufschlüsse von St. Ursanne sind von ZIEGLER zur Hauptriffzone gestellt worden; aber wie aus Fig. 2, und speziell aus Fig. 3 ersichtlich ist, hängen die Bioherme von St. Ursanne nicht direkt mit dem Hauptriffgürtel zusammen. Nach unserer Auffassung gehören sie zum Bereich des Hinterriffs.

Fig. 2. Verteilung der Facies im Rauracien der Umgebung von St. Ursanne.

VOLKMAR PÜMPIN

SSE

BONABÉ

GLACENAL

MNN

Den Hinterriffbereich können wir in zwei Faciesbezirke unterteilen:

NNW	SSE
Faciesbereich der Oolithe	Faciesbereich der feinen Kalk-
	arenite
Oolithe	Feine Kalkarenite (pellet
Mumienkalke	limestones)
Reide Rereiche liegen auf den Lies	bergschichten und werden von den kreidige

Beide Bereiche liegen auf den Liesbergschichten und werden von den kreidigen Kalken überdeckt.

Einen guten Überblick über die Schichtfolge im Rauracien von St. Ursanne gewinnen wir an der Strasse St. Ursanne-Epauvilliers, an der Haarnadelkurve bei P. 457 (ca. 500 m E der Doubsbrücke). Hier öffnet sich dem Betrachter ein prächtiger Ausblick auf die nach Süden gerichtete Felswand der andern Talseite, aus welcher die kreidigen Kalke durch die Fabrique de chaux de St. Ursanne in grossen Stollen ausgebeutet werden (vgl. Fig. 4).

Fig. 4. Die nördliche Talseite des Doubs-Tales bei St. Ursanne von P. 457 (Haarnadelkurve an der Strasse St. Ursanne-Epauvilliers, 500 m östlich der Doubsbrücke) aus gesehen.

Von oben nach unten gliedert sich das Profil wie folgt:

-	Kimmeridgien-Sequanien	Kalke und Mergel
_	Vorbourgkalke	Felsband aus gut gebankten Kalken, die das
		unmittelbare Dach der Stollen im Steinbruch
		bilden.
-	Kreidige Kalke mit Biohermen	Stollenanlagen im Steinbruch. Die kreidigen
		Kalke wittern zurück, die klotzigen Bioherme
		treten deutlich hervor.
	Oolithe und Mumienkalke	Markantes Felsband, das sich entlang der
		Bahnlinie nach Westen zieht. Die Mumien-
		kalke bilden den untersten Teil der Lage.
	Liesbergschichten	Unmittelbar unter der Bahnlinie, z.T. ver-
		schüttet.

Bei der folgenden Diskussion der Sedimente im Profil von St. Ursanne sind wir gezwungen zu Vergleich und Ergänzung auch andere Lokalitäten zu betrachten.

Die Liesbergschichten, ROLLIER 1888, p.87

Synonyma:	Fringelischichten
	Florigemmaschichten
	Thamnastreenschichten
	Terrain à chailles silicieux (GREPPIN 1870)
	Glypticien (Thurmann & Étallon, 1861–1864)
	(vgl. Lexique stratigraphique international, vol. I, Europe/Fasc.
	7a, Suisse: Jura et Fossé du Rhin)
Typlokalität:	Steinbruch Liesbergmühle (Koord. 599700/249550)
	(vgl. M.A.Ziegler, Profiltafel I, Nr. 1)

Die Liesbergschichten sind graubraune Korallenkalke mit mergeligen Zwischenlagen.

Bei Côte du Frêne (Koord. 582050/248000) misst der Horizont 25 m. Gegen SE verliert er deutlich an Mächtigkeit: Bei Plan du Noyer (Koord. 579125/243500) sind es noch 10 m, in der Klus Berlincourt-Undervelier (Koord. 583300/241150) 2.50 m. Bei Les Blanches Fontaines (Koord. 583550/283325) sind keine Liesbergschichten mehr vorhanden.

Fig. 5. Korallenbiostrome der Liesbergschichten im Südschenkel der Mt. Terri-Antiklinale bei Côte du Frêne. Die knorrig-schwartigen Korallenlagen fallen hier mit 45° nach Süden ein. Im Profil von St. Ursanne ist nur noch ihr oberster Teil aufgeschlossen. Unterhalb der Bahnunterführung, westlich der Station St. Ursanne stehen graue, etwas mergelige Kalke an, die durch ihren Fossilgehalt auffallen.

Bessere Aufschlussverhältnisse finden sich bei Côte du Frêne (Tafel I, Profil 1). Hier ist deutlich ersichtlich, wie die kalkigen Gesteinspartien durch Korallenschwarten gebildet werden. Diese biogenen Kalke können seitlich bis zu 50 m weit verfolgt werden.

In der Vertikalen werden die 20-50 cm mächtigen Lagen durch Mergelfugen getrennt.

Die Korallenkalklagen schwellen nicht in Linsen- oder Hügelform an, sondern behalten ihre gleichmässige Mächtigkeit über grössere Distanz bei. Nach der Definition von CUMINGS & SHROCK (1928) handelt es sich somit um Biostrome.

Die Liesbergschichten sind fossilreich. Auffallend ist die Häufigkeit von Crinoiden. F. WOL-TERSDORF hat aus einer Fundstelle bei La Caquerelle (Koord. 582 650/247 275) folgende Fauna zusammengetragen:

Spongien:	Corynella aspera (FROMENTEL)
	Corynella prolifera Oppliger
	Corynella stellifera (FROMENTEL)
	Corynella thurmanni Oppliger
	Enaulofungia bernensis (ÉTALLON)
	Enaulofungia polita (OPPLIGER)
	Enaulofungia pusilla (OPPLIGER)
	Peronidella amicorum (ÉTALLON)
	Peronidella floriceps (ÉTALLON)
	Peronidella jurassica (ÉTALLON)
	Stellispongia glomerata (ÉTALLON) sehr hfg.
Scleractinia:	Clausastrea parva Edwards & Haime
	Dimorpharea koechlini (HAIME)
	Isastrea sp. sp. sehr hfg.
	Latomeandra delemontana (KOBY)
	Microsolena sp. sp.
	Montlivaultia sp. sp.
	Stylina sp. sp.
	Thamnasteria sp. sp. sehr hfg.
	The cosmilia sp. sp.
Brachiopoden:	Zeilleria delemontana (OPPEL)
Lamellibranchiata:	Chlamys episcopalis (LORIOL)
	Chlamys (Aequipecten) laurae (ÉTALLON)
	Lima (Ctenostreon) proboscidea Sowerby
	Ostrea hastellata SCHLOTHEIM
	Ostrea quadrata Étallon
	Pinna sp. sp.
	Spondylopecten moreanus BUVIGNIER
Gastropoden:	Pseudomelania liesbergensis LORIOL

Echinodermen:

Millericrinus bruckneri (AGASSIZ) Millericrinus calcar Orbigny Millericrinus dudressieri Orbigny Millericrinus escheri LORIOL Millericrinus echinatus (BRUCKMANN) Millericrinus horridus Orbigny Millericrinus knorri LORIOL Millericrinus milleri (SCHLOTHEIM) Millericrinus münsterianus Orbigny Millericrinus nodotianus Orbigny Millericrinus regularis Orbigny Millericrinus studeri LORIOL Pentacrinus amblyscalaris THURMANN Cidaris blumenbachi (MÜNSTER) Cidaris cervicalis AGASSIZ Cidaris florigemma PHILIPS sehr hfg. Glypticus hieroglyphicus AGASSIZ hfg.

Die Fossilien sind verkieselt. Woher die Kieselsäure stammt, ist nicht geklärt. Bis jetzt konnten z.B. keine Silicispongien festgestellt werden.

Die meisten Korallen sind hermatypisch (Korallen, die Riffe bilden können. Die heutigen Formen leben mit Zooxanthellen in Symbiose). Cerioide (massiv, mit sich berührenden Koralliten), plocoide (massiv, Korallite berühren sich nicht, sondern sind durch Coenosteum getrennt) und maeandroide Formen (Korallite in maenadrierenden Reihen) herrschen vor. Auffallend häufig sind Thamnasterien, Isastreen und Stylinen. Es sind schwarten- bis halbkugelförmige Korallenkolonien, die bis zu einem Meter in die Breite wachsen können. Manchmal sind sie von Cyanophyceen überkrustet. Die Krusten zeigen im Schliffbild gewundene, z. T. leicht verzweigte Schläuche mit Durchmessern von 10–100 μ . Das Lumen ist mit Calcit ausgefüllt. Die Thalli liegen in einer dunklen, pelitischen Grundmasse, die sich gleichmässig über die Oberfläche der Korallen hinzieht.

Die Lamellibranchier weisen grobe Schalen auf und sitzen oft fest (Ostreiden). Ausbildung und Form von Korallen und Bivalven lassen auf ein ziemlich bewegtes Milieu schliessen.

Die mergeligen Zwischenlagen sind vermutlich durch periodische Zufuhr von tonigem Material entstanden, das in Zeiten schwächerer Turbulenz sedimentiert wurde. Die Korallen mögen infolge Verstopfung ihrer Poren abgetötet worden sein. Sie wurden darauf von blaugrünen Algen überzogen. Die schleimigen Algenkrusten hielten den tonigen Pelit der Mergelkbänder fest. Das aus diesem Prozess hervorgegangene Gestein könnte nach DUNHAM (1962, p. 117) «boundstone» genannt werden.

Mumienkalke und Oolithe

Synonyma:

Rauracien-Oolith Oolithe corallienne GREPPIN (1870) Oolithe pisiforme Rollier (1898) Caquerelle pisolith Ziegler (1962) Mumienkalke und Oolithe sind aus vielen Juraablagerungen beschrieben worden. Meist sind sie eng verknüpft. So beschreibt HERZOG (1956, p. 325) Mumienkalke im Dach des unteren Hauptrogensteins (Dogger) bei Basel, die zusammen mit oolithischen Kalken auftreten. Auch im mittleren Séquanien sind neben den bekannten, von P.A.ZIEGLER (1956) und M.A.ZIEGLER (1962) beschriebenen Mumienbänken, Oolithe vorhanden, die sog. «Oolithe rousse».

Die Rauracien-Oolithe und Mumienkalke wurden von ROLLIER (1898) unter dem Begriff «Oolithe pisiforme» und von M.A.ZIEGLER (1962) unter dem Namen «Caquerelle Pisolith» zusammengefasst. Wie sich jedoch im Laufe unserer Untersuchungen ergab, sind die Mumienkalke und Oolithe aus deskriptiven und genetischen Gründen zu trennen, obwohl sie sich an gewissen Orten verfingern.

MUMIENKALKE

Im Profil von St. Ursanne treten die Mumienkalke über den Liesbergschichten in einer Mächtigkeit von 9 m auf, gefolgt von 16 m Oolithen (Tafel I, Profil 2). Der Übergang von den Liesbergschichten zu den Mumienkalken vollzieht sich wie folgt:

Die ersten Mumien treten in den mergeligen Zwischenlagen der obersten Liesbergschichten auf. Die kalkigen Biostrome setzen sich hier nach wie vor hauptsächlich aus Korallen zusammen. Gegen oben werden dann aber auch diese Partien mumienreicher. Die Algenknollen verdrängen langsam die Fossilien und werden selbst zu Hauptkomponenten.

Bei Côte du Frêne erreichen die Mumienkalke eine noch grössere Mächtigkeit (21 m: vgl. Tafel I, Profil 1). An der Basis sind sie unterteilt in 50 cm mächtige Bänke, die oft mit einer Mergelfuge beginnen. In ihnen finden wir aufgearbeitete Knollen der liegenden Kalkbank, die nach oben mit einer stark limonitisierten Schichtfläche abschliesst.

Die Mumienkalke werden nach oben zu massiger. Die Bankung ist nicht mehr so deutlich wie in ihren unteren Partien.

Lithologie:

Hauptkomponenten: Mumien und Ooide. Die Mumien, die normalerweise 80% der Komponenten ausmachen (vgl. Fig. 6), messen 0,5–10 mm im Durchmesser. Stellenweise treten sie etwas zurück, so dass die Ooide das Bild beherrschen (vgl. Fig. 7).

Als Kerne dienen vor allem Gastropoden-Embryonen, Echinodermenfragmente, Mollusken- und Korallentrümmer, Foraminiferen. Daneben finden sich kleinere Ooide.

In der schwammigen, lappigen Hülle der Mumien lassen sich oft Thalli von Cyanophyceen erkennen, als unregelmässige, manchmal verzweigte Kanälchen, die ein engmaschiges Netzwerk bilden können und mit Calcit gefüllt sind. Die Durch-

 $5 \mathrm{mm}$

Fig. 6. Mumienkalke; Mumien (algal biscuits), die von Cyanophyceen und Nubeculinellen gebildet wurden. Die filzige Struktur der Hülle kommt deutlich zum Ausdruck. Côte du Frêne.

messer der Thalli schwanken stark. Meist messen sie zwischen 2 und 10 μ . Ihre Länge ist je nach Schnittlage sehr unterschiedlich.

Einzelne Trümmer sind von *Girvanella pisolithica* WETHERED umkrustet, einer Cyanophycee, deren ungegliederte, verzweigte Röhrchen ähnlich wie die Fäden in einem Knäuel den Kern umgeben. Die Röhrchen messen 2 μ im Durchmesser. (vgl. Fig. 7/8)

Häufig treten inkrustierende Foraminiferen auf. Es sind Formen der Gattung *Nubeculinella*. Ihr Proloculum ist spiralig aufgewunden oder hakenförmig. Die Schalen sind imperforiert-kalkig. Normalerweise ist nur eine Kammer zu beobachten. Nur grössere Formen (meist aussen an den Mumien) weisen terminal mehrere irreguläre Kammern auf. (vgl. CUSHMAN, 1955, p. 199).

Nebenkomponenten: Sie sind diffus im Gestein verteilt. An Skelettelementen konnten wir Trümmer von Serpelröhren, Korallen, Mollusken und Echinodermen feststellen. Hierzu gehören auch Foraminiferen: Lagena, Textularia, Verneuilina. An andern Bestandteilen wurden kleine Algenklümpchen von schwammigem Aussehen beobachtet. Möglicherweise handelt es sich dabei um Krustenfragmente von Mumien, die etwas gerollt wurden.

10 mm

Fig. 7. Mumienkalke; Serpelröhre und Gastropodenfragment von Girvanella pisolithica WETHERED umkrustet. Im Innern der Hohlräume deutliches Geopetalgefüge. Links Serpelröhre mit eingelagertem Ooid; rechts Gastropodenfragment, welches vor der endgültigen Sedimentation noch umgelagert wurde. Das Geopetalgefüge im Innern seines Hohlraumes weist in umgekehrter Richtung. Côte du Frêne.

Grundmasse: Die Grundmasse ist bald mehrheitlich kalkpelitisch, bald mehrheitlich calcitisch-kriställin. (vgl. Tafel I, Profile 1 und 2). Dort wo kalkpelitische Matrix auftritt, kann manchmal geopetale Einlagerung gezeigt werden.

Genetische Interpretation

Kalkalgenknollen entstehen in einem regelmässig bewegten Milieu. Cyanophyceen setzen sich an einem Kern fest. Durch ständige Umlagerung dieses Nucleus entsteht eine lappige, mehr oder weniger konzentrische Kruste.

Wir vermuten, die Mumienkalke seien allogen, d.h. nicht an ihrem ursprünglichen Entstehungsort sedimentiert. Beobachtungen in recenten Riffgebieten zeigen deutlich, dass Oolithe, Algenknollen etc. durch Wellenwirkung und durch Strömungen verschleppt und an anderen Orten wieder abgelagert werden (vgl. ILLING, 1954; CLOUD, 1962).

Oolithe

Die oolithischen Kalke im Profil St. Ursanne können von oben nach unten dreigeteilt werden:

ECLOGAE GEOL. HELV. 58, 2 - 1965

1 mm

Fig. 8. Mumienkalke: Ausschnitt aus der Algenkruste (*Girvanella*), der auf Fig. 7 dargestellten Mumie. Die kleinen Tuben der blaugrünen Algen bilden ein knäuelartiges Flechtwerk. Côte du Frêne.

3. Oolithband an der Basis der kreidigen Kalke, das gekenneziechnt ist durch vermehrtes Auftreten von biogenem Detritus und Cyanophyceen. Das Gestein ist hart. Beim Anschlagen des Musters geht der Bruch durch die Ooide hindurch. Da die Obergrenze dieses Oolithbandes stark diskonform ist (vgl. Fig. 16), schwankt seine Mächtigkeit zwischen 2 und 3 m.

2. Kreidiger Oolith. Dieser lässt sich als zurückwitternder Horizont, eine Art «abris sous roche» darstellend, auf grössere Strecken verfolgen. Seine Mächtigkeit beträgt 5,50 m. Beim Anschlagen bricht das weiche Gestein um die Ooide herum.

1. Dichter gut zementierter Oolith von 9,50 m Mächtigkeit, der über den Mumienkalken hängt. In den untersten Partien treten noch häufig Mumien auf. Das Gestein ist gut gebankt. Die Schichtung, die im Meterbereiche liegt, wird nach oben etwas mächtiger.

Die 16 m Oolithe, die wir bei St. Ursanne messen können, nehmen an Mächtigkeit nach Norden rasch ab. Bei Côte du Frêne sind es nur noch 3 m (vgl. Tafel I, Profil 1). Kreuzschichtung konnte nicht festgestellt werden. Bei der Station St. Ursanne können die einzelnen Bänke seitwärts über 250 m verfolgt werden. Ihre Dicke bleibt konstant.

1 mm

Fig. 9. Oolithe; Körner konzentrig-schalig und meist kleiner als 1 mm. Sortierung relativ gut; Grundmasse mehrheitlich calcitisch-kristallin. St. Ursanne, Kalkfabrik.

Lithologische Beschreibung der drei Oolithlagen

1. Die gut gebankten, dichten Oolithe (vgl. Fig. 9)

Hauptkomponenten: Ooide, die im Durchschnitt 1,0–1,8 mm messen. Je nach Bank kann ihr Durchmesser leicht varriieren, doch kann mit einer Durchschnitts-Korngrösse von 1,4 mm gerechnet werden. Fast alle Ooide sind aussen von Foraminiferen bewachsen (*Nubeculinella*). Es sind die gleichen Arten wie wir sie in und auf den Mumien antreffen.

Der Aufbau der Ooide ist konzentrisch-schalig. Die einzelnen Schalen sind stark rekristallisiert. Radiale Strahlen können nur in den seltensten Fällen festgestellt werden. Als Kerne dienen hauptsächlich Fossiltrümmer. In einzelnen Fällen sind es kleine Cyanophyceenklümpchen, gebildet durch *Girvanella pisolithica* WETHERED.

Nebenkomponenten: Skelettelemente: Hauptsächlich Echinodermenfragmente. Daneben Trümmer von Lamellibranchiern, Gastropoden, Korallen, Serpuliden. Ihre Korngrössen stimmen mit denjenigen der Ooide überein. An ganzen Fossilien wurden nebst Foraminiferen (Lenticulina, Nubeculinella, Textularia, Verneuilina) Serpelröhren und Austernschalen gefunden. Auf einer Schichtfläche wurde ein Seeigel (Clypeus?) beobachtet. Sehr selten sind einzelne Brachiopoden (Rhynchonella).

VOLKMAR PÜMPIN

Andere Bestandteile: Vor allem Pelitkörner eventuell fäkaler Herkunft und zusammengesetzte Körner (composite grains). Die fäkalen (?) Pelitkörner treten in Form von gut gerundeten, ovalen Pillen auf. Ihre Grösse schwankt zwischen 0,5 und 1 mm. Das Innere besteht aus feinstem dunklem Pelit, in welchen kleinste Trümmer anderer Organismen eingebaut sind, sowie aus calcitgefüllten Hohlräumen (vgl. Fig. 10). Diese Hohlräume erwecken manchmal den Eindruck, bei den Körnern könnte es sich um agglutinierende Foraminiferen handeln. Untersuchungen bei starker Vergrösserung zeigten aber, dass zwischen Hohlraum und agglutinierter Masse keine Sutur auftritt, wie sie bei agglutinierenden Foraminiferen zu beobachten wäre.

ILLING (1954, p. 24) beschreibt recente Koprolithkörner in den Kalksanden der Bahamas, die den unsrigen in Form und Aufbau gleichen. Es sind 0,5–0,7 mm lange Körperchen, ungefähr halb so dick wie lang. Im Schliffbild zeigen sie unregelmässige dunkle Flecken, die möglicherweise chitinöse Skelettfragmente sind. Wir fragen uns, ob die Möglichkeit besteht, dass solche Chitinpartien im Laufe der Diagenese der Sedimente zerstört und durch calcitisch-kristalline Grundmasse ersetzt werden.

Überall in den Oolithen können Körner mit traubigem Aussehen (grapestones) beobachtet werden. Es sind zusammengesetzte Körner, die hauptsächlich aus

Fig. 10. Oolithe; Im Zentrum Koprolithkörnchen (faecal pellet), das hauptsächlich aus agglutiniertem Material besteht. Deutlich treten die calcitgefüllten Hohlräume hervor. gerundeten Teilchen bestehen, eckige Komponenten aber in sich aufnehmen können. Im Durchschnitt messen sie 1,5–2 mm (vgl. Fig. 11).

Solche Körperchen sind häufig in rezenten Oolithen (z.B. auf den Bahamas). Sie werden zusammengehalten durch kleinste Aragonitnadeln (später in Calcit übergehend), die an den Berührungspunkten zweier Körner wachsen. ILLING (1954, p. 30) nimmt an, der Aragonit werde vom Meerwasser ausgeschieden.

Mumien sind an der Basis der Oolithserie noch häufig, nach oben zu nehmen sie rasch ab.

Grundmasse: An der Basis der gut gebankten, dichten Oolithe besteht die Grundmasse bis zu 90% aus Kalkpelit (vgl. Tafel I, Profil 2), nach oben zu wird die calcitisch-kristalline Matrix häufiger.

 $1 \,\mathrm{mm}$

Fig. 11. Oolithe; Traubiges Klümpehen (grapestone lump); Ooid rechts des aus drei Komponenten bestehenden Klumpens, sowie das unmittelbar links vom Klumpen liegende Ooid (mit Echinodermenstachel als Kern), weisen an ihrer Aussenseite festsitzende Nubeculinellen auf (Pfeil). St. Ursanne, Kalkfabrik.

2. Der kreidige Oolith

Das zurückwitternde Oolithband setzt sich aus den gleichen Komponenten zusammen wie die liegenden dichten Oolithe. Die Körner sind etwas kleiner und besser sortiert. Mumien treten wieder etwas häufiger auf.

Die Grundmasse ist calcitisch-kristallin und zeigt deutliche, sehr engmaschige Mosaikstruktur. Diese Matrix ist sehr brüchig. Beim Zerreiben durch die Finger bildet sich ein kreidiges Mehl, das aus kleinsten Bruchstücken der Grundmasse besteht. Das Gestein ist sehr porös. Oft sind in die Poren feinste Tonpartikelchen eingelagert, die dem Gestein eine rote Striemung geben können.

3. Dichtes Oolithband an der Basis der kreidigen Kalke (vgl. Fig. 12)

Hauptkomponenten:

a) Ooide verschiedenster Grösse, schlecht sortiert und oft von Cyanophyceen leicht umkrustet. Die Cyanophyceenkruste ist hier meist sehr dünn. Der Ooid-Charakter der Komponenten bleibt erhalten. Wir sprechen aus diesem Grunde noch nicht von Mumien.

b) Gut gerundete, zum Teil stark korrodierte Skelettelemente. Sie sind von Cyanophyceen umhüllt und von aussen her angefressen. Manchmal geht die Korro-

Fig. 12. Oolithe; Dichtes Oolithband an der Basis der kreidigen Kalke. Stark korrodiertes Skelettmaterial, Ooide und Algenklümpchen in mehrheitlich mikroklastisch-pelitischer Grundmasse. St. Ursanne, Steinbruch.

sion auch von den Hohlräumen in den Bruchstücken aus. Bei Korallen ist dann zum Beispiel die äussere Wand noch gut erkennbar, die innen liegenden Septen und die Columella sind teilweise zerstört.

Nebenkomponenten: Vor allem Cyanophyceenknöllchen. Ihr Habitus ist sehr unterschiedlich. Oft sind es bis 3 mm grosse Gebilde mit deutlich sichtbaren kleinen Kanälen, oft nur kleine schwammige Kügelchen.

Durch Cyanophyceen zusammengehaltene Oolith-Pakete. Ihre Konturen sind unregelmässig eingebuchtet, die Ooide durch Algenkrusten fest zusammengekittet. Einzelne Mumien.

Grundmasse: Die Matrix ist mehrheitlich kalkpelitisch, doch ist auch calcitischkristalliner Zement vorhanden (bis 40% der Grundmasse). Der Kalkpelit ist möglicherweise mikroklastisch. Gewisse Übergänge von fein-psammitisch biogenem Detritus zu pelitischen Körnchen sind zu beobachten.

Genetische Interpretation

Die kreidigen Oolithe sind über grössere Distanzen verfolgbar. Die schlechte Zementierung ist nicht nur an lokale Verhältnisse gebunden.

Die heute, wenn vorhanden, calcitische Grundmasse unterscheidet sich in ihrer brüchigen Mosaikstruktur von der Matrix der liegenden, gut zementierten Oolithe. Kalkpelit ist nicht sichtbar. Die Einlagerung von eocaenem rotem Ton zwischen den Ooiden zeigt, dass die Porosität schon früh vorhanden war und vermutlich primär ist.

Aus Gründen, die noch nicht abgeklärt sind, konnte der kreidige Oolith seine grosse Porosität bis heute beibehalten.

Die dichten gut zementierten Oolithe zeigen als Grundmasse sowohl calcitischkristallines Material als auch Kalkpelit. Der Porenraum wurde durch Einfliessen von CaCO₃-reichen Lösungen mit Calcit aufgefüllt. Vorhandener Kalkpelit ist manchmal geopetal eingelagert worden (vor allem in Hohlräumen wie *Serpula*-Röhren).

In den Poren konnten keine roten Tone beobachtet werden. Das Gestein wurde früh verfestigt. Es kann angenommen werden, der calcitisch-kristalline Zement sei nicht durch Rekristallisation von Kalkpelit entstanden.

Das dichte Oolithband an der Basis der kreidigen Kalke wurde abgelagert, als an anderen Orten Korallen bereits wuchsen. Dies beweist der biogene Detritus, der hauptsächlich von Scleractinien stammt. Die gut gerollten Trümmer zeigen, dass das Milieu zur Zeit der Sedimentation dieses Horizontes relativ bewegt war. Gewisse Perioden schwächerer Turbulenz müssen von Zeit zu Zeit aber immer wieder eingetreten sein, damit die mehrheitlich kalkpelitische Grundmasse eingelagert werden konnte.

Die Korallen, die in den obersten Partien der Schicht in Lebensstellung sind beweisen, dass die Gewässer seicht waren. Vielleicht trugen die hier häufig anzutreffenden blaugrünen Algen zur Verfestigung der Sedimente bei. Dies würde vielleicht erklären, warum die Korallenkolonien so gut Fuss fassen konnten.

Die kreidigen Kalke von St. Ursanne und die darin eingeschlossenen Bioherme

Synonyma:	Caquerelle Schichten
	Epicorallien (Thurmann & Etallon, 1861–1864)
	Calcaire à Nerinées (GREPPIN, 1870)
	Kreide von St. Ursanne (M. A. ZIEGLER, 1962)
Typlokalität :	Steinbruch von St. Ursanne (Koord. 579650/245375)

In den weitherum verbreiteten, weissen kreidigen Kalken, die das obere Rauracien darstellen, treten Bioherme auf. Von unserem Aussichtspunkt aus (vgl. Fig. 4) lassen sich diese klotzigen Korallengebäude gut erkennen. Alle Anzeichen deuten darauf hin, dass Teile der Riffe vor der Ablagerung der kreidigen Kalke von St. Ursanne angelegt wurden. Aus diesem Grunde wollen wir sie zuerst besprechen.

A. DIE BIOHERME IM STEINBRUCH VON ST. URSANNE

Im Steinbruch von St. Ursanne wurden im Laufe der Ausbeutungsarbeiten mehrere Bioherme angeschnitten. Fig. 13 gibt einen Plan der Stollenanlagen und zeigt, wie die Riffe in den kreidigen Kalken verteilt sind. Die ausgezeichneten Aufschlüsse ergeben gute Möglichkeiten zum Studium der inneren Struktur der Korallengebäude. Am besten ist diese erkennbar dort, wo die frisch angeschnittenen Riffe der Erosion ausgesetzt waren, d.h. am Eingang zu den Stollenanlagen.

(NICHT ABGEBAUTE PARTIEN)	ВК	BRENNEREIKAVERNE
ÄUSSERE BEGRENZUNG DER IN DEN		
 BERG GETRIEBENEN STOLLENANLAGEN	W	WOHNUNGEN

Fig. 13. Plan der Stollenanlagen im Steinbruch von St. Ursanne (Stand 1961). Verteilung der Bioherme in den kreidigen Kalken. Die Bioherme sind resistente, aber sehr poröse Gebilde, die linsen- bis domartig im umgebenden Gestein sitzen und aus riffbildenden Korallenkolonien und Solenoporen bestehen. In ihrem Innern treten ausgedehnte primäre Hohlräume (bis 50 cm \emptyset) und kleine Löcher auf, die oft von grossen Calcitkristallen ausgefüllt sind.

Erkennbar sind die Bioherme auch an ihrer leicht rötlichen Färbung, hervorgerufen durch Einfliessen von rotem eocaenem Boluston.

Die Riffbildungen können unterteilt werden in gewachsene Partien und in Riffschutt. Eine Grenzziehung zwischen Riff und Riffschutt ist aber nur dort genau möglich, wo der detritische Anteil so verändert wurde, dass die Komponenten im Schutt gut von den gewachsenen Korallenpartien unterschieden werden können.

Das Schliffbild zeigt, dass die meisten Korallen biogen korrodiert sind. Oft lassen sich Wohnröhren von perforierenden Organismen erkennen. Cyanophyceen binden das abgebrochene Trümmermaterial und festigen so das Gestein. Das Lumen zwischen den einzelnen Kolonien ist aufgefüllt mit derartigem biogenem Detritus jeglicher Grösse.

Die folgenden Ausführungen stützen sich auf die Figuren 14–17. Fig. 14 zeigt ein Profil durch eines der Bioherme im Steinbruch von St. Ursanne. Im gewachsenen Riff, an dessen Flanken der Riffschutt liegt, können wir mehrere Zonen beobachten, die sich durch verschiedene Korallenfaunen unterscheiden. Diese Faunengemeinschaften sind vermutlich auf verschiedene ökologische Bedingungen innerhalb des Riffes zurückzuführen.

Das Riff geht bis unmittelbar an die Vorbourgkalke heran, aber nicht in diese hinein. Manchmal erhält man den Eindruck, das Dach der Bioherme sei abgeschnitten worden. Dies könnte mit einer Denudationsphase vor der Ablagerung der Vorbourgkalke zusammenhängen.

Die seitliche Verteilung der Korallenzonen, die nachfolgend näher diskutiert werden, kommt in Fig. 14 gut zum Ausdruck. Die Figuren 16 und 17 sind Detailskizzen und zeigen den Aufbau der südlichsten Ausläufer des auf Fig. 14 und 15 dargestellten Riffs. Auf diesen zwei Figuren ist vor allem die Basis des Bioherms und die Anlagerung der verschiedenen Schuttsysteme gut zu beobachten.

Zonen mit verschiedenen Korallenfaunen (Fig. 14-17)

Im Laufe der Untersuchungen im Steinbruch von St. Ursanne ist uns aufgefallen, dass die dortigen Bioherme sich aus verschiedenen Zonen zusammensetzen, die sich in ihrem Fossilinhalt deutlich unterscheiden:

- Eine Zone mit schwartenartigen und feinästigen Korallen an der Basis der Bioherme
- Verschiedene Zonen mit büscheligen und wulstig-ästigen Korallen, die meist aus der Zone mit feinästigen und schwartenartigen Korallen hervorgehen.
- Eine Zone mit massiven Korallenköpfen im südlichen Teil des auf Fig. 14 und 15 dargestellten Riffs.
- Eine Zone mit Ptychochaetetes.

1. Zone mit schwartenartigen und feinästigen Korallen an der Basis der Bioherme

Südlich des auf Fig. 16 dargestellten Tunnels kann das Fussfassen des Riffs in den Oolithen gut beobachtet werden. Zuerst treten einzelne kleinere Korallenköpf-

Fig. 14. Profil durch ein Bioherm im Steinbruch von St. Ursanne (P.....P auf Fig. 15).

Fig. 15. Plan eines Bioherms in den kreidigen Kalken von St. Ursanne mit seinen Korallenzonen und mit dem Riffschutt. Die Fallzeichen geben das Einfallen der Schuttkegel. St. Ursanne, Steinbruch.

chen und -schwarten, selten grösser als 10 cm, zwischen oolithischem Material und biogenem Detritus auf. Oft sind sie umgelagert; ihre Polypare weisen mehrheitlich nach unten.

826

	ZONE MIT FEINÄSTIGEN UND SCHWARTENARTIGEN KORALLEN		GRENZE ANSTEHENDES RIFF - RIFFSCHUTT AUF DEM NIVEAU DER STOLLEN
	ZONE MIT BÜSCHELIGEN UND WULSTIG - ÄSTIGEN KORALLEN		ÄUSSERE BEGRENZUNG DES BIOHERMS AUF DEM NIVEAU DER STOLLEN
	MISCHZONE : BÜSCHELIGE, WULSTIG - ÄSTIGE UND MASSIVE KORALLEN	<u> </u>	VERWERFUNG
	ZONE MIT MASSIVEN KORALLEN	PP	PROFIL (VGL. FIG. 14)
	ZONE MIT PTYCHOCHAETETES	AA	NIVEAU DER ABFÜLLANLAGE : ANSICHT DER E - WAND (VGL. FIG. 16)
	KREIDIGER GEROLLTER RIFFSCHUTT	BB	NIVEAU DER ABFÜLLANLAGE : ANSICHT DER W - WAND (VGL. FIG. 17)
	KREIDIGER FEINSPÄTIGER RIFFSCHUTT	A	ABFÜLLANLAGE
	RIFFSCHUTT AUS GROBEN, ECKIGEN KORALLENBLÖCKEN	в	BRENNEREI
	ECKIGER RIFFSCHUTT MIT SOLENOPOREN UND KORALLEN IN LEBENSSTELLUNG	вк	BRENNEREIKAVERNE
°	GEROLLTER RIFFSCHUTT IN DEN OBERN KREIDIGEN KALKEN	L	KOLONIEN VON LATOMEANDRA AMEDEI ETALLON
	OOLITHE	0	OELTANK
kr K	KREIDIGE KALKE	Ρ	ZONE MIT PTYCHOCHAETETES
	VORBOURGKALKE	w	WOHNBARACKE

Legende zu Fig. 14 und 15

Über ihnen liegen grössere schwartenartige Kolonien; vor allem Thamnasterien, die bis zu 30 cm lang werden können. Sie sind in Lebensstellung, denn ihre Polypare sind nach oben gerichtet. Zu diesen Korallenschwarten gesellen sich dann auch feinästige Formen, wie z.B. *Goniocora*, so dass ein Korallenrasen aus liegenden, mehr fladenförmigen und nach oben strebenden, feinen ästigen Korallen entsteht.

Folgende Formen charakterisieren diese Zone:

Aplophyllia orbignyi EDWARDS & HAIME Cladophyllia ramea KOBY Comoseris sp. sp. Dimorpharea sp. sp. Goniocora sp. sp. Stylina sp. sp. Thamnasteria sp. sp.

Der Korallenrasen trennt im Steinbruch von St. Ursanne überall die liegenden Oolithe von den hangenden kreidigen Kalken. Folgen wir dieser Trennlinie seitwärts, so können wir feststellen, dass sie nicht der Horizontalen folgt, sondern stellenweise tief in die liegenden Oolithe hineingreift. Dies ist auf Fig. 16 ersichtlich. Hier liegen südlich vom Tunnel Korallenkalke viel höher auf den Oolithen als nördlich davon.

Fig. 16. St. Ursanne, Steinbruch. Niveau der Abfüllanlage: Ansicht der Ostwand (A..... A auf Fig. 15). Das dem Hauptbioherm vorgelagerte kleine Riff wird von kreidigem Riffschutt zugedeckt. Unten: Zone mit schwartenartigen und feinästigen Korallen; daraus hervorgehend Zone mit büscheligen und wulstig-ästigen Korallen. Oben links: Zone mit *Ptychochaetetes*.

Fig. 17. St. Ursanne, Steinbruch, Niveau der Abfüllanlage. Ansicht der Westwand (B..... B auf Fig. 15). Die Zone mit massiven Korallenköpfen wird überdeckt durch eckigen Riffschutt mit Solenoporen und einzelnen Korallen in Lebensstellung. Rechts vom Weg: Einzelne grosse *Latomeandra*-Kolonie. Zwischen der Zone mit massiven Korallen und der Zone mit schwartenartigen und feinästigen Korallen, gerollter kreidiger Riffschutt, überlagert von sehr feinem, spätigem Riffdetritus.

			-
5 W	ZONE MIT FEINÄSTIGEN UND SCHWARTENARTIGEN KORALLEN		GROSSE KOLONIE VON LATIMEANDRA AMEDEI ETALLON
¥*W	ZONE MIT BÜSCHELIGEN UND WULSTIG - ÄSTIGEN KORALLEN	Р	ZONE MIT PTYCHOCHAETETES
B	ZONE MIT MASSIVEN KORALLENKÖPFEN	т	TUNNEL
800	ECKIGER RIFFSCHUTT MIT SOLENOPOREN UND KORALLEN IN LEBENSSTELLUNG		
530	RIFFSCHUTT AUS GROBEN, ECKIGEN KORALLENBLÖCKEN		
····:	KREIDIGER, FEINSPÄTIGER RIFFSCHUTT		
5200	KREIDIGER, GEROLLTER RIFFSCHUTT		
0 0 0	ZONE MIT PTYCHOCHAETETES		
	OOLITHE		
krK	KREIDIGE KALKE		
	DURCH HUMUS UND ABRAUM VERDECKTE PARTIEN		

Legende zu Fig. 16 und 17

2. Zonen mit büscheligen und wulstig-ästigen Koralten

Die auffallendste Koralle in diesen Zonen ist die grosse büschelige Latomeandra amedei ETALLON, die wohl zu den schönsten jurassischen Scleractinien gehört. Sie tritt sowohl als isolierte Einzelkolonie (nördlich vom Weg, der vom Niveau der Abfüllanlage zum Niveau der Stollen führt, vgl. Fig. 17), als auch im fest verkitteten Verband mit kleineren, ähnlich aussehenden Calamophyllien und ebenfalls häufigen, wulstig-ästigen Thamnasterien auf (im östlichsten isolierten Pfeiler vor dem Eingang zu den Kavernen, vgl. Fig. 13).

Folgende riffbildende Organismen konnten hier bestimmt werden:

Aplosmilia semisulcata (MICHELIN) Calamophyllia flabellum BLAINVILLE sehr hfg. Comoseris irradians (EDWARDS & HAIME) Goniocora sp. sp. Latomeandra amedei ÉTALLON sehr hfg. Stylina decipiens (ÉTALLON) Stylina coalescens (GOLDFUSS) Stylina sp. sp. Thamnasteria gracilis GOLDFUSS sehr hfg. Thamnasteria sp. sp. Solenopora cf. jurassica NICHOLSON

Die erwähnten massiven *Stylina*- und *Comoseris*-Arten sind im Innern des Riffs, entlang den Wänden der Brennereikaverne zu beobachten, wo sie zusammen mit büscheligen und wulstig-ästigen Korallen auftreten.

3. Zone mit massiven Korallenköpfen

Diese Zone ist beidseits des Weges, der vom Niveau der Abfüllanlage zum Niveau der Stollen führt, zu beobachten (vgl. Fig. 17). Sie besteht aus grossen, pilzförmigen Korallenköpfen (meist Stylinen), die bis zu 2 m mächtig werden können, und bildet den am meisten nach Süden vorspringenden Finger, des auf Fig. 15 dargestellten Bioherms. Die Korallen liegen auf einem sehr feinen, spätigen Detritus, der sich makroskopisch kaum von den kreidigen Kalken unterscheiden lässt.

Während im untern Teil der Zone das Gefüge noch etwas locker ist, werden die Korallen nach oben zu mehr und mehr verkittet. Die Kolonien sind weitgehend durch *Pholas* und *Lithodomus* angebohrt.

Die Oberflächen der grossen Korallenköpfe sind stark zerschert und stylolithisiert. Die Stylolithisierung kann auf Volumenveränderungen zurückgeführt werden, die entstanden, als das ursprünglich aragonitische Skelett dieser Hexakorallen in Calcit umgewandelt wurde. Während der Jurafaltung wurden dann die grossen Köpfe leicht gegeneinander bewegt, so dass ihre Aussenseite zerschert wurde.

Trotz ihres schlechten Erhaltungszustandes konnten aus dieser Zone folgende riffbildende Organismen bestimmt werden:

Comoseris sp. sp. Heliocoenia corallina KOBY Stylina limbata (GOLDFUSS) Stylina decipiens (ÉTALLON) Stylina sp. sp.

4. Zone mit Ptychochaetetes

Auf dem Niveau der Stollen, nahe der Brennerei (vgl. Fig. 15 und 16) ist das Gestein gepflastert mit grossen *Ptychochaetetes*-Köpfen (bis 20 cm \emptyset). Die Zone, die durch diese merkwürdigen, aus konzentrischen Schalen aufgebauten Organismen gebildet wird, ist etwa 1–1,5 m mächtig und kann seitwärts ca. 10 m weit verfolgt werden, bis sie in feinem kreidigem Detritus, auf welchem sie liegt, und durch den sie auch zugedeckt wird, verschwindet.

Riffschutt

An den Flanken der Bioherme wird Schutt abgelagert. Diese Schuttkegel können verschiedenartig ausgebildet sein; denn unterschiedliches Wachstum des Riffes, Verschiedenheit des Milieus, die Ablagerungsdistanz vom Riff, der Einfallswinkel der Riffböschung etc., beeinflussen den Ablagerungsmechanismus des detritischen Materials. Wie schon auf p. 824 beschrieben wurde ist eine sichere Trennung von gewachsenem Riff und Riffschutt manchmal sehr schwer, wenn nicht unmöglich, denn neue lebende Korallenkolonien setzen sich immer wieder auf den Schuttkegeln fest und bauen darin sekundäre Riffstrukturen auf. So lässt sich z.B. im Dach der Stollenanlagen beim Öltank (vgl. Fig. 15) eine grosse Latomeandrakolonie beobachten, die im Schutt wurzelt und aus diesem herauswächst. Das Riff kann sich so lateral ausdehnen, bis wieder eine frische Schuttlage die seitlichen Auswüchse erstickt und abtötet.

Das Gestein kann erst in einer gewissen Entfernung vom Riff sicher als Schutt erkannt werden, denn hier sind die Überreste der riffbauenden Organismen nur noch als Fragmente erhalten und eindeutig als solche identifizierbar.

Im Steinbruch von St. Ursanne können wir vier verschiedene Schuttypen unterscheiden:

- 1. Kreidiger Riffschutt an der Basis der Bioherme
- 2. Riffschutt aus groben eckigen Korallenblöcken
- 3. Grober eckiger Schutt mit gedrungenen Korallen in Lebensstellung und kleinen Solenoporen
- 4. Gerollter Riffschutt in den oberen kreidigen Kalken.

1. Kreidiger Riffschutt

Der Korallenrasen an der Basis wird überdeckt durch Lagen von kreidigem Riffschutt mit vielen gerollten Fossiltrümmern. An der Ostwand des Niveaus der Abfüllanlage wird dieser rund 10 m mächtig und deckt das dort anstehende kleine Bioherm zu (vgl. Fig. 16). Die primäre Anlagerungsfläche des Riffschutts kann hier mit einem Einfallen von 25–35° nach S festgestellt werden.

An Komponenten finden wir im kreidigen Schutt vor allem Korallenfragmente. Sie sind schwer bestimmbar, da sie ausnahmslos stark gerollt sind.

Folgende Arten konnten beobachtet werden:

Calamophyllia sp. sp. Goniocora sp. sp. Latomeandra sp. sp. Stylina sp. sp. Thamnasteria sp. sp.

Diese sind mehrheitlich Trümmer von büscheligen und wulstig-ästigen Formen; Fragmente von eigentlichen Korallenköpfen sind seltener vorhanden.

Neben diesen Korallenfragmenten sind Fossilien der rezifalen Begleitfauna und Trümmer davon häufig. Unter andern konnten bestimmt werden:

Brachiopoden:	Zeilleria huddlestoni Duvillé
Lamellibranchiata:	Diceras arietinum LAMARCK
	Diceras ursicinum Thurmann
	Diceras sp. sp.
Gastropoden:	Natica sp. sp.
	Nerinea laufonensis THURMANN
	Nerinea ursicina Thurmann
	Nerinea sp. sp.
	Purpuroidea sp. sp.
	Sequania moreana Buvignier
Echinodermen:	Acrocidaris nobilis Agassiz
(vor allem Stacheln)	Hemicidaris sp. sp.
	Pseudodiadema sp. sp.
	Rhabdocidaris sp. sp.

Auch die Trümmer dieser Fossilien sind gerollt. Sie sind eingebettet in eine kreidige Grundmasse, von der wir vermuten sie sei mikroklastisch, weil Übergänge von psammitischem biogenem Material zu pelitischem biogenem Detritus unter der starken Vergrösserung zu beobachten sind.

•

Der Schutt dringt tief in den liegenden Korallenrasen ein. Primäre Spalten und Hohlräume sind durch ihn ausgefüllt. Deutlich kann beobachtet werden, wie die grössten Komponenten, die zwischen 5 und 20 cm messen, im kreidigen Riffschutt unten liegen, d. h. unmittelbar über der Zone mit schwartenartigen und feinästigen Korallen. Nach oben zu wird der Detritus allmählich feiner, bis er lithologisch kaum

5 mm

Fig. 18. Kreidiger Riffschutt: Komponenten ausnahmslos gerollt; eingebettet in kreidige mikroklastische Grundmasse; St. Ursanne, Steinbruch.

mehr von den kreidigen Kalken zu unterscheiden ist. Einzig die horizontale Lagerung der kreidigen Kalke ermöglicht es, an der Steilwand, diese von den obersten Riffschuttlagen abzutrennen.

An der Westwand des Niveaus der Abfüllanlage ist dieser feine Riffschutt in Form eines feinspätigen kreidigen Detritus abgelagert worden (vgl. Fig. 17). Hier ist jedoch weniger ein gradueller Übergang von grobem zu feinem Schutt, als vielmehr ein ziemlich rascher Wechsel zu beobachten.

Auch in den feineren Fraktionen stellen die Korallentrümmer die Hauptkomponenten. Skeletteile anderer Fossilien ergänzen den Gesteinsinhalt (vgl. Fig. 18).

2. Riffschutt aus eckigen, groben Korallenblöcken

Auf dem kreidigen Riffschutt – meist auf dessen feinern Fraktionen (vgl. Fig. 17) und zungenartig in den kreidigen Kalken (vgl. Fig. 14) – liegt eine Anhäufung von grobem, eckigem Riffschutt.

Fig. 19. Schuttlagen in den obern kreidigen Kalken (Lackfilmabzug). 1. Gastropoden: 1a, keine Korrosionserscheinungen; 1b, biogen korrodiert und umkrustet. 2. Codiaceenknöllchen (*Cayeuxia sp.*). 3. Cyanophyceenknöllchen. 4. Solenoporenfragment. 5. Korallenfragmente. 6. Pholadenloch.

Die punktierten Flächen stellen Cyanophyceenkrusten dar. St. Ursanne, Steinbruch.

Es handelt sich um 20-50 cm mächtige Trümmer von ästigen und massiven Korallen. Vor allem sind es Fragmente von Stylina, Heliocoenia, Comoseris, Calamophyllia, Latomeandra.

Die Schüttung dieses Blockschutts muss periodisch erfolgt sein, wie die auf Fig. 14 dargestellten «Zungen» in den kreidigen Kalken zeigen. So können wir an der Nordwand des Tunnels, der von der Brennereikaverne nach Nordwesten führt (vgl. Fig. 15) beobachten, wie Anhäufungen von grossen Korallenkolonien in umgekehrter Lage (Oberfläche nach unten) über 20 m vom gewachsenen Riff entfernt auf kreidigen Kalken liegen und wie dann darüber eine ganze Lage von gröbstem Blockschutt folgt.

3. Grober, eckiger Schutt, mit gedrungenen Korallen in Lebensstellung und kleinen Solenoporenknollen

Die Zone mit massiven Korallenköpfen wird zugedeckt von einem Riffschutt (vgl. Fig. 17), der lithologisch dem oben erwähnten groben, eckigen Detritus entspricht und sich hauptsächlich aus Korallenblöcken zusammensetzt. In ihm können jedoch immer wieder Korallen (kleine gedrungene Formen) in Lebensstellung beobachtet werden. Daneben sind Solenoporenköpfe sehr häufig, die maximal 5 cm mächtig werden. Sie sitzen überall im Gestein und verfestigen dieses. Ihre Oberflächen sind oft stark korrodiert.

.

Folgende Fauna konnte zusammen mit diesen Solenoporen beobachtet werden:

Korallen:	Aplosmilia semisulcata (MICHELIN)	
	Calamophyllia sp. sp.	
	Comoseris sp. sp.	
	Dermoseris sp. sp.	
	Stylina sp. sp.	
	Thamnasteria sp. sp.	
Brachiopoden:	Zeilleria huddlestoni Douville	
Lamellibranchier:	Anomia foliacea ÉTALLON	
	Diceras cotteaui BAYLE	
	Diceras kobyi LORIOL	
	Diceras ursicinum Thurmann	
	Lima tumida ROEMER	
	Ostrea solitaris SOWERBY	•
	Ostrea sp. sp.	
Gastropoden:	Cerithium limae forme ROEMER	
	Ditretus thurmanni LORIOL	
	Nerinea sp. sp.	
	Nerita sp. sp.	
	Petersia buccinoidea BUVIGNIER	
Echinodermen:	Acrocidaris nobilis AGASSIZ	
	Hemicidaris intermedia (FLEMING)	
x" 0	Pseudodiadema orbignyi (COTTEAU)	
	Pseudodiadema pseudodiadema (LAMARCK)	

4. Schuttlagen in den oberen kreidigen Kalken

In den höhern Lagen der kreidigen Kalke wurden, in einiger Entfernung vom Riff und ausserhalb des Bereiches des Blockschutts, Schuttmassen mit zum Teil konglomeratartigem Aussehen abgelagert. Sie sind aufgeschlossen an der Ostwand der östlichsten Kaverne (vgl. Fig. 13), wo der Schutt bis 50 m vom Bioherm entfernt liegt, das den nördlichen Abschluss des Stollens bildet. Bei der Lage handelt es sich um einen sehr groben Detritus, dessen Komponenten ausnahmslos gerollt sind.

Die Mächtigkeit dieser Schuttlagen ist sehr unterschiedlich und varriiert von wenigen Zentimetern bis zu mehr als einem Meter. Auch Sortierung und Korngrössen sind sehr ungleich. Die grössten Komponenten messen bis zu 30 cm, die durchschnittliche Korngrösse liegt bei 5 mm.

Das Gestein besteht fast ausschliesslich aus Skelettmaterial, wie hauptsächlich an Anschliffen gut gezeigt werden kann. Fig. 19 zeigt eine Durchlichtaufnahme eines von einem Anschliff abgezogenen Lackfilms. Zu den in dieser Photographie erkennbaren Fragmenten sind noch Teile von Serpuliden und Echinodermen, sowie Foraminiferen hinzuzufügen.

B. DIE KREIDIGEN KALKE VON ST. URSANNE

Die Bioherme im Steinbruch von St. Ursanne sind eingebettet in 30 m gut gebankte, weisse kreidige Kalke. Diese Kalke zerfallen leicht, so dass an den andern Aufschlüssen, wo sie nicht künstlich freigelegt sind, eine «Combe» gebildet wird, die morphologisch als Wiesenzone hervortreten kann.

Bei Côte du Frêne misst diese verschüttete Partie, die allerdings auch noch den obersten Teil der Oolithe umfasst, 45 m (vgl. Tafel I, Profil 1). Hier sind nur einzelne *Calamophyllia*-Stöcke in kreidiger Grundmasse zu beobachten, die als harte Blöcke nicht verwittert sind und nun aus der Wiesenzone heraustreten.

Bei Plan du Noyer und bei Sous les Errauts (vgl. Tafel I, Profile 4 und 5) sind die kreidigen Kalke nur teilweise verschüttet. Im ersten Profil messen sie 32 m, im zweiten 35 m. Bei Plan du Noyer verfingern sich ihre untersten Partien mit feinen Kalkareniten (vgl. p. 58).

Im Steinbruch von St. Ursanne ist ersichtlich, wie der kreidige Riffschutt, der den Korallenrasen (Zone mit schwartenartigen und feinästigen Korallen) bedeckt, nach oben zu immer feiner wird und dann allmählich nicht mehr von den kreidigen Kalken zu unterscheiden ist.

Die Bankung in den kreidigen Kalken setzt etwa 8 m über dem Korallenrasen ein. Die Bänke messen 1–2 m. Sie steigen gegen die Riffe hin leicht an und verlieren sich dann allmählich im Riffschutt. Im Steinbruch von St. Ursanne konnte ein Neigungswinkel vom Riff weg von 2–3° gemessen werden.

Die Schichtflächen sind gewöhnlich geschert. Sie dürften während der Jurafaltung als Bewegungsflächen gedient haben. Oft sind sie durch roten Boluston imprägniert.

Die kreidigen Kalke werden von den hangenden Vorbourgkalken in allen Aufschlüssen, durch einen rund einen Meter messenden, kalkarenitischen Horizont abgetrennt. Diese Schicht kann nach Süden bis nach Les Blanches Fontaines (S Undervelier) verfolgt werden.

VOLKMAR PÜMPIN

Die Komponenten in diesem Horizont, meist gut sortiert, messen 0,2–0,5 mm. Es sind ooidähnliche Gebilde, die aus einem grossen Kern bestehen und mehrheitlich von einer sehr dünnen, mehr oder weniger oolithischen Kruste umgeben sind. Als Kerne treten fäkale Pelitkörner, Foraminiferen und Algenklümpchen auf.

Etwas weniger häufig sind Reste von Solenoporen, Codiaceen (vgl. Fig. 20) und Dasycladaceen (Acicularia sp. sp.).

Die Matrix ist überwiegend calcitisch-kristallin (vgl. Tafel I).

1 mm Fig. 20. Kalkarenitische Lage zwischen den kreidigen Kalken und den Vorbourgkalken mit Fragment von *Cayeuxia sp.*

Da dieser Grenzhorizont durchgehend gleich ausgebildet ist, nehmen wir an, er stelle eine Lage dar, die sedimentiert wurde, als überall in unserem Gebiet gleiche Bedingungen herrschten. Aus diesem Grunde haben wir die Lage als Bezugshorizont für Fig. 3 gewählt.

Lithologie

Im Schliff bild wie bei der Betrachtung von Lackfilmen erweisen sich die kreidigen Kalke als feine, manchmal leicht zuckerkörnige Kalkpelite. Sie gehören zu den reinsten Kalksedimenten, die wir kennen³).

An Komponenten finden wir ausschliesslich Fossilien, oder Teile davon. Es handelt sich dabei um Relikte von zwei verschiedenen Faunengemeinschaften:

³) Vgl. Anhang III: Chemische Daten.

1. Eine Fauna, die aus dem früher beschriebenen Riffbiotop stammt und in die kreidigen Kalke eingeschwemmt wurde. Ihr Lebensraum war das Riff.

Aus diesem Biotop sind vor allem die vielen Korallen- und Solenoporenfragmente, die dicken Schalen von Diceraten und diverse riffbewohnende Seeigel zu erwähnen.

2. Die Fauna, die das eigentliche Biotop der kreidigen Kalke bildete.

Durch die besonderen Ablagerungsbedingungen (siehe p. 840) wurde ein Lebensraum geschaffen, der sich deutlich von demjenigen des Riffs unterscheidet. Charakteristisch an diesem Faunenbezirk ist der grosse Reichtum an Gastropoden, Lamellibranchiern, das vereinzelte Auftreten von Ammoniten, sowie das Fehlen von Korallen in Lebensstellung.

Aus dem Biotop der kreidigen Kalke konnten folgende Fossilien bestimmt werden (die Riffbewohner wurden schon im vorangehenden Kapitel aufgeführt. F. WOLTERSDORF fasst in seinen Fossillisten beide Faunen zusammen – vgl. Anhang I):

Codiaceen:	Cayeuxia sp. sp.
Foraminiferen:	Lenticulina sp. sp.
	Pseudocyclammina sp. sp.
	Quinqueloculina sp. sp.
	Textularia sp. sp.
	Verneuilina sp. sp.
Brachiopoden:	Zeilleria huddlestoni DOUVILLE
Lamellibranchier:	Arca laufonensis ÉTALLON
	Astarte cf. matheyi LORIOL
	Bradycardia kobyi LORIOL
	Cardium corallinum LEYMERIE
	Corbis episcopalis LORIOL
	Corbis kobyi LOBIOL
	Corbis ursannensis LORIOL
	Corbis valfinensis LORIOL
	Diceras arietinum LAMARCK
	Lima cf. perrigida ÉTALLON
	Lima sublaevis Thurmann
	Lima tumida ROEMER
	Pachyerisma septiferum Военм
Gastropoden:	Ditretus thurmanni LORIOL
-	Harpagodes aranea (Orbigny)
	Natica amata Orbigny
	Natica cf. eurytha LORIOL
	Natica mihielensis LORIOL
	Nerinea elegans Thurmann
	Nerinea laufonensis THURMANN
	Nerinea ursicina Thurmann
	Pleurotomaria sp. sp.
	Purpuroidea moreana BUVIGNIER
	Purpuroidea tuberosa SOWERBY
Echinodermen :	Hemicidaris intermedia (FLEMING)
	Pseudodiadema pseudodiadema (LAMARCK)
	Pseudodiadema orbignyi (COTTEAU)
	Rhabdocidaris sp. sp.
Ammoniten:	Perisphinctes sp. sp.

Ausserdem wurde in den kreidigen Kalken – aber nicht zu ihrem Biotop gehörend! – ein Cycadaceenblatt gefunden (Fig. 21).

Fig. 21. Kreidige Kalke von St. Ursanne; Cycadaceenblatt ³/₄ nat. Gr., Steinbruch St. Ursanne.

Fig. 22. Kreidige Kalke von St. Ursanne mit sehr stark korrodiertem Skelettmaterial (Lackfilmabzug). St. Ursanne, Kalkfabrik.

Die Muschelschalen sind meist geöffnet. Die Wirbel liegen nahe beisammen, d. h. die Verbindung durch das Ligament muss lange bestanden haben. Erst während der Umkristallisation der Sedimente wurde die organische Substanz zerstört.

Einige der beschriebenen Organismen konnten in beiden Lebensräumen existieren. So können z.B. an beiden Orten Nerineen und Körper von Seeigel der gleichen Spezies (*Hemicidaris intermedia* FLEMING) gefunden werden.

Die Skelette der Fossilien in den kreidigen Kalken sind meist stark korrodiert, so dass sie manchmal nur noch schattenhaft erkennbar sind (vgl. Fig. 22). Die Zerstörung der Hartbestandteile wurde vermutlich durch primäre Vorgänge, wie Abbau des Skelettmaterials durch Thallophyten und andere zerstörende Organismen und durch spätere diagenetische Prozesse, begünstigt durch die grosse Porosität des Gesteins hervorgerufen.

Häufig treten kugelige bis elliptische Gebilde auf, die nicht selten einen Durchmesser von über einem Meter aufweisen und bis zu zwei Meter lang werden können. Ihr Aufbau ist konzentrisch-schalig, mit einem Rhythmus im mm- bis cm-Bereiche. Um Konkretionen kann es sich kaum handeln, denn die einzelnen Schalen unterscheiden sich stark in der Porosität. Die Genese dieser Bildungen ist uns noch rätselhaft.

In den obern Partien der kreidigen Kalke können oft röhrenförmige Gebilde festgestellt werden. Diese Tuben, die 10 bis 15 cm lang werden, weisen einen Durchmesser von 2 bis 15 mm auf. Sie sind leicht gewunden und durchziehen das Gestein in vorwiegend senkrechter Richtung. Manchmal sind die einzelnen Tuben dichotom verzweigt oder U-förmig umgebogen. Das Lumen ist innen mit grobkristallinem Calcit ausgekleidet oder auch ganz ausgefüllt. Die Calcitkristalle sind durch eingeflossenen Boluston oft rot gefärbt.

Zusammen mit diesen Gebilden finden sich oft nestartige Anhäufungen von Nerineen und Korallentrümmern, die so gut erhalten sind, dass die Annahme, bei den oben beschriebenen Röhren handle es sich um weit verzweigte Korallenäste, die sich im Laufe der Diagenese auflösten, und deren Lumen durch Calcit gefüllt wurde, unwahrscheinlich ist.

Direkt unter den Vorbourgkalken, zum Teil in den kalkarenitischen Partien können andere Strukturen festgestellt werden, die möglicherweise genetisch mit den beschriebenen Tuben in Zusammenhang gebracht werden können. Sie fallen vor allem im Dünnschliff auf. Das Sediment ist stark gestört und mit einzelnen länglichen, vertikal orientierten Löchern von 0,5–2 mm Durchmesser durchsetzt. Diese sind in ihrem oberen Teil mit Calcit gefüllt. Gegen unten wird dann der Calcit oft durch geopetal eingelagertes gröberes Sediment ersetzt.

Beide Bildungen können folgendermassen erklärt werden:

1. Wohnbauten und Frassgänge benthonischer Organismen: Die meisten rezenten Seichtwassersedimente sind durch Würmer, Crustaceen, Mollusken etc., welche deren primäre Stratifikation zerstören, stark umgearbeitet. Die Hartbestandteile der grabenden Organismen sind meist nicht mehr erhalten, so dass nur noch die Spuren ihrer Tätigkeit zurückbleiben.

Von rezenten Crustaceen ist bekannt, dass sie oft Wohnröhren anlegen. So wissen wir von *Mictris* («army crab»), einer Krabbenart, die die australischen Küsten besiedelt, dass sie spiralige Tuben baut. Der Amphipode *Corophium* (Schlickkrebs) baut längliche, zum Teil U-förmige Gänge, die manchmal leicht verzweigt sind. Dieser Gangtypus wird von ABEL, 1953, p. 463, *Corophites* genannt.

Figurierte Reste von grabenden Organismen, in Form von mehreren Krabbenexemplaren sind von Taschner (vgl. Verh. Natf. Ges. Basel, Band L, 1938–39, p. 246) an der Strasse Zwingen-Blauen (vgl. Landeskarte der Schweiz, 1:25000, Blatt 1067, Arlesheim) gefunden worden. Herr Prof. VONDERSCHMITT teilte uns mit, dass die gleiche Crustaceenfauna auch in den kreidigen Kalken nordwestlich von Röschenz auftrete, und zwar an der Strasse Cholholz-Forstweid und in einem kleinen Grübchen N P. 524 (Cholholz) Koord. 601 825 254 255, vgl. Landeskarte der Schweiz, 1:25000, Blatt 1066, Rodersdorf.

2. Sedimentbindende Florengemeinschaften: Seichte Sedimentationsräume sind in den seltensten Fällen «kahl». Meist sind die Ablagerungen durch ausgedehnte Wiesen von *Posidonia, Thalassia* und andern «Seegräsern» bewachsen. In rezenten Riffgebieten sind auch Mangrovewälder sehr häufig. Alle diese Pflanzen haben die Fähigkeit, mit ihrem Wurzelwerk das Sediment zu binden. BEALES (1963) zeigt an Beispielen, dass viele Strukturen, die bis heute als Frassgänge bezeichnet wurden, in Wirklichkeit von Wurzeln und Rhizomen herrühren, die im Laufe der Zeit verwesten. Das übrigbleibende Lumen wurde entweder durch Sediment aufgefüllt, oder blieb hohl, wenn die Ablagerungen schon etwas verfestigt waren.

Genetische Interpretation

Zur Zeit der Sedimentation der kreidigen Kalke waren einzelne Teile des Riffkomplexes, wie unser Cycadaceenblatt vermuten lässt, über Wasser gehoben. Das Gestein wurde auf einer sehr seichten Plattform abgelagert und dürfte wohl aus Kalkschlämmen hervorgegangen sein, wie wir sie heute im Innern der Bahamas oder im Persischen Golf finden. Dieser Kalkschlamm kann ursprünglich mikrokristallin oder mikroklastisch gewesen sein. Wegen der starken Rekristallisation der kreidigen Kalke kann heute seine genaue Herkunft nicht mehr ermittelt werden. Immerhin können wir einige Vergleiche mit der Kalksedimentation in den erwähnten rezenten Riffgebieten ziehen. Der Kalkschlamm könnte durch folgende Prozesse entstanden sein:

a) Ausfällung von Aragonitnadeln durch Evaporation : Schelflagunen, wie sie möglicherweise in unserem Falle vorlagen, sind vor allem in der heissen Jahreszeit semistagnierend. Im Laufe der sich so ergebenden starken Evaporationsperiode, die charakterisiert ist durch sehr hohe Salinität, werden die meisten Aragonitnadeln ausgefällt. Ist die Salinität noch höher, wird Dolomit ausgeschieden.

CLOUD (1962, p. 85) zeigt mit Hilfe regelmässiger Messungen der Anomalien im Chemismus des Meerwassers und durch Vergleiche mit der Sedimentationsrate, wie Zunahme der Sedimentation und des pH-Wertes in solchen Evaporationsgebieten Hand in Hand gehen. Die anorganische Kalkausfällung scheint also bedeutend zu sein.

b) Whitings: CLOUD (1962, p. 19 ff.) macht erstmals auf ein interessantes Phänomen aufmerksam, das sowohl von den Bahamas, als auch aus dem Persischen Golf gemeldet wird (vgl. auch WELLS & ILLING, in VAN STRAATEN, 1964, p. 429). Es handelt sich um gewissermassen explosive Ausfällungen von kleinsten Aragonitnadeln, die möglicherweise im Zusammenhang mit massenhafter Vermehrung kleinster Organismen (WELLS & ILLING erwähnen massenhafte Vermehrung von Diatomeen) auftreten. Diese «Whitings» sind relativ häufig und werden als wichtige Karbonatlieferanten in seichten Schelflagunen angesehen.

c) Ausscheidung von Aragonitnadeln, verursacht durch Tätigkeit anaerober Bakterien: Die Aktivität anaerober Bakterien verursacht Schwankungen im CO_2 -Gehalt des Wassers. Nach CLOUD (1962, p. 99) dürfen maximal 15% des Aragonits in den Kalkschlammbänken der Bahamas auf bakterielles Wirken zurückzuführen sein.

d) Aragonitnadeln, die von Algen ausgeschieden werden: LOEWENSTAM (1955, p. 270) beschreibt wie Aragonitnadeln, die identisch sind mit denjenigen, die in den Sedimenten vorgefunden werden, innerhalb der Gewebe verschiedener Algen ausgeschieden werden. Bei den Algen handelt es sich vor allem um Codiaceen (vgl. ILLING, 1954, p. 20). NEWELL & RIGBY (1957, p. 61) sind der Ansicht, dass diese Algen einen relativ kleinen Anteil an der Sedimentbildung haben. Immerhin mögen sie an Orten, wo ausgedehnte Algenrasen wachsen, eine grössere Rolle spielen.

Wir erwähnen diesen Prozess, weil Dünnschliffe aus den kreidigen Kalken immer wieder Codiaceenblättchen aufweisen (*Cayeuxia*). Es besteht also die Möglichkeit, dass Grünalgen zur Sedimentation der kreidigen Kalke beigetragen haben.

e) Mikroklastischer Kalkpelit: Der Anteil an mikroklastischem Material in den kreidigen Kalken ist wahrscheinlich grösser als derjenige an mikrokristallinem: Der Pelit wurde in der Umgebung von kleineren Biohermen abgelagert, die der Erosion ausgesetzt waren. Vor allem Bohrorganismen und andere Lebewesen, die das Riff als Behausung wählten, trugen zu dessen Zerstörung bei. Durch ihre Tätigkeit schufen sie mikroklastischen Pelit der durch Strömungen in die Lagune hinausgespült wurde. Brandung und andere mechanische Einflüsse schufen ebenfalls mikroklastischen Kalkpelit. Ferner sei noch darauf hingewiesen, dass auch die im Kalkschlamm eingebetteten Fossilien stark korrodiert sind (vgl. Fig. 22). Das aus ihren Hartbestandteilen abgebaute Karbonat ist wahrscheinlich auch als mikroklastischer Kalkpelit sedimentiert worden.

C. EIN VERGLEICH DER BIOHERME VON ST. URSANNE MTT SOLCHEN ANDERER FORMATIONEN

1. Die frasnischen Bioherme der Ardennen

LECOMPTE (1959–1960) gibt einen Überblick über die paläozoischen Riffbildungen in den Ardennen. In dieser Arbeit beschäftigt er sich besonders mit ökologischen Fragen. Für unsere Belange ergeben sich hier einige interessante Vergleiche.

Im oberen Devon Belgiens waren epirogenetische Bewegungen häufig. Diese beeinflussten die Struktur und Ausbildung der Bioherme. Wir können meist zwei Rifftypen unterscheiden:

a) Biohermes construits sous la zone turbulente: Die Bioherme beginnen im allgemeinen ausserhalb der Turbulenzzone, in tiefern, ruhigeren Gewässern zu wachsen. Riff bildner sind Korallen, Tabulaten, Spongien, Crinoiden. Stromatoporen treten selten, und dann nur als lamellierte, kleine Formen auf. Massive Köpfe fehlen vollständig.

Solange sich diese Bioherme ausserhalb der Turbulenzzone befanden, bildeten sie keine Schuttkegel. Die riffbildenden Organismen sind allgemein in Lebensstellung. Wurde das Riffwachstum grösser als der Betrag der Subsidenz, so erreichten die Bioherme die Meeresoberfläche und gelangten in den Bereich der Brandung.

b) Biohermes construits dans la zone turbulente: Sie sind vom umgebenden Sediment durch Schuttmassen getrennt. Gebildet werden sie hauptsächlich durch massive Stromatoporenköpfe. Diese resistenten, der starken Brandung angepassten Hydrozoenkolonien, die zum Teil einen Durchmesser von mehr als 2 m haben, sind oft umgelagert, also nicht mehr in Lebensstellung.

Zwischen der zone sous-turbulente und der zone turbulente liegt eine Übergangszone, die zone subturbulente. Sie ist gekennzeichnet durch lamellenartige Stromatoporen und ästige Korallen. Detritisches Material beginnt sich stellenweise anzuhäufen, ist aber noch nicht in dem Masse vorhanden wie in den Schuttkegeln der zone turbulente.

Versuchen wir nun eine Gegenüberstellung der Riffe von St. Ursanne und der Bioherme der Ardennen, so ergibt sich ungefähr folgendes Bild:

zone turbulente

St. Ursanne

Ardennen

Solenoporenknollen im groben, eckigen Riffschutt; Korallen oft umgelagert; Riffschutt aus groben, eckigen Korallenblöcken

Stromatoporen oft umgelagert Schuttkegel

Massive Stromatoporenköpfe

Ästige Korallen

Kreidiger Riffschutt

Ästige Korallen Lamellierte Stromatoporen Kleinere Lagen von Detritus

zone sous-turbulente

zone subturbulente

ev. oberste Partien der Zone mit schwartenartigen und feinästigen Korallen

Korallen

Kein Riffschutt, Raum zwischen den Korallen mit feinem Pelit gefüllt.

2. Rezente Riffbildungen

Wollen wir unsere Bioherme mit rezenten Riff bildungen vergleichen, so müssen wir uns im klaren sein, dass letztere meist nur in ihrem oberflächlichen Bau studiert werden können. Nur an wenigen Orten sind Bohrungen abgeteuft worden, die Aufschluss über die Entwicklung der Riffe im Laufe der Jahrtausende geben können.

Interessant an den heutigen Riffen ist die überall beobachtbare Zonierung der Korallen. Dies hat uns veranlasst die Bioherme im Steinbruch von St. Ursanne von diesem Gesichtspunkt aus zu untersuchen.

Die Korallenzonen in rezenten Riffen (vgl. Wells, 1954; KORNICKER & BOYD, 1962) sind abhängig von den äusseren Einflüssen. Brandung erfordert grössere Resistenz der Korallen, also massivere Bauart. In der Brandungszone sind aus diesem Grund vor allem gedrungene, massive Formen zusammen mit Lithothammnien vorhanden. Sie bilden einen sog. «rigid frame» (vgl. KORNICKER & BOYD, 1962).

Auf der Leeseite eines Riffkomplexes finden wir dann mehr ästige und zarte Korallen (non-rigid frame).

Die Bioherme von St. Ursanne zeigen verschiedene solcher Zonen. Auffallend ist, wie die massiven Korallenköpfe und die Solenoporen, welche den Lithothammnien homolog sind, sich dem auf Fig. 14 dargestellten Riff südlich vorlagern, während die ästigen *Calamophyllia*- und *Latomeandra*-Kolonien erst weiter «hinten» wachsen. Es scheint somit, dass die Zone mit massiven Korallenköpfen und der durch Solenoporen verfestigte Riffschutt die Luvseite des Riffs darstellen.

Ausdehnungs- und lagemässig sind die kleinen Bioherme mit rezenten Rifftürmen oder -knollen (patch reefs, faros) vergleichbar. Diese sitzen normalerweise in den flachen Schelflagunen, hinter vorgelagerten Riffbarrieren. Unsere Fig. 2 und 3 (p. 809-810) zeigen, dass in dieser Beziehung grosse Analogien zu heutigen Riffgebieten vorhanden sind. Wir verweisen hier vor allem auf Fig. 2 von KORNICKER & BOYD (1962, p. 643), aus welcher hervorgeht, dass die Rifftürme im Alacran-Riff ihrer Ausdehnung und Lage nach mit den Biohermen im Steinbruch von St. Ursanne zu vergleichen sind.

D. DIE ENTWICKLUNG DER BIOHERME IM STEINBRUCH VON ST. URSANNE

Die ersten Korallen, die zu den Biohermen gehören, treten in den obersten Partien des dichten, Detritus führenden Oolithbandes auf. Es sind kleinere, oft umgelagerte Köpfe und Schwarten, die sich zusammen mit Austern in umgekehrter Lage, und nestartigen Anhäufungen von Serpelröhren finden. Die Anlagerung der Korallen und dickschaligen Austern, etc., deutet auf seichte, relativ bewegte Gewässer hin.

Diese Fauna bildet das Substratum, auf welchem die Bioherme fussen. Über ihr folgen feinverzweigte bis büschelige Korallen (*z. B. Goniocora*). Ihre zerbrechlichen Skelette wären wohl von der gleichen Brandung, die die Korallenköpfe an der Basis umlagerte, zerstört worden. Wir nehmen aus diesem Grunde an, der Untergrund habe sich zur Zeit des Wachstums dieser Scleractinien leicht gesenkt, oder der Meeresspiegel sei infolge eustatischer Schwankungen gestiegen.

Solche Bewegungen ermöglichten die Konstruktion des eigentlichen Riffs. Sie schufen den Raum, den die Korallen benötigten, um in die Höhe wachsen zu können. Auf dem Korallenflechtwerk an der Basis finden wir jetzt die grobästigen und büscheligen Korallen, die die Bioherme bauen (gewisse *Thamnasteria*-Arten, *Calamophyllia*, *Latomeandra* etc.). Das Aufwärtswachstum dauerte an, bis das Riff die Brandungszone erreicht hatte.

Die Zone mit den massiven Korallenköpfen, die wir an der SSW-Seite des auf Fig. 14 dargestellten Bioherms finden, betrachten wir als Korallenzone, welche an der Luvseite des Riffs wuchs. Sie dehnte sich der Brandung entgegen, lateral aus.

Die kleinen Solenoporenknollen im eckigen Riffschutt, die wir riffökologisch am gleichen Ort finden wie die grossen massiven Korallenköpfe, können mit den heutigen Corallinaceen verglichen werden (vgl. JOHNSON, 1961, p. 72). Letztere gedeihen in Riffkomplexen normalerweise an deren Luvseite. Sie bilden dort sog. Trottoirs, d. h. sehr resistente Algenkalk-Strukturen und sind fähig, der stärksten Brandung zu widerstehen. Für ihr Wachstum sind $CaCO_3$ -reiche, ungetrübte Gewässer notwendig. Zur Zeit des seitlichen Vorrückens des Riffs müssen die eustatischen Bewegungen für kurze Zeit aufgehört haben. Solche Ruheperioden waren vermutlich sehr häufig. Dadurch, dass das Riff während dieser Zeiten in die Brandungszone wuchs, erfolgte temporär vermehrte Schüttung von Detritus. Als Hinweis dafür ist auf folgendes zu verweisen:

- Der kreidige Riffschutt an der Basis der Bioherme stammt mehrheitlich von büscheligen Korallen. Er dürfte in dem Moment entstanden sein, als diese in die Brandungszone hineinwuchsen.
- Der lithostratigraphisch höher liegende grobe, eckige Riffschutt dürfte von Riffpartien stammen, die längere Zeit der direkten Brandung ausgesetzt waren.
- Die Schuttlagen in den oberen kreidigen Kalken, die bis zu 50 m vom Riff entfernt abgelagert wurden, könnten durch Springfluten und Stürme verfrachtet worden sein. Durch regelmässige Wellenbewegung wäre das Material später gerollt worden.

Das Dach der Bioherme ist oft ziemlich scharf abgeschnitten. Wir schliessen die Möglichkeit nicht aus, dass die Bioherme während einer mehr oder weniger langen Zeitspanne über Wasser gehoben waren und erodiert wurden.

E. DIE BIOHERME BEI P. 883,6, ROCHE AU VILAIN, SÜDLICH LA CAQUERELLE

Ein anderer gut aufgeschlossener Biohermkomplex liegt ca. 800 m südlich La Caquerelle, bei P. 883,6 (vgl. Fig. 2). Hier bildet eines der schönsten Bioherme der Gegend die als Aussichtspunkt bekannte Roche au Vilain, von wo wir einen prächtigen Blick ins Doubs-Tal, auf die Clos du Doubs-Kette und auf die Mont-Terri-Antiklinale geniessen. Die Roche au Vilain ist das südlichste aus einer Gruppe von drei Biohermen, die längs der markanten Geländekante anstehen, welche den Hang gegen Combe Chavat nach Osten begrenzt (vgl. Fig. 23). Das Rauracien liegt hier waagrecht; tektonisch gehört es zum überschobenen Dach der Caquerelle-Antiklinale.

Die Bioherme ragen aus der Gegend heraus, da der umgebende Sedimentmantel zum Teil wegerodiert ist. Der Felsen, der die Roche au Vilain bildet, ist heute noch 18 m hoch. Die oberste Partie des Bioherms ist abgetragen. Seine ursprüngliche Höhe dürfte 25–30 m betragen haben. Es wird aufgebaut von diversen Korallenkolonien und Solenoporen, die, wie in St. Ursanne, auf den Oolithen fussen und dann vertikal nach oben wachsen. Grundsätzlich stimmt die Ausbildung der Bioherme von La Caquerelle mit derjenigen der Riffe von St. Ursanne überein.

Im ersten Weltkrieg wurden im Gebiet von Roche au Vilain – Haut de la Montagne grosse Schützengrabensysteme ausgehoben. Diese heute leider ziemlich eingestürzten und überwucherten Aufschlüsse geben trotzdem noch ein gutes Bild der Sedimentation um die Bioherme herum. Fig. 23 zeigt den Verlauf der Gräben, die Stellung der Bioherme und die Ausdehnung der ihnen zugehörigen Schuttkegel. Die Fossilfundstellen, die in den letzten 40 Jahren regelmässig von F. Woltersdorf ausgebeutet wurden, sind numeriert. Die Nummern entsprechen den Angaben auf den Fossillisten von F. Woltersdorf (vgl. Anhang I). Die Fundstellen 1, 3 und 4 liegen im Riffschutt. Nr. 1 liegt in gerolltem kreidigem Riffschutt. Dieser hat die gleiche Ausbildung wie der kreidige Schutt im Steinbruch von St. Ursanne. Eine Schürfung, die zwischen der Roche au Vilain und dem nördlich davon liegenden Bioherm ausgeführt wurde zeigte deutlich, dass auch hier der gerollte kreidige Riffschutt die basalen Partien des Riffs bedeckt.

Fundstelle 3 befindet sich in einem Loch, das in groben, eckigen Riffschutt getrieben wurde. Hier fand F. WOLTERSDORF ca. 300 Seeigelkörper (!). Bei Nr. 4 ist

Fig. 23. Die geologischen Verhältnisse bei P. 883,8, Roche au Vilain, südlich La Caquerelle und die Fossilfundstellen von F. WOLTERSDORF.

eine grosse Kolonie von *Latomeandra amedei* ETALLON zu beobachten. Nr. 2, 5, 6, 7, 8, 9 liegen in den kreidigen Kalken. Hier wurde die reiche Lamellibranchier- und Gastropodenfauna zusammengetragen.

F. DIE BIOHERME VON LES ŒUCHES, ÖSTLICH VON RAVINES (Koord. 579500/244600)

Der Malm-Südschenkel der Clos-du-Doubs-Antiklinale ist in der Gegend von Ravines nur noch als kleines Relikt von Rauracien bei Les Œuches vorhanden. Die Serie liegt horizontal. Die kreidigen Kalke und die Schuttkegel der Bioherme

Fig. 24. Bioherm in den kreidigen Kalken von St. Ursanne. Das umgebende Sediment ist wegerodiert. Nur noch das gewachsene Riff ist erhalten. Les Œuches, E Ravines (Koord. 579 500/244 600).

sind zum grossen Teil wegerodiert. Dank ihrer klotzigen Struktur haben mehrere Bioherme der Verwitterung widerstehen können und sind noch erhalten. Diese Riffe ragen dann pfeilerartig aus der Umgebung heraus (vgl. Fig. 24). Beim Anschlagen kann man gleich die koralligene Natur der einzelnen «Pfropfen» erkennen.

G. WEITERE BIOHERME IM NORDWESTLICHEN FAZIESBEREICH

- Der Schlossfelsen nördlich von St. Ursanne. Er gehört zum gleichen Komplex wie die Bioherme im Steinbruch.
- Die markante Fluh bei P. 889,3, nördlich Côte du Frêne (Koord. 581 500/248 100).
 Sie ist tektonisch stark gestört.
- Der Felsen SE Tariche (Koord. 577500/242500).

Die Vorbourgkalke⁴)

M.A.ZIEGLER, 1962

Synonyma:	Calcaires pauvres Rollier, 1894
	Plattige Kalke Laubscher, 1948
	Plattenkalke P.A.ZIEGLER, 1956
Typlokalität:	Chapelle de Vorbourg (Koord. 593850/247625).

Fig. 25. Vorbourgkalke; Mittlere Partie mit eckig zerfallenden Bänken. Unten Omissionsfläche, darüber Mergelfuge. Côte du Frêne.

Die Vorbourgkalke bilden den oberen Abschluss der kalkigen Rauracien-Serie und leiten über zu den mergeligen Naticaschichten des Sequanien. Die lithologische Grenze zu den hangenden Naticamergeln wird dort gezogen, wo die erste grosse Mergellage auftritt. Wir sind uns aber im klaren, dass diese Grenzziehung rein praktischer Natur ist, da die Mergelhorizonte von Aufschluss zu Aufschluss nicht verfolgt

⁴) Die Vorbourgkalke von M. A. ZIEGLER entsprechen nicht den Couches du Vorbourg, die TOBLER (1905) erwähnt. Letztere sind ins untere Kimmeridgien zu stellen.

werden können, ein Aussetzen und Wiedereinsetzen in anderer stratigraphischer Lage also möglich ist.

Im Profil St. Ursanne sind nur noch 7 m der Vorbourgkalke gut aufgeschlossen. Ihr oberer Teil ist verschüttet. Bessere Aufschlussverhältnisse finden sich bei Côte du Frêne (10,80 m), bei Plan du Noyer (17 m) und bei Sous les Errauts (11,50 m – vgl. Tafel I, Profile 1, 4 und 5).

Die Vorbourgkalke sind gut gebankt, dicht und splittern beim Anschlagen. Sie verwittern eckig-bröckelig (vgl. Fig. 25). Die Bänke, die 50 cm– 3m messen werden oft durch eine Mergelfuge begrenzt.

Bei Sous les Errauts (vgl. Tafel I, Profil 5) konnte beobachtet werden, wie die Unterfläche der Kalkbänke sich oft über 50 cm weit ausbuchtet und bis 30 cm tief in das liegende Mergelband hineingreift (vgl. Fig. 26). Die feingeschichteten, z.T. etwas synsedimentär verrutschten Mergel werden durch diese Auswölbung diskordant angeschnitten.

Fig. 26. Vorbourgkalke; Ausbuchtung an der Unterseite einer Kalkbank. Die liegenden Mergel werden durch die Struktur diskordant angeschnitten. Die Vertiefung ist mit aufgearbeitetem Material gefüllt. Möglicherweise handelt es sich um die Füllung eines Priels. Sous les Errauts.

Im Dünnschliff lässt sich erkennen, dass diese Ausbuchtungen ausschliesslich aus zusammengeschwemmtem Material bestehen. Cailloux noirs (vgl. p. 851), Ostracodenschalen, *Chara*-Oogonien und ganze *Chara*-Ästchen sind darin häufig (vgl. Fig. 27/28).

Nach oben schliessen die Kalkbänke meist mit einer Omissionsfläche ab. Diese ist gewöhnlich limonitisiert. Bohrlöcher konnten in unserem Gebiet keine festge-

Fig. 27. Vorbourgkalke; Aufgearbeitete Komponente (caillou noir), von Cyanophyceen umkrustet. Auch im Innern sind Algenthalli zu erkennen, die längs kleiner Klüfte eindrangen. Côte du Frêne.

stellt werden, ebensowenig ausgedehnte intraformationelle Breccienlagen auf den Oberflächen der Kalkbänke⁵). Dagegen sind andere Oberflächenstrukturen häufig:

Manchmal sind die Schichtflächen «höckerig». So konnte bei Côte du Frêne beobachtet werden, wie auf der Oberfläche einer Bank «Höcker» aus einer kalkpelitischen Masse mit einzelnen aufgearbeiteten Komponenten sitzen. Diese «Höcker», die 20 cm lang und 5 cm hoch werden können, sind durch einen feinen pelitischen Zement auf der Bankoberfläche festgekittet. Schichtoberfläche und «Höcker» sind von einer Limonitkruste überzogen.

Die Anlagerung dieser Körper erinnert an die Anlagerung gewisser «beach rocks» im Frasnien der Ardennen (vgl. LECOMPTE 1960), nur dass unser angelagertes Material nicht wie dort ausschliesslich aus Korallenfragmenten besteht, sondern aus der oben beschriebenen kalkpelitischen Masse.

Bei Côte du Frêne (Tafel I, Profil 1) können wir auf zwei Schichtflächen auch Muster von polygonal angelegten Furchen beobachten. Die Vertiefungen sind nur

⁵) Weiter im Osten, in der Klus von Court (vgl. M. A. ZIEGLER 1962, Profiltafel II/22) und im Tiergarten, W Vermes (vgl. P. A. ZIEGLER, 1956 und M. A. ZIEGLER, 1962, Profiltafel I/3) sind die Schichtflächen in den Vorbourgkalken deutlich angebohrt und teilweise von intraformationellen Breccien überzogen.

Fig. 28. Vorbourgkalke; Chara-Oogonie in kalkpelitischer Grundmasse; Sous les Errauts.

oberflächlich. Ihre Ränder sind gerundet. Möglicherweise handelt es sich um Trokkenrisse, die vor der Bildung der Omissionsfläche entstanden, aber fast vollständig ausgelaugt wurden.

Das Schliffbild zeigt, dass die einzelnen Kalkbänke in den Vorbourgkalken sich lithologisch kaum unterscheiden. Eingebettet in eine dichte kalkpelitische Grundmasse finden wir folgendes Skelettmaterial:

Charophyten:	Chara-Oogonien und Astchen
Foraminiferen:	Ammobaculites sp. sp.
	Lenticulina sp. sp.
	Nautiloculina sp. sp.
	Pseudocyclammina sp. sp. sehr hfg.
	Quinqueloculina sp. sp. sehr hfg.
1997 - 19	Spirillina sp. sp.
	Textularia sp. sp.
	Verneuilina sp. sp.
Ostracoden:	versch. limnische Formen (vgl. OERTLI, 1959;
	Oertli et Ziegler, 1958).

Mollusken und Echinodermen: einzelne Trümmer

Sehr häufig ist terrigener Detritus in Form von 10–30 μ grossen Quarzkörnern. Diese detritischen Körner, die die Hauptkomponenten stellen, sind manchmal in unregelmässigen Feinschichten angeordnet, die meist von Gängen durchbrochen sind (vgl. Fig. 29).

1 mm

Fig. 29. Vorbourgkalke: Feinschichtung mit Quarzkörnern, von Gängen durchbrochen, die mit terrigenem Detritus von grösserer Korngrösse aufgefüllt sind. Côte du Frêne.

Nicht selten enthält das Sediment in diesen Gängen Quarzkörner, die sich in der Grösse deutlich von denjenigen im umgebenden Gestein unterscheiden. Der darin eingelagerte Pelit ist oft anders gefärbt. Der Durchmesser der Gänge kann sehr gross werden (bis zu 1,5 cm); normalerweise liegt er aber bei 0,1–0,3 cm.

Eine zweite Art von Gängen, calcitgefüllte Hohlräume, kann ebenfalls häufig beobachtet werden. Sie sind im Querschnitt rund, in der Längsachse schlauchartig. Ihre sehr variablen Durchmesser betragen im Durchschnitt 0,6–1 mm. Die Gänge können Pelitkörner enthalten, die meist geopetal eingelagert sind.

Es wird wohl sehr schwer sein zu beweisen, auf welche Art diese Gänge entstanden sind. Wir haben die Möglichkeit ihrer Bildung bereits auf p. 839-840 diskutiert, wobei wir sie vor allem mit Frassgängen benthonischer Organismen und Wurzelgeflechten sedimentbindender Florengemeinschaften verglichen.

Viele intraklastische Komponenten finden sich in den unteren Partien einzelner Kalkbänke. Es sind aufgearbeitete gelbbraune bis schwarze Körperchen, sog. «cailloux noirs», die im Extremfall bis 2 cm gross werden können. Meist sind sie von Cyanophyceen umgeben. (vgl. Fig. 27). Die Algen, die diese Bildungen umkrusten, sind nicht die gleichen wie diejenigen, die die Mumien bilden. Die Schläuche sind bedeutend grösser; ihre Durchmesser betragen bis 0.25 mm. Die Röhrchen sind un-

VOLKMAR PÜMPIN

gleich dick, gewunden und verzweigen sich unregelmässig. Ihr Inneres ist mit Calcit ausgefüllt.

In den aufgearbeiteten Komponenten sind kleine Schwundrisse vorhanden. Die Algen dringen dort ein und durchkrusten so die Grundmasse. Auf diese Art entstehen schwammige Algenklümpchen, die in diesen Horizonten überall beobachtet werden können.

Mit den Intraklasten zusammen finden sich immer *Chara*-Oogonien und Ästchen, sowie limnische Ostracoden. Dies zeigt, dass das Milieu zeitweise und lokal limnisch-brackisch war.

Ähnliche Sedimente finden wir im Kimmeridgien und Portlandien des zentralen Schweizer Jura, wo «cailloux noirs» ebenfalls zusammen mit limnischen Ostracoden und *Chara*-Oogonien auftreten (mündliche Mitteilung von C. HAEFELI, Bern). Aus reinen Süsswasser-Sedimenten beschreibt STUMM (1964) «cailloux-noirs»-ähnliche Bildungen aus dem Miocaen des Nordwestschweizer Tafeljura. Er zeigt wie aufgearbeitete Partien von Effingerschichten (Malm argovischer Fazies) und Süsswasserkalken von Algen stark umkrustet und schwarz imprägniert sind.

Für die Entstehung der Vorbourgkalke in sehr seichtem Milieu sprechen folgende Punkte:

Während gewisser Sedimentationspausen, sehr wahrscheinlich hervorgerufen durch Emersion, wurden die verschiedenen Oberflächenstrukturen geschaffen. Die «höckerigen» Oberflächen sind vermutlich im nicht überspülten Bereiche entstanden; aufgearbeitete Komponenten wurden hier festgekittet (beach rock). Die intraformationellen Breccien könnten entstanden sein, als das leicht verfestigte Gestein durch Gezeitenströme wieder aufgearbeitet wurde. Die polygonalen Muster stellen möglicherweise Trockenrisse dar. Die Ausbuchtungen der Schichtunterflächen bei Sous les Errauts, die viel aufgearbeitetes Material enthalten, werden von uns als Auffüllungen von Prielen, Rinnen von Gezeitenströmen eines bei Ebbe trocken gelegten Gebietes, aufgefasst.

Die limnischen Bildungen sind nicht an bestimmte Horizonte gebunden, sondern treten von Aufschluss zu Aufschluss sporadisch in ganz verschiedenen Niveaus auf. Aus diesem Grunde betrachten wir die Süsswasserostracoden und *Chara*-Oogonien und -Ästchen nicht als von einem nahen Festland stammend, sondern vielmehr als Floren und Faunen, die in lokalen, mehr oder weniger grossen Tümpeln gediehen. Diese Tümpel könnten z.B. in Regenperioden entstanden sein.

Auf die beschriebenen Emersionsphasen folgten dann wieder neue marine Überflutungen, welche terrigenes Material in Form von tonigem Detritus und die beschriebenen marinen Foraminiferen brachten. Während einer neuen Hebung des Untergrundes oder Senkung des Meeresspiegels wurde die Tonzufuhr unterbrochen; die Kalkausfällung in dem nun wieder seichten Gebiet nahm zu.

Allgemein darf gesagt werden, dass das Ablagerungsmilieu der Vorbourgkalke am besten mit rezenten Watten zu vergleichen ist. In den sehr seichten Gebieten, wie wir sie im Innern der Schelf-Lagunen von Andros Island oder im Persischen Golf vorfinden, genügen sehr kleine Meeresspiegelschwankungen, um die gleichen Phänomene hervorzurufen, wie wir sie in den Vorbourgkalken finden.

RIFFSEDIMENTOLOGIE IM RAURACIEN VON ST. URSANNE

DIE FEINEN KALKARENITE IN DEN PROFILEN MONTMELON SOUS LES ERRAUTS UND PLAN DU NOYER

(vgl. Tafel I, Profile 3, 4, 5)

Zwischen den Oolithen und Mumienkalken im Nordwesten, und dem Riffgürtel im Südosten, liegt ein 2–4 km breiter Gürtel von Gesteinen, in welchem feine Kalkarenite vorherrschen. Diese Gesteinsserie misst bei Montmelon 20 m, bei Sous les Errauts 30 m (Aufschluss teilweise verschüttet) und bei Plan du Noyer 35 m. Sie wird ebenfalls, wie die Mumienkalke und Oolithe im Nordwesten, von den kreidigen Kalken überlagert. Die Kalksande nehmen gegen Südosten an Mächtigkeit zu und verfingern sich in ihren obersten Partien mit den kreidigen Kalken.

Bei den feinen Kalkareniten handelt es sich um dichte, beige, gut gebankte Kalke. Die einzelnen Bänke messen 50-300 cm. In den unteren Lagen, direkt über den Liesbergschichten, sind Korallenschwarten und Crinoiden nicht selten. Die Trümmer der letzteren geben dem Gestein einen spätigen Aspekt. Eine detailliertere lithologische Beschreibung folgt unten.

In den feinen Kalkareniten treten Verkieselungen in zwei stratigraphisch verschiedenen Lagen auf:

a) In Form von kleinen Kieselknollen von 5-10 cm Durchmesser, die an einen Horizont mit wechselnder Mächtigkeit (5-50 cm) gebunden sind, der über grössere Distanz verfolgbar ist und gute Korrelationsmöglichkeiten bietet. Die Knollen zerfallen oft und hinterlassen ein huppererdeartiges Grus.

b) Als 15-20 cm messende Hornsteinknollen unmittelbar unterhalb der kreidigen Kalke. Sie sind aber nicht an einen bestimmten Horizont gebunden, sondern unregelmässig im Gestein verteilt.

Alle diese Knollen, sofern sie nicht verwittert sind, bestehen aus feinem, kryptokristallinem Calcedon. Es handelt sich um typische Kieselkonkretionen, die nach der Sedimentation des umgebenden Gesteins entstanden, denn die Gesteinskomponenten, besonders das Skelettmaterial, können meist noch schattenhaft innerhalb der Gebilde festgestellt werden, und zwar in der gleichen Verteilung wie im umliegenden Sediment. Aus welchem Grunde die Knollen im ersten Falle in einem bestimmten Horizont auftreten, ist noch nicht geklärt.

In einem Handstück aus dem Dach der Clos-du-Doubs-Antiklinale, nordwestlich von Montmelon dessus, konnten wir Risse beobachten, die sehr wahrscheinlich während, oder kurz nach der Sedimentation der feinen Kalkarenite entstanden (vgl. Fig. 30). Die Ränder der Einschnitte, die bis 5 cm tief sein können, sind sehr scharf. Harte Fossilfragmente wie Serpelröhren wurden glatt entzwei geschnitten. Die Vertiefungen sind mit einem feinen Kalkpelit aufgefüllt, in welchem eckige Komponenten des umgebenden Materials festgestellt wurden, sowie Milioliden (*Quinqueloculina*) die sonst in den umgebenden Kalkareniten nur selten auftreten.

Dieser Horizont, aus welchem das Handstück stammt, konnte wegen der Ungunst der Aufschlüsse nicht weiter verfolgt werden.

Das Schliffbild zeigt, dass die basalen Partien der feinen Kalkarenite fast ausschliesslich aus Skelettelementen bestehen. Es sind Spiculae von Spongien, und Foraminiferen (Ammodiscus, Ammobaculites, Lenticulina, Haplophragmium, Tex-

1 1 mm

Fig. 30. Feine Kalkarenite; Spalten, die mit Kalkpelit aufgefüllt sind. Dach der Clos du Doubs-Antiklinale W Montmelon dessus.

tularia, Verneuilina), sowie Trümmer von Korallen, Lamellibranchiern, Gastropoden, Brachiopoden, Serpuliden, Echinodermen (Ophiuren-Skeletteile, Crinoiden-Stielglieder, Seeigelstacheln). Die Fragmente sind oft leicht verkieselt und meist von Cyanophyceen umkrustet (vgl. Fig. 31). Nicht selten sind mehrere Komponenten durch Algenkrusten verbunden und bilden grössere zusammengesetzte Körner.

Neben den relativ leicht umkrusteten Skelettelementen sind einzelne diffus im Gestein eingelagerte Mumien häufig. Sie sind vom gleichen Typus wie die Mumien in den Mumienkalken (vgl. p. 815 ff.). Seltener sind einzelne dunkle Körner von 0,2 mm Durchmesser. Diese weisen eine leicht schwammige Struktur auf, was uns vermuten lässt, es handle sich um Algenklümpchen.

In den höhern Lagen der feinen Kalkarenite, 5–6 m über den Liesbergschichten, sind die Hartbestandteile weniger von Algen umkrustet. Dafür treten jetzt Pelitkörner von 0,05–0,2 mm Durchmesser als Hauptkomponenten auf (vgl. Fig. 32). Es sind gerundete Körper, die aus einer dunklen pelitischen Masse bestehen. Ihre Form ist unterschiedlich. Regelmässig gebaute, länglich-ovale Körperchen, wie auch unregelmässig gelappte Gebilde sind vertreten. Deutlich sichtbar ist, wie die gute Rundung vor allem Körner grösser als 0,1 mm umfasst. Die kleinern Komponenten sind oft weniger gut gerundet.

Fig. 31. Feine Kalkarenite; Basale Partien mit schlecht sortierten, z.T. groben Fossiltrümmern, die mehrheitlich von Algen umkrustet sind. In der Mitte einzelne Mumie. Montmelon dessus.

1 mm

Fig. 32. Sehr feiner Kalkarenit (pellet limestone). In der Mitte schiefer Schnitt durch Ammobaculites coprolithiformis (SCHWAGER). Montmelon dessus,

Zusammengesetzte Körner sind hier häufig. Es sind Zusammenballungen von verschiedensten Komponenten, die diffus in eine dunkle pelitische Matrix eingelagert sind (vgl. Fig. 35).

Schalen von agglutinierenden Foraminiferen täuschen oft zusammengesetzte Körner vor. Ein Vergleich mit Dünnschliffen der Sammlung W. MOHLER ergab, dass in unserem Falle speziell *Ammobaculites coprolithiformis* (SCHWAGER) die Komponenten der feinen Kalkarenite zum Bau seiner Schalen verwendete (vgl. Fig. 33 und 34).

0,5 mm Fig. 33. Ammobaculites coprolithiformis (SCHWAGER) schiefer Schnitt; Schale aus dem umliegenden Material agglutiniert. Montmelon dessus.

Die feinen Kalkarenite sind durchgehend sehr fossilreich. Wir haben neben den bereits erwähnten Mikrofossilien folgende weitern Versteinerungen gesammelt:

Korallen:	Epismilia sp. sp.
	Stylina sp. sp.
	Thamnasteria sp. sp.
Gastropoden:	Natica sp. sp.
	Nerinea sp. sp.
Lamellibranchier:	Alectryonia sp. sp.
	Gervillia sp. sp.
	Ostrea sp. sp.
	Pecten sp. sp.
	Pinna sp. sp. sehr hfg.

Brachiopoden:	Terebratula bauhini ÉTALLON sehr hfg.
Anneliden:	Serpula sp. sp. hfg.
Echinodermen:	Cidaris sp. sp. hfg. (Stacheln)

Die Grundmasse, in welche die Körner eingebettet sind, ist sehr unterschiedlich. So ist sie z.B. im Knollenhorizont fast 100% calcitisch-kristallin, in der darunter liegenden Bank dagegen mehrheitlich (bis 100%) kalkpelitisch. Gesamthaft gesehen sind die feinen Kalkarenite im Profil Montmelon besser ausgewaschen als diejenigen in den Profilen Plan du Noyer und Sous les Errauts.

0,5 mm

Fig. 34. Anmobaculites coprolithiformis (SCHWAGER), schiefer Schnitt; Schale mit agglutiniertem grossem Echinodermenfragment rechts, Holothurienskeletteilen und Foraminiferen (Mitte oben). Montmelon dessus.

Die feinen Kalkarenite sind wahrscheinlich gleichzeitig mit den Mumienkalken und den Oolithen sedimentiert worden. Folgende Punkte erlauben diese Annahme:

 Über den Liesbergschichten folgt eine lithostratigraphische Zone, in welcher Cyanophyceen besonders aktiv waren. Dieser Horizont beschränkt sich nicht nur auf die Mumienkalke, sondern ist auch typisch für die basalen Partien der feinen Kalkarenite. Die Cyanophyceen wuchsen an beiden Orten gleichzeitig. Zur besseren Veranschaulichung der Verhältnisse haben wir auf Fig. 3 diese algenführenden Partien in den feinen Kalkareniten speziell abgetrennt.

- 2. In den algenführenden, feinen Kalkareniten sind einzelne eingestreute Mumien häufig; in den darüber folgenden Partien, wo keine blaugrünen Algen wuchsen, fehlen sie, dafür stellen sich Ooide ein.
- Die Mumien und Ooide, die wir in den feinen Kalkareniten finden, sind nie in Paketen angeordnet, die auf Umlagerung aus den Mumienkalken und Oolithen schliessen lassen würden.
- 4. Rezente Kalkarenite vom gleichen Typus treten meist zusammen mit Oolithen und Lagen von traubigen Klümpchen auf. Sie sind dann häufig das Produkt

Fig. 35. Feine Kalkarenite; Zusammengesetztes Korn (composite grain); Komponenten in dunkler pelitischer Matrix diffus verteilt. Montmelon dessus.

einer mechanischen Differentiation. So zeigen IMBRIE & PURDY (1962, p. 268), dass die Sedimente mit gröberen Komponenten (Oolithe, Trümmerlagen, Ablagerungen von traubigen Klümpchen: grapestones, etc.) auf den Bahamas am Rand der umspülten Bänke vorkommen. Gegen das Innere der Bänke hingegen, vor allem im Schatten von Andros Island, liegen ausgedehnte Flächen, die von feinen Kalkareniten (pellet limestones) bedeckt sind, welche zum Teil mit unseren feinen Kalkareniten verglichen werden können.

Der Fazieswechsel zu den Oolithen und Mumienkalken vollzieht sich im Dach der Clos du Doubs-Antiklinale, nordwestlich von Montmelon dessus (Koord. 580500/

858

245325)⁶) und bei P. 950, L'Ordon (Koord. 582125/245600). Der Wechsel findet auf einer Distanz von 150 m statt. An beiden Orten ist die Übergangszone tektonisch stark in Mitleidenschaft gezogen, so dass der Wechsel nicht genau beobachtet werden kann.

Bei Plan du Noyer verfingern sich die feinen Kalkarenite mit kreidigen Kalken:

Über einem stark koralligenen Horizont mit limonitisierter Oberfläche (bei 20 m; vgl. Tafel I, Profil 4) folgen sehr weiche, leicht zerfallende Kalke, die nach oben zu allmählich wieder etwas kompakter werden und in Kalkarenite übergehen. Sie schliessen dann wiederum mit einem koralligenen Horizont mit limonitisierter Oberfläche ab. Diese Sequenz wiederholt sich in diesem Profil viermal. Bei 35 m begrenzt dann eine kalkarenitische Lage mit Silexknollen endgültig die Verfingerungszone gegen die kreidigen Kalke.

Auf die Genese der Komponenten in solchen feinen Kalkareniten sind wir bei der allgemeinen Besprechung von Beschaffenheit und Aussehen der Komponenten (vgl. p. 807 ff.) bereits eingegangen. Werden diese Körner dann zusammengespült und entsprechend ihren Korngrössen durch mehr oder weniger starke Strömungen ausgesiebt und wieder abgelagert, so erhalten wir die ausgedehnten Feinsandablagerungen, wie sie von allen Riffgebieten gemeldet werden. Unsere feinen Kalkarenite dürften diesen Bildungen analog sein.

Bioherme und Sedimente des Riffgürtels

Im Südosten des Untersuchungsgebietes ist das Rauracien gekennzeichnet durch massige Korallenkalke. Ihre nordwestliche, zugleich «innere» Begrenzung folgt ungefähr der Linie: P. 825, westlich Peute Côte (Koord. 582175/245100) – Mont Russelin (Koord. 581500/244400) – Moébrai (Koord. 580400/243350) – Glacenal (Koord. 577625/241025). Die «äussere» Grenze im Südosten ist durch den Übergang zur tonig-kalkigen Argovien-Fazies bestimmt. Dieser Fazieswechsel kann in den Gorges du Pichoux und in den Gorges de Moutier gut beobachtet werden.

Charakteristisch für den Riffgürtel sind die vielen grossen Bioherme, die den Rauracien-Felswänden ihren klotzigen Aspekt geben. Sie bilden, als Gesamtes gesehen, einen weiträumigen Wall, der die tonig-kalkigen Serien im Südosten von den kalkig-kreidigen Sedimenten im Nordwesten trennt.

Gut aufgeschlossen sind die grossen Bioherme östlich von Moébrai (vgl. Fig. 36), südöstlich Glacenal und bei P. 956.9, südlich Saulcy. Das grosse Bioherm östlich von Moébrai geht direkt aus den Liesbergschichten hervor. Es ist rund 70 m mächtig. Aufgebaut wird es hauptsächlich durch schwartenartige Korallen (Isastreen, Stylinen, Thamnasterien, etc.) und Solenoporen. Sie sind sehr fest verkittet und können nur selten isoliert werden.

Das Schliff bild zeigt, dass die meisten Skelette biogen korrodiert und von einem Cyanophyceenfilm umgeben sind. Es sind wohl diese blaugrünen Algen, die das Riffgestein banden und verfestigten, so dass es stärkster Brandung Widerstand leisten konnte.

⁶) Das auf S. 853 beschriebene Handstück mit den pelitgefüllten Spalten stammt aus dieser Übergangszone.