Etude géochronologique de la minéralisation uranifère de la Mine du Chardon (Vendée-France)

Autor(en): Kosztolanyi, Charles / Coppens, René

Objekttyp: Article

Zeitschrift: Eclogae Geologicae Helvetiae

Band (Jahr): 63 (1970)

Heft 1: Geochronology of phanerozoic orogenic belts : papers presented at the "Colloquium on the Geochronology of Phanerozoic Orogenic Belts"

PDF erstellt am: 24.07.2024

Persistenter Link: https://doi.org/10.5169/seals-163829

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Etude géochronologique de la minéralisation uranifère de la Mine du Chardon (Vendée - France)

par Charles Kosztolanyi et René Coppens

Centre de Recherches Radiogéologiques, B.P. 452, 54-Nancy 01, France

RÉSUMÉ

Le gisement uranifère du Chardon se situe au bord N-W du batholite de Mortagne (département Loire-Atlantique) à 22 km au Sud-Est de Nantes. Le gisement est encaissé dans le granite et étroitement lié à la zone de bordure. La minéralisation se présente sous forme de pechblende et d'oxydes noirs déposés dans un certain nombre de fractures radiales autour du contact. L'étude géochronologique, par la méthode des plombs isotopiques, révèle que la mise en place de l'uranium a eu lieu à la phase Saalienne de l'orogenèse hercynienne, il y a environ 250 à 260 M.A. Un remaniement ultérieur s'est vraisemblablement produit, il y a 25–60 M.A. ce qui correspond à l'orogenèse alpine. La minéralisation a été surtout perturbée par cet évènement à proximité de certaines failles qui auraient rejoué à cette époque.

ABSTRACT

The uranium deposits of Chardon are situated on the north-western flank of Mortagne batholith (département Loire-Atlantique) about 22 km south east of Nantes. The deposits are enclosed in the granites and are narrowly situated at the contact zone. The mineralisation is in the form of pichtblende and its black oxides which are deposited in a number of radial fractures around the contact. Geochronological studies by the lead isotope method show that the uranium deposits were formed during the Saalian phase of the Hercynian Orogeny, about 250–260 million years ago. Some later modifications took place between 25 to 60 million years ago corresponding to the Alpine Orogenesis. In the proximity of certain faults which were reactivated again during this epoch, the mineralisation was very much disturbed by these events.

Situation du gisement

La mine d'uranium du Chardon se trouve à proximité de la ville de Clisson (département Loire-Atlantique) à 22 km au S. E. de Nantes (voir fig. 1).

Le gisement est situé sur la bordure Nord du massif granitique de Mortagne-sur-Sèvre, et jalonne le contact du granite dans le sens E-W, là où ce dernier butte contre le massif de gabbro du Pallet. Le batholite de Mortagne forme un losange long de 65 km en direction NW-SE et fait partie du massif primaire vendéen.

Pour 90% des réserves, l'extension du gisement est restreint: sa longueur en direction E-W ne dépasse guère 300 m et sa largeur en direction N-S atteint à peine 200 m. Il existe en outre une formation linéaire, dite de la Racine, qui s'en détache vers le Sud s'allongeant sur plus de 400 m (fig. 2). Le gisement est entièrement reconnu sur 6 niveaux équidistants: 40, 80, 120, 160, 200 et 240 m, mais la minéralisation persiste au moins jusqu'au niveau 320 où elle a été recoupée par sondage.

Malgré ses petites dimensions, le gisement est important à cause de la richesse de son minerai.

Fig. 1. Situation géographique de la mine du Chardon.

Contexte géologique

Le gisement est situé dans la zone de contact entre le granite et la roche métamorphique (G. TAYEB, 1962). Ce contact est doublé vers le Sud par deux bandes (bande médiane et bande Sud) de roches basiques appelées roches vertes (schistes chloriteux, gneiss, amphibolite, diorite) qui enserrent le granite à deux micas, fortement orienté E-W (granite laminé).

Le cadre tectonique est constitué par un éventail de fractions radiales dont l'orientation varie entre N-S et NO-SE. Un système de failles parallèles au contact recoupe ces fractures (voir fig. 2).

Minéralisation

La minéralisation se trouve surtout dans les fractures radiales, liées aux brèches siliceuses et quelquefois argileuses.

On peut distinguer trois secteurs minéralisés :

- a) Secteur Sud, situé au Sud de la faille 1 et de la bande Sud. Il est constitué de quelques fractures orientées N-S avec pendage vers l'Ouest.
- b) «La formation principale» constituée d'une brèche argileuse longeant la deuxième bande métamorphique.
- c) Secteur Nord qui se trouve au bord Sud de la bande médiane. Ici la minéralisation est liée aux fractures radiales qui pendent généralement vers l'Est, excepté la for-

mation la plus occidentale dont le pendage est vers l'Ouest (la figure 2 présente l'ensemble du gisement au niveau 80 de la mine).

La minéralisation du Secteur Sud et de la «Formation principale» est irrégulière et pauvre. Elle est limitée aux niveaux supérieurs (40 et 80 m et 100 m au maximum) de la mine, mais, comme elle est largement diffuse, une exploitation à ciel ouvert est possible. L'uranium, dans ces secteurs, se trouve surtout sous forme de pechblende altérée ou de produits noirs.

Fig. 2. Ensemble du gisement uranifère au niveau 80 de la mine.

Le secteur Nord fournit les minerais les plus riches. L'uranium se présente ici sous forme de filons de pechblende qui descendent au-delà du niveau le plus profond actuellement reconnu par travaux miniers, c'est-à-dire le niveau 240 m.

La pechblende est accompagnée de pyrite, de marcasite; on peut également trouver des traces de chalcopyrite et de galène.

Echantillonnage

L'étude géochronologique fut effectuée sur 37 échantillons prélevés du secteur Nord et de la «Formation principale». Tous les niveaux de la mine ont été échantillonnés.

La répartition des échantillons par niveaux est la suivante:

3 échantillons: CHD 13 – CHD 15 – CHD 18
3 échantillons: CHD 14 – CHD 16 – CHD 17
12 échantillons: CHD 3 - CHD 4 - CHD 5 - CHD 6 - CHD 7 - CHD 8 - CHD 12 -
CHD 21 – CHD 22 – CHD 24 – CHD 30 – CHD 36
9 échantillons: CHD 1 - CHD 9 - CHD 10 - CHD 19 - CHD 20 - CHD 25 -
CHD 26 – CHD 27 – CHD 31
7 échantillons: CHD 2 - CHD 11 - CHD 23 - CHD 28 - CHD 32 - CHD 33 -
CHD 37
3 échantillons: CHD 29 – CHD 34 – CHD 35

Les prélèvements ont été choisis de façon à avoir un ensemble d'échantillons représentatifs des principales formations, associés aux différentes directions tectoniques. Les facteurs géochimiques (nature de la roche encaissante, pH, zones réductrices ou oxydantes, etc...) ont été également pris en considération.

Le plan (figure 3) représente les lieux de prélèvements par niveaux de la mine.

Les tableaux 1 et 2 portent l'ensemble des résultats des mesures géochronologiques par la méthode de l'Uranium-Plomb des 37 échantillons provenant de la Mine du Chardon.

On peut remarquer que la plupart d'entre eux présentent des âges plus ou moins discordants, ce qui prouve que l'équilibre radioactif original entre l'uranium et ses descendants a subi des perturbations postérieurement à la minéralisation. Cependant, quelques prélèvements révèlent un équilibre intact.

La comparaison des trois âges isotopiques permet de classer les échantillons en plusieurs groupes:

1°) Ages 206/238 $>$ 207/235 $>$ 207/206	2°) Ages 206/238 \approx 207/235 \approx 207/206
3°) Ages $206/238 < 207/235 < 207/206$	4°) Ages $206/238 < 207/235 \ll 207/206$

La répartition des échantillons, selon ce groupement, est la suivante :

1°) CHD 2b - CHD 37b
2°) CHD 1 - CHD 2 - CHD 37
3°) CHD 4 - CHD 7 - CHD 10 - CHD 12 - CHD 26 - CHD 36
4°) Tous les autres échantillons font partie du groupe 4.

Au premier groupe, nous trouvons deux échantillons qui présentent une anomalie telle que les âges issus du rapport Pb/U sont plus élevés que l'âgé 207/206, ce qui signifie un léger gain de Pb 206. Il faut remarquer que ces deux échantillons proviennent de l'intérieur de la bande métamorphique médiane (fig. 4) et les analyses ont été effectuées sur des petites quantités de pechblende détachées des échantillons massifs. Le 37 b a été prélevé d'un filon, à proximité d'un filon de pyrite (voir fig. 5).

Fig. 4. CHD 2b. Grossissement 10×. Filon de pechblende dans la roche métamorphique.

Au deuxième groupe, nous retrouvons des échantillons provenant aussi de la même bande métamorphique. Les échantillons n'ont pas été sélectionnés spécialement, mais l'ensemble du prélèvement a été traité. Ces échantillons présentent des âges bien concordants.

La différence entre les résultats de CHD2 et CHD2b et de CHD37 et CHD37b attire l'attention sur l'importante différence pouvant exister au sein d'un même échantillon.

Fig. 5. CHD 37/2. Grossissement 10×. Filon de pechblende entouré de la pyrite.

Les membres du troisième groupe sont caractérisés par un faible rajeunissement de leurs âges issus du rapport Pb/U, tandis que leurs âges Pb 207/Pb 206 n'ont subi pratiquement pas de changement.

Le quatrième groupe est formé par les échantillons provenant des minéralisations perturbées. Il faut distinguer deux sortes d'anomalies dans ce groupe:

a) La première est la diminution du rapport Pb/U, d'où rajeunissement des âges issus de ce rapport.

b) La deuxième est l'accroissement de l'âge 207/206, ce phénomène s'explique par une perte des descendants de la famille U 238, d'où résulte un appauvrissement en Pb 206, provoquant l'augmentation du rapport 207/206.

Les échantillons CHD3-CHD5-CHD6-... sont des exemples pour la première anomalie.

Un important rajeunissement des âges 206/238 et 207/235 est généralement accompagné par une majoration considérable de l'âge 207/206 comme par exemple: les cas des échantillons CHD 13, CHD 32, CHD 35, etc....

D'après les âges concordants du deuxième groupe, il est possible d'avoir une indication sur l'époque de la formation du gisement qu'on peut situer environ à 250 M.A.

La courbe Concordia de WETHERILL (1956) peut fournir également des renseignements sur l'histoire du gisement à condition de n'étudier que les échantillons ne présentant pas un défaut trop important en 206 Pb (cas fréquent chez les minéraux remaniés). L'étude de l'ensemble des données ne peut donner de résultats valables car de nombreux échantillons présentent un déficit en 206 Pb, ce qui déplace leurs points caractéristiques vers les faibles valeurs de 206 Pb/238 U.

Nº	204	206	207	208	Pb rad %	Pb rad/U
CHD 1	0,0753	100,00	6,225	2,895	94,9	0,0352
CHD 2	0,141	100,00	7,180	5,450	95,8	0,0319
CHD 2b	0,117	100,00	6,827	4,491	92,2	0,0294
CHD 3	0,0682	100,00	6,152	2,630	95,6	0,0229
CHD 4	0,0475	100,00	5,792	1,829	96,7	0,0293
CHD 5	0,0469	100,00	5,880	1,799	96,9	0,0209
CHD 6	0,0630	100,00	6,091	2,144	95,7	0,0252
CHD 7	0,0848	100,00	6,348	3,261	94,2	0,0302
CHD 8	0,2071	100,00	8,286	7,971	86,9	0,0241
CHD 9	0,0806	100,00	6,347	3,097	94,6	0,0142
CHD 10	0,0957	100,00	6,513	3,699	93,6	0,0311
CHD 11	0,0760	100,00	6,318	2,921	94,5	0,0201
CHD 12	0,0263	100,00	5,481	1,009	98,2	0,0275
CHD 13	0,156	100,00	8,365	6,002	90,0	0,00828
CHD 14	0,0967	100,00	6,708	3,721	94,1	0,0285
CHD 15	0,0878	100,00	6,740	3,370	93,8	0,0229
CHD 16	0,0734	100,00	6,257	2,805	95,5	0,0211
CHD 17	0,1090	100,00	6,767	4,171	93,3	0,0226
CHD 18	0,0681	100,00	6,430	2,625	95,0	0,0172
CHD 19	0,0368	100,00	5,722	1,420	97,5	0,0231
CHD 20	0,0696	100,00	6,134	2,670	95,3	0,0235
CHD 21	0,2080	100,00	8,460	7,980	87,0	0,0128
CHD 22	0,0913	100,00	6,680	3,510	93,8	0,0162
CHD 23	0,0275	100,00	5,677	1,047	98,0	0,0185
CHD 24	0,0755	100,00	6,250	2,920	94,9	0,0247
CHD 25	0,0316	100,00	5,528	1,214	98,1	0,0214
CHD 26	0,0832	100,00	6,261	3,166	94,3	0,0252
CHD 27	0,0278	100,00	5,550	1,065	98,0	0,0270
CHD 28	0,0271	100,00	5,557	1,045	98,2	0,0269
CHD 29	0,0739	100,00	6,307	2,830	95,0	0,0268
CHD 30	0,0379	100,00	5,660	1,456	97,3	0,0283
CHD 31	0,0522	100,00	5,928	2,006	97,6	0,0150
CHD 32	0,240	100,00	9,120	9,215	85,0	0,0121
CHD 33	0,0788	100,00	6,304	3,030	94,9	0,0144
CHD 34	0,542	100,00	3,376	20,820	70,3	0,0088
CHD 35	0,138	100,00	7,419	5,349	91,0	0,0119
CHD 36	0,0388	100,00	5,536	1,490	97,4	0,0207
CHD 37	0,0515	100,00	5,869	1,989	96,4	0,0339
CHD 37b	0,0683	100,00	5,953	2,638	95,5	0,0324

Tableau 1. Résultats des analyses isotopiques et chimiques.

Nous avons donc sélectionné uniquement les échantillons qui satisfont à cette exigence. Ces échantillons sont les pechblendes suivantes: CHD1 – CHD2 – CHD2b – CHD4 – CHD7 – CHD10 – CHD25 – CHD26 – CHD30 – CHD37.

Les points portés sur la courbe sont bien alignés sur une droite qui coupe la courbe à environ 250 M.A. et à 25 M.A. (fig. 6).

La courbe Concordia est très aplatie et il est difficile, surtout pour les âges «jeunes» de déterminer avec précision ses points d'intersection avec la corde donnée par l'alignement des points mesurés.

Т	a	bl	eau	12
-		-		_

Nº	Désignation	206/238	Age en M.A. 207/235	207/206
CHD 1	Pechblende	250	251	259
CHD 2	Pechblende	227	229	242
CHD 2b	Pechblende mét.	269	265	244
CHD 3	Pechblende	164	171	267
CHD 4	Pechblende	209	212	243
CHD 5	Produits noirs	150	158	289
CHD 6	Produits noirs	179	187	278
CHD 7	Pechblende	213	216	244
CHD 8	Pechblende	171	181	300
CHD 9	Pechblende	102	116	273
CHD 10	Pechblende	221	224	245
CHD 11	Produits noirs	144	153	290
CHD 12	Pechblende	195	200	245
CHD 13	Produits noirs	56	76	644
CHD 14	Pechblende	203	212	324
CHD 15	Produits noirs	163	187	395
CHD 16	Pechblende	149	158	281
CHD 17	Produits noirs	161	169	272
CHD 18	Produits noirs	122	137	392
CHD 19	Produits noirs	164	173	284
CHD 20	Pechblende	167	173	249
CHD 21	Produits noirs	92	103	373
CHD 22	Produits noirs	115	128	352
CHD 23	Produits noirs	131	143	328
CHD 24	Pechblende	175	182	260
CHD 25	Pechblende	153	158	229
CHD 26	Pechblende	180	183	213
CHD 27	Pechblende	193	199	266
CHD 28	Pechblende	192	198	275
CHD 29	Pechblende	191	200	292
CHD 30	Pechblende	202	206	248
CHD 31	Pechblende	108	115	274
CHD 32	Pechblende	87	101	454
CHD 33	Pechblende	104	111	266
CHD 34	Pechblende	63	71	360
CHD 35	Pechblende	85	96	372
CHD 36	Pechblende	149	150	183
CHD 37	Pechblende	241	242	250
CHD 37b	Pechblende, pyrit.	231	230	174

En calculant les équations des deux droites de régression par la méthode des moindres carrés, nous obtenons les résultats suivants:

$$y = 0,14134 x + 0,000371$$

x = 7,0609 y - 0,002122

Les intersections de la corde et de la courbe étant approximativement évaluées, nous avons voulu déterminer les âges correspondant avec plus de précision. Dans ce but, nous avons fixé un âge, et par suite de l'une des coordonnées de la droite (par exemple: x), nous avons calculé l'autre coordonnée (y) et l'avons comparée à la coordonnée correspondante (y') de la courbe Concordia donnée par les tables de STIEFF et al. (1959).

Fig. 6. Points caractéristiques des échantillons de Chardon sur la courbe Concordia de Wetherill.

Par exemple pour la droite d'équation y = 0,14134 x + 0,000371nous avons pour 10 M.A. x = 0,009768 ce qui donne y = 0,001751Pour cette valeur de x l'ordonnée de la courbe Concordia est y' = 0,001537d'où une différence d'ordonnée $\Delta y = +0,000214$ (la droite est au-dessus de la courbe). Pour 30 M.A. x = 0,029593 d'où y = 0,004553or y' = 0,004620et $\Delta y = -0,000067$

 Δy est négatif, la droite est en-dessous de la courbe, l'intersection se trouve donc entre les deux âges choisis.

 Δy représentant une différence d'ordonnées entre une courbe et une droite n'est pas rigoureusement une fonction linéaire de l'âge. On peut cependant l'admettre pour des variations relativement réduites de l'âge en raison de l'aplatissement de la courbe.

L'âge correspondant à l'intersection de la droite et de la courbe peut donc être déterminé sur un graphique portant en abscisse les âges, en ordonnées les valeurs de Δy calculées. La droite représentant approximativement les variations de Δy en fonction l'âge, de coupe l'axe $\Delta y = 0$ en un point qui détermine l'âge (fig. 7).

A titre de vérification. Pour 25 M.A. x = 0.024600d'où y = 0,003847v' = 0.003849 $\Delta y = 0,000002$ ΔY 0.0003 0000214 0.0002 0.0001 25.2 10 20 30 000067 00001

Fig.7. Solution graphique pour déterminer l'âge correspondant aux intersections sur la courbe Concordia.

L'intersection de la corde et de la courbe Concordia se produit donc bien aux environs de 25 M.A.

Par cette méthode, il est trouvé que les points d'intersection des droites de régression et de la courbe Concordia correspondent aux âges suivants:

> y = 0,14134 x + 0,000371 25 M.A. et 244,5 M.A. x = 7,0609 y - 0,002122 21 M.A. et 243,5 M.A.

Cela signifie que la minéralisation se serait formée à l'époque hercynienne, il y a environ 250 M.A. Cet âge est en bon accord avec celui indiqué par les échantillons ayant les âges concordants (CHD1 – CHD2 et CHD37) et confirme les résultats

194

d'où

précédemment obtenus sur d'autres gisements (DURANT, 1962; COPPENS, KOSZTOLANYI et DOTTIN, 1967).

L'intersection de la courbe à 25 M.A. indique un remaniement parvenu à cette époque. Il est connu que sur la courbe Concordia, la moindre perte de 206, rajeunit l'époque indiquée du remaniement, ainsi on pourrait considérer 25 M.A. comme une valeur minimum pour cet évènement.

Les âges 207/235, les plus jeunes que nous avons trouvés, se situent à environ 70 M.A., cet âge est sûrement supérieur à l'âge réel du remaniement, donc nous pourrions situer cet évènement entre 25 et 60 M.A. qui correspond à l'époque Alpine.

Les résultats des mesures géochronologiques nous fournissent les renseignements suivants concernant l'histoire du gisement.

La minéralisation, dans son état original ou très peu perturbée, peut être retrouvée dans la partie Nord-Est de la mine à l'intérieur de la bande métamorphique médiane ou au bord de cette dernière. Le phénomène est remarqué à partir du niveau -120, et continue vers les niveaux inférieurs. Le granite dans cette zone est relativement sain. Les échantillons provenant de celle-ci présentent des âges assez concordants.

Exemple: CHD4 - CHD10 - CHD30 - CHD1 - CHD2 - etc...

La minéralisation la plus touchée par les évènements ultérieurs est celle qui se trouve dans la «Formation principale» entre la faille F_1 et F_2 . Cette minéralisation suit la direction W-E des failles. Ce phénomène est caractéristique pour les niveaux supérieurs (40–80) où les failles sont très nettes. Les échantillons CHD13, CHD18, CHD17 sont fortement altérés et leurs âges présentent des discordances considérables.

Les zones minéralisées à l'Ouest du coude de la bande métamorphique médiane qui se trouve à proximité de la faille 3, ont été également remaniées. L'effet de ce remaniement se manifeste surtout sous forme de diminution du rapport Pb/U d'où le rajeunissement des âges issus de ce dernier. Ce phénomène s'accentue avec la profondeur de la Mine, voir les échantillons CHD3 – CHD8 – CHD9 – CHD20 – CHD32 et CHD33.

La minéralisation qui se trouve dans le granite laminé du niveau 240 au Nord de la bande métamorphique médiane, a été fortement perturbée et rajeunie, voir CHD34 et CHD35.

Il est intéressant d'observer que les échantillons les moins remaniés sont toujours accompagnés de pyrite. La présence de celle-ci indique un milieu réducteur. Par contre, les échantillons les plus rajeunis ont été prélevés dans des brèches siliceuses contenant souvent de l'hématite, preuve d'un milieu oxydant.

L'influence de la galène, sous forme d'introduction de plomb commun, polluant le plomb radiogénique, se fait remarquer surtout à l'Ouest du gisement au niveau 120.

(Le CHD8 contient environ 13,5% Pb commun,

le CHD 21 contient environ 13 % Pb commun).

Au niveau 160, l'arrivée de Pb commun n'est plus observée.

Au niveau 200, au contraire, elle est très nette.

(Le CHD 32 contient 15 % Pb commun).

La plus grande proportion de Pb commun se trouve dans les échantillons provenant du granite laminé du niveau 240.

(Le CHD 34 contient 30 % Pb commun,

le CHD 35 contient 10 % Pb commun).

Conclusion

L'étude géochronologique de la Mine du Chardon permet de tirer les conclusions suivantes:

1°) L'uranium a rempli des fractures radiales autour de la zone du contact, à l'époque hercynienne, à la phase Saalienne, il y a environ 250 M.A.

2°) Le métamorphisme s'est produit antérieurement à la formation du gisement (avant 250 M.A.) car les roches métamorphiques contiennent dans leurs fractures des minéralisations non perturbées.

3°) Un remaniement s'est produit à l'époque Alpine, peut-être entre 25 et 60 M.A.; les failles F₁, F₂ et F₃ dateraient de cet évènement.

La minéralisation qui se trouvait à proximité de ces failles a été fortement perturbée. Ce phénomène a été ressenti jusqu'aux zones profondes du gisement où les failles ne se remarquent plus.

La partie Nord-Est du gisement au bord de la bande médiane a été très peu touchée.

Les auteurs tiennent à adresser leurs remerciements aux Ingénieurs du Commissariat à l'Energie Atomique, M. GANGLOFF, Directeur du Département de Prospection Minière, M. GERSTNER, Chef du Service des Recherches à la Division de Vendée, M. TAYEB, Ingénieur-Géologue, pour l'aide qu'ils ont bien voulu leur apporter pour l'échantillonnage, les précieux renseignements géologiques qu'ils ont communiqués et les fructueuses discussions de leurs premiers résultats.

Leurs remerciements vont également à leurs collaborateurs du Centre de Recherches Radiogéologiques: Melle THOUVENEL, MM. DOTTIN, EYER, HINSCHBERGER, MAGRON et FAYE.

BIBLIOGRAPHIE

- COPPENS, R., KOSZTOLANYI, CH., DOTTIN, H. (1967): Géochronologie des mines d'uranium de Vendée et du Limousin. Rapport C.R.R. 1967.
- DURANT, G. L. A. (1962): Détermination de l'âge de minéralisation uranifère de la Mine du Chardon (Vendée). Compte rendu Acad. Sci. 254, 1032–1034.
- STIEFF, L. R., STERN, T. W., SEIKI OSHIRO and SENFTLE, F. (1959): Tables for the Calculation of Lead Isotope Ages. Geological Survey Professional paper 334-A.
- TAYEB, G. (1962): Le gisement du Chardon. Les minerais uranifères français et leurs gisements. 2, 381-390. Publié sous la direction de M. ROBAULT. Bibliothèque des Sciences & Techniques Nucléaires. Saclay et Paris.

WETHERILL, G. W. (1956): Discordant uranium lead age. Trans. Amer. Geophysical Union 37, 320-326.