Zeitschrift: Eclogae Geologicae Helvetiae

Band: 79 (1986)

Heft: 3

Artikel: New Mesozoic and Paleogene calcareous nannofossils

Autor: Perch-Nielsen, Katharina

DOI: https://doi.org/10.5169/seals-165852

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 15.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eclogae geol. Helv. Vol. 79	Nr. 3	Pages 835-847	Basel, November 1986
-----------------------------	-------	---------------	----------------------

New Mesozoic and Paleogene calcareous nannofossils

By Katharina Perch-Nielsen¹)

ABSTRACT

Five new Mesozoic and Paleogene calcareous nannofossils species and one new genus are described: Cruciplacolithus vanheckae, Lithraphidites kennethii, Lucianorhabdus inflatus, Quadrum sissinghii, Stoverius, Truncatoscaphus intermedius.

ZUSAMMENFASSUNG

Fünf neue kalkige Nannofossilarten und eine neue Gattung aus dem Mesozoikum und dem Paläogen werden beschrieben: Cruciplacolithus vanheckae, Lithraphidites kennethii, Lucianorhabdus inflatus, Quadrum sissinghii, Stoverius, Truncatoscaphus intermedius.

Introduction

During the compilation of two chapters on Mesozoic and Cenozoic calcareous nannofossils for a textbook on Plankton Stratigraphy edited by Bolli, Saunders & Perch-Nielsen (1985), many new combinations, a few new species and one new genus were used. The new combinations were validated in Perch-Nielsen (1984) in the INA Newsletter and the new taxa are described herein.

Systematic descriptions

The genera are here treated in alphabetical order for easy reference. The rules of the International Code of Botanical Nomenclature are followed in the description of the taxa.

Cruciplacolithus Hay & Mohler in Hay et al. 1967

Type species: Cruciplacolithus tenuis (STRADNER 1961) HAY & MOHLER in HAY et al. 1967

Cruciplacolithus vanheckae n. sp.

Pl. 1, Fig. 1-8

1985b Cruciplacolithus vanheckae in PERCH-NIELSEN, p. 461, Fig. 19/41, 42; 21.

Holotype. – Plate 1, Figures 1, 2 (negatives 6-2282/11, 12, ETH SEM Archive, Hönggerberg, Zürich).

¹⁾ Geologisches Institut, ETH-Zentrum, CH-8092 Zürich.

Derivation of name. – To honour Shirley van Heck, editor and producer of the INA Newsletter, who took it upon her to continue the "Bibliography and taxa of calcareous nannoplankton" when AL LOEBLICH and HELEN TAPPAN discontinued it.

Type locality. – DSDP Site 356, São Paulo Plateau, South Atlantic (sample 356-9-2, 70 cm).

Type level. - Middle Eocene, NP 15.

Diagnosis. – Large, elongate form of *Cruciplacolithus* with a central cross aligned with the axis of the ellipse and nearly filling the central area.

Description. – C. vanheckae has an elongate elliptical outline. The distal shield is relatively narrow, leaving a wide central area which is nearly filled by the massive central cross. Elements protruding from the wall fill the rest of the central opening. The proximal shield is smaller than the distal shield, which does not show birefringence when viewed between crossed nicols.

Remarks. - C. vanheckae is larger than C. cribellum (Pl. 1, Fig. 9-11) from which it might have evolved. It also has an elongate shape, while C. cribellum has an oval outline.

Occurrence. – C. vanheckae was found in the Middle Eocene zones NP 15 and NP 16 of DSDP Site 356.

Lithraphidites Deflandre 1963

Type species: Lithraphidites carniolensis Deflandre 1963

Lithraphidites kennethii n. sp.

Pl. 2, Fig. 1-4

1968 Lithraphidites sp. cf. L. quadratus in GARTNER, p. 43, Pl. 6, Fig. 9a, b.

1977 Lithraphidites quadratus in PERCH-NIELSEN, Pl. 48, Fig. 4.

1985a Lithraphidites kennethii in PERCH-NIELSEN, p. 374, Fig. 41, 42.11.

Holotype. – Plate 2, Figure 1 (negative 6-1813/3, ETH SEM Archive, Hönggerberg, Zürich).

Derivation of name. - To honour Prof. Kenneth Hsü, Geologic Institute Zürich.

Type locality: DSDP Site 356, São Paulo Plateau, South Atlantic (sample 356-31-3, 69 cm).

Type level. - Late Maastrichtian, Nephrolithus frequens Zone, CC 26 of Sissingh (1977).

Diagnosis. – Species of Lithraphidites with 4 short, broad double blades with two spikes at the extremeties. The blades are broad in the middle third of the rod.

Description. – The rod is about 10 microns long and built of 8 narrow blades and 8 blades which broaden in the middle third of the rod. The latter form 4 double blades of about one third or less of the length of the rod. Two spikes at the ends of the double blades are typical of this species.

Remarks. – L. kennethii differs from L. quadratus by shorter and broader blades and the two spikes at their extremeties. L. grossopectinatus and L. serratus have serrate blades. L. kennethii might have evolved from L. grossopectinatus or L. quadratus in the L. quadratus Zone.

Occurrence. – L. kennethii has been found in the "Middle" Maastrichtian Corsicana Marl of Texas (Gartner 1968), CC 26 of DSDP Site 356 in the South Atlantic (Perch-Nielsen 1977) and (reworked?) in the basal Danian of Bidart, southwestern France.

Lucianorhabdus Deflandre 1959

Type species: Lucianorhabdus cayeuxii Deflandre 1959

Lucianorhabdus inflatus PERCH-NIELSEN & FEINBERG, n. sp.

Pl. 2, Fig. 6-9

1985a Lucianorhabdus inflatus in PERCH-NIELSEN, p. 362, Fig. 27.

Holotype. – Plate 2, Figure 6 (negative 6-3805/8, ETH SEM Archive, Hönggerberg, Zürich).

Derivation of name. - From the inflated distal part of the coccolith.

Type locality. – Kabylie, Algeria (sample G 454b of H. Feinberg, Lab. de Micropaléontologie, Tour 15, 4e, 4, place Jussieu, Paris).

Type level. - Late Campanian, Quadrum trifidum Zone, CC 22 of Sissingh (1977).

Diagnosis. - Species of the holococcolithic genus Lucianorhabdus with an inflated stem.

Description. – L. inflatus has a more or less well developed proximal plate which is best visible in side view between crossed nicols. The stem is usually widest in the lower third or half of its length and tapers towards its distal end.

Remarks. – HATTNER & WISE (1980) have stated that "the large population of L. cayeuxii encountered in our samples shows enough transitional forms between previously distinguished taxa to indicate that most of these can be grouped under a single species definition". They then proceeded to describe a new species, L. windii, which differs from L. cayeuxii by its "strongly involute surface". While I agree that it can be difficult to distinguish between poorly preserved specimens of the species of Lucianorhabdus, the species themselves can not be confounded, especially when the specimens are studied with the light microscope.

L. inflatus differs from other species of the genus by the inflated stem which is widest usually in the lower half of its length. Such forms were not illustrated by HATTNER & WISE (1980) nor by Deflandre (1959).

Occurrence. – L. inflatus was only found in a Late Campanian sample from Algeria. The assemblage of this sample also includes very rare Quadrum trifidum, Aspidolithus parcus, Eiffellithus eximius, Arkhangelskiella cymbiformis, Reinhardtites anthophorus and R. levis and thus can be assigned to Sissingh's (1977) Zone CC 22.

Pseudomicula Perch-Nielsen in Perch-Nielsen et al. 1978

Type species: Pseudomicula quadrata

Pseudomicula quadrata Perch-Nielsen in Perch-Nielsen et al. 1978 Pl. 2, Fig. 10–14

1978 Pseudomicula quadrata Perch-Nielsen in Perch-Nielsen et al., p. 350, 351; Pl. 1, Fig. 43, 44; Pl. 7, Fig. 3, 6, 9. 1985a Pseudomicula quadrata in Perch-Nielsen, p. 374, Fig. 41, 42/23–25.

Remarks. – When P. quadrata was described, only the cubic, Micula-like form had been observed (Pl. 2, Fig. 13). Since then, forms with rod-like extensions were found (Pl. 2,

Fig. 10–12, 14) and it became probable, that *P. quadrata* evolved from *Lithraphidites*. The double blades split in the middle and extend to form inverted pyramids.

Occurrence. – P. quadrata was described from the Upper Maastrichtian (CC 26) of Egypt ad was also found (reworked?) in the basal Danian (NP 1) of DSDP Site 356 in the South Atlantic and in the Danian (NP 3) of El Kef in Tunisia.

Quadrum Prins & Perch-Nielsen in Manivit et al. 1977

Type species: Quadrum gartneri PRINS & PERCH-NIELSEN in MANIVIT et al. 1977

Quadrum sissinghii n. sp.

Pl. 3, Fig. 3-5

Non 1961 Tetralithus nitidus MARTINI, p. 4, Pl. 1, Fig. 5; Pl. 4, Fig. 41 (Middle Eocene form).

1968 Tetralithus nitidus Martini in Gartner, p. 42, 43, Pl. 13, Fig. 3, non Pl. 9, Fig. 14; Pl. 13, Fig. 4 (3-armed forms); Late Cretaceous.

1977 Quadrum nitidum (MARTINI) PRINS & PERCH-NIELSEN in MANIVIT et al., p. 178.

Holotype. – Plate 3, Figure 3 (from Pl. 41, Fig. 6 in MOHAMED 1982).

Derivation of name. – To honour WILLIAM SISSINGH, geologist with Shell who first formalised the Cretaceous coccolith zonation.

Type locality. – Ain Amur, NW of oasis Kharga, Egypt (sample Ain Amur 36 of Mohamed 1982).

Type level. - Late Campanian (Early Maastrichtian?), Tranolithus phacelosus Zone, CC 23.

Diagnosis. – Calcareous nannofossil with 4 long, tapering rays separated by 4 sutures and a central, much smaller, quadratic structure of 4 curved elements.

Description. – The 4 regularily arranged, tapering rays ar more or less of equal length and join along 4 sutures. These do not join in the centre on both sides of the body, but leave room for a quadratic structure consisting of 4 curved elements. This structure can hardly be seen with the LM and is invisible in overgrown specimens also with the electron microscope (EM).

Remarks. – It has long been assumed that the 4-rayed forms of Late Cretaceous age were the same as MARTINI's T. nitidus, which was described from the Middle Eocene of France. Recently AUBRY (1983) has shown that the Eocene specimens can be assigned the typical Middle Eocene genus Nannotetrina (Pl. 3, Fig. 1, 2) and that they are in no way related to the Campanian/Maastrichtian 4-rayed forms. These have been listed and illustrated as Tetralithus, Quadrum or Uniplanarius gothicus or nitidus. Whereas some authors used gothicus for forms with long and also such with short rays, others distinguished between gothicus with a quadratic outline or only short rays and nitidus with long rays. In the absence of biometric studies the boundary between the two species can be drawn at the point where the length of the free rays exceeds the width of the rays.

Micula swastica (Pl. 3, Fig. 9) is more or less cubic and has 8 relatively short free arms, whereas M. concava (Pl. 3, Fig. 12) has 8 long arms in place of the 4 of O. sissinghii. The small central structure of Q. sissinghii suggests this form to have a common ancestor with Micula.

Occurrence. – The first occurrence of Q. sissinghii was used by Sissingh (1977) to define the base of his zone 21 in the Late Campanian. Q. gothicum appears earlier, around the base of the Campanian. They both had their last occurrence in the Early Maastrichtian around the top of CC 23. Q. sissinghii is most common in low latitudes and is missing in high latitudes as in the North Sea area.

Stoverius n. gen.

Type species: Stoverius achylosus (STOVER 1966) n. comb.

Derivation of name. – To honour L. E. STOVER, geologist with Exxon who gave the first LM overview of Cretaceous coccoliths.

Diagnosis. – Round to broadly elliptical coccoliths with a wall of more or less vertical elements, a cycle of proximal elements and a central cross.

Remarks. – Stoverius differs from the other genera of the family Stephanolithiaceae, to which it can be assigned, by its round to broadly elliptical outline and by the central cross. Cylindralithus (Pl. 3, Fig. 6) has a higher wall and has an empty, open central area. Corollithion (Pl. 3, Fig. 8) has a hexagonal outline. Rotelapillus (Pl. 3, Fig. 10) also has a more or less round outline, but the central area is consistently bridged by 8 bars. Cribrocorona (Pl. 3, Fig. 11) has a cribrate central area and was assigned to the family Podorhabdaceae, since it probably evolved from Cribrosphaera ehrenbergii.

The oldest species assignable to Stoverius is S. helotatus (basionym: Corollithion helotatus WIND & WISE in WISE & WIND 1977, p. 299, 300, Pl. 85, Fig. 1–5), a form with a broadly elliptical outline and with an asymmetrical central cross supporting a long stem. It has been described from Kimmeridgian sediments. The type species S. achylosus (Pl. 3, Fig. 7, basionym: Chiphragmalithus achylosus STOVER 1966, p. 137, Pl. 6, Fig. 26; Pl. 7, Fig. 1, non Pl. 7, Fig. 2, 3) has a central cross with bars meeting at right angles and was described from the Albian. Also from the Albian stems S. baldiae (basionym: Zygolithus baldiae STRADNER & ADAMIKER 1966, p. 388, Pl. 2, Fig. 2, Textfig. 3, non Textfig. 4). The bars do not meet at right angles in S. baldiae, which still has a relatively low wall.

Forms with a higher wall and differing shapes of the central cross are *S. asymmetricus* (basionym: *Cylindralithus asymmetricus* BUKRY 1969, p. 42, Pl. 19, Fig. 9–12), *S. biarcus* (basionym: *Cylindralithus biarcus* BUKRY 1969, p. 42, Pl. 20, Fig. 1–3) and *S. coronatus* (basionym: *Cylindralithus coronatus* BUKRY 1969, p. 42, Pl. 20, Fig. 4–6).

Truncatoscaphus Rood et al. 1971

Type species: Truncatoscaphus delftensis (STRADNER & ADAMIKER 1966) ROOD et al. 1971

Truncatoscaphus intermedius n. sp.

Pl. 1, Fig. 12, 13

1973 Truncatoscaphus delftensis in NOEL, p. 108, Fig. 6, Pl. IV, Fig. 4-6. 1985a Truncatoscaphus intermedius in PERCH-NIELSEN, p. 405, Fig. 79; 80/10.

Holotype. – Plate 1, Figure 13 (from NOEL 1973, Pl. IV, Fig. 6). Derivation of name. – Intermedius, Latin: intermediate.

Type locality. – Armailles (Ain, France).

Type level. - Late Kimmeridgian (french sense).

Diagnosis. – A species of Truncatoscaphus with 14 ± 1 bars.

Description. – T. intermedius has the typical outline of Truncatoscaphus with slightly curved, long sides and truncate ends. The number of bars and thus the openings is usually 14, but may differ by one. A short central spine is present in some specimens.

Remarks. – T. intermedius differs from the other species of Truncatoscaphus by the number of bars in the central area. The distinction between forms with differing numbers of bars seems justified by the observation, that forms with few bars (6 and 8) appear in the Middle Jurassic, forms with more bars (10 and 14) appear in the Late Jurassic and finally forms with more than 14 bars in the Early Cretaceous (see Perch-Nielsen 1985a).

Occurrence. - T. intermedius has only been reported from the Kimmeridgian so far.

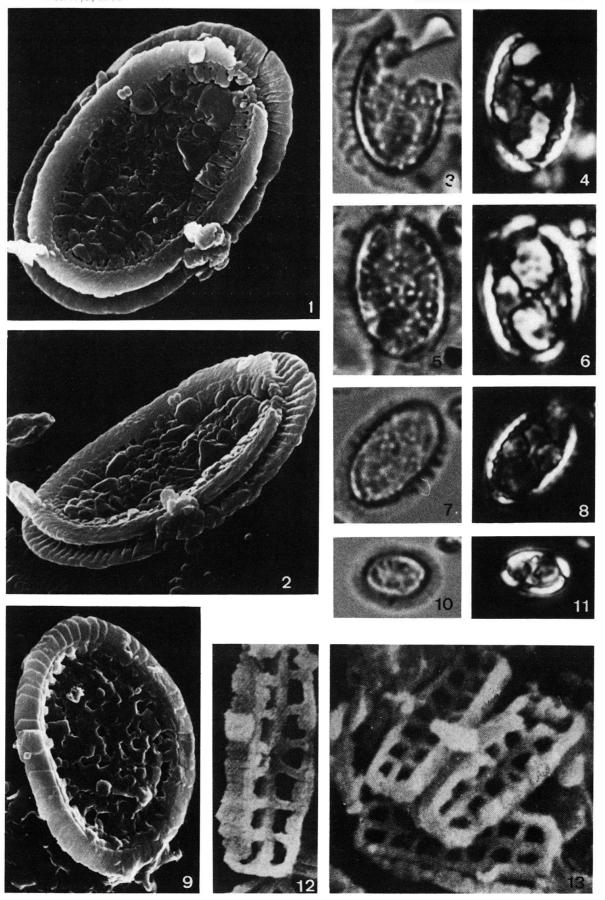
Acknowledgments

I would like to thank M.P. Aubry, Lyon and Woods Hole, for letting me use the LM photographs of *Nannotetrina nitida* and H. Feinberg, Paris, for providing the sample from Algeria, from which the new *Lucianorhabdus* species is described. The DSDP samples were kindly provided by the Deep Sea Drilling Project on the occasion of my participation in Leg 39. U. Gerber, Zürich, accomplished the photographic work.

REFERENCES

- BOLLI, H. M., SAUNDERS, J. B., & PERCH-NIELSEN, K. (1985): Plankton Stratigraphy (p. 1–1032). Cambridge University Press.
- BUKRY, D. (1969): Upper Cretaceous coccoliths from Texas and Europe. Univ. Kansas paleont. Contr. 51 (Prot. 2), 1–79.
- Deflandre, G. (1959): Sur les nannofossiles calcaires et leur systématique. Rev. Micropaléont. 2, 127-152.
- (1963): Sur les Microrhabdulidés, famille nouvelle de nannofossiles calcaires. C.R. Acad. Sci. (Paris) 256, 3484–3486.
- Gartner, S. (1968): Coccoliths and related calcareous nannofossils from Upper Cretaceous deposits of Texas and Arkansas. Univ. Kansas paleont. Contr. 48, 1–56.
- HATTNER, J.G., & WISE, S.W., Jr. (1980): Upper Cretaceous calcareous nannofossil biostratigraphy of South Carolina. South Carolina Geol. 24/2, 41–115.
- HAY, W. W., MOHLER, H. P., ROTH, P. H., SCHMIDT, R. R., & BOUDREAUX, J. E. (1967): Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area, and transoceanic correlation. Trans. Gulf Coast Assoc. geol. Soc. 17, 428-480.
- Manivit, H., Perch-Nielsen, K., Prins, B., & Verbeek, J. W. (1977): Mid Cretaceous calcareous nannofossil biostratigraphy. Verh. (k.) nederl. Akad. Wetensch. (B) 80/3, 169–181.
- Martini, E. (1961): Nannoplankton aus dem Tertiär und der obersten Kreide von SW-Frankreich. Senckenb. Lethaea 42, 1–32.
- MOHAMED, M.F. (1982): Micropaléontologie et biostratigraphie du Crétacé supérieur à l'Eocène inférieur de l'Egypte centrale. Mém. Sci. Terre Univ. Curie, Paris, p. 1–438.
- Perch-Nielsen, K. (1977): Albian to Pleistocene calcareous nannofossils from the Western South Atlantic, DSDP Leg. 39. Init. Rep. DSDP 39, 699–825.
- (1984): Validation of new combinations. INA Newsl. 6/1, 42–46.
- 1985a, b): Mesozoic calcareous nannofossils. Cenozoic calcareous nannofossils. In: Bolli, H. M., et al. (Ed.): Plankton Stratigraphy (p. 329-426, 427-554). Cambridge University Press.
- Perch-Nielsen, K., Sadek, A., Barakat, M.G., & Teleb, R. (1978): Late Cretaceous and Early Tertiary calcareous nannofossil and planktonic Foraminifera Zones from Egypt. VI African Micropaleont. Colloq. 1974, Tunis, 2, 337–403.

Sissingh, W. (1977): Biostratigraphy of Cretaceous calcareous nannoplankton. – Geol. en Mijnb. 56/1, 37-65. Stover, L.E. (1966): Cretaceous coccoliths and associated nannofossils from France and the Netherlands. – Micropaleontology 12, 133-167.


STRADNER, H. (1961): Vorkommen von Nannofossilien im Mesozoikum und Alttertiär. – Erdöl-Z. 77, 77–88. STRADNER, H., & ADAMIKER, D. (1966): Nannofossilien aus Bohrkernen und ihre elektronenmikroskopische Bearbeitung. – Erdöl-Erdgas-Z. 82, 330–341.

WISE, S. W., Jr., & WIND, F. H. (1977): Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, SW Atlantic sector of the Southern Ocean. – Init. Rep. DSDP 36, 296–309.

Manuscript received 23 January 1986 accepted 29 April 1986

Plate 1

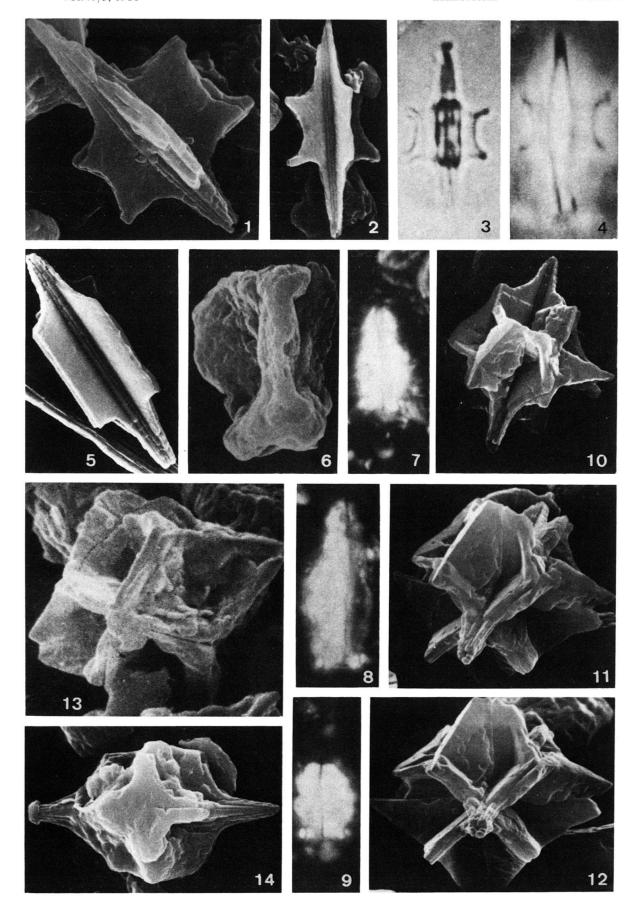
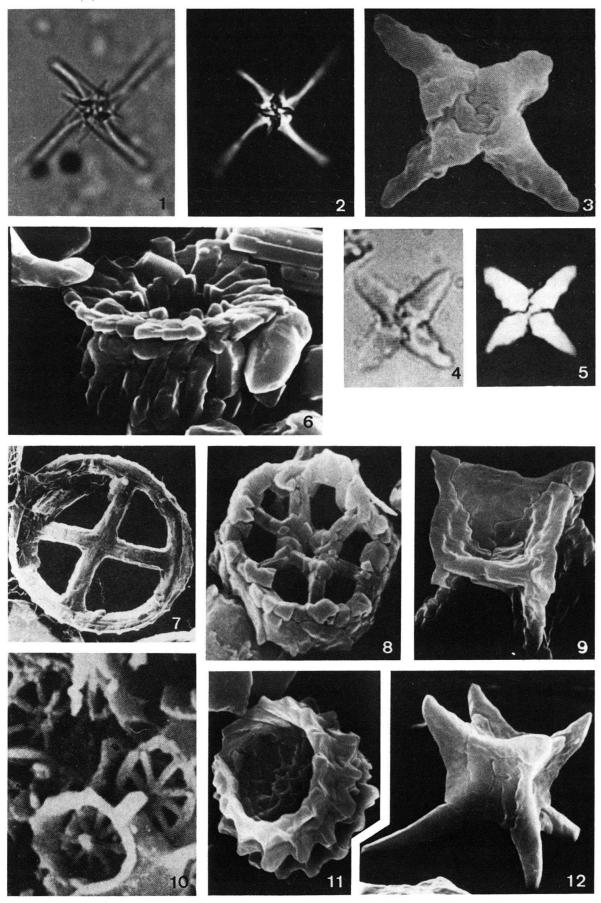

- Fig. 1–8 Cruciplacolithus vanheckae n. sp. Middle Eocene DSDP Site 356, São Paulo Plateau, sample 9-2, 70 cm. Fig. 1, 2: SEM of holotype, proximal and side view, ca. ×5250. Fig. 3–8: LM, parallel and crossed nicols, ca. ×2000.
- Fig. 9-11 Cruciplacolithus cribellum. Middle Eocene DSDP Site 356, São Paulo Plateau, sample 9-2, 70 cm. Fig. 9: SEM of distal view, ca. ×6000. Fig. 10, 11: LM, parallel and crossed nicols, ca. ×2000.
- Fig. 12, 13 Truncatoscaphus intermedius n. sp. Late Kimmeridgian Armailles, France. Fig. 12: SEM from Gallois & Medd (1979), ca. ×30,000. Fig. 13: SEM of holotype in proximal view, ca. ×16,000, from Noel (1973).

Plate 2


- Fig. 1-4 Lithraphidites kennethii n. sp. Upper Maastrichtian DSDP Site 356, South Atlantic (Fig. 1, holotype, SEM, ca. ×6000). Fig. 2: Lower Danian of Bidart, France (reworked?), SEM, ca. ×6000. Fig. 3, 4: LM from Gartner (1968, Pl. 6: 9a, b, Maastrichtian Corsicana Marl, Texas, ca. ×3200).
- Fig. 5 Lithraphidites quadratus. Lower Danian (reworked?) DSDP Site 356, South Atlantic, SEM, ca. ×6000.
- Fig. 6-9 Lucianorhabdus inflatus n. sp. Upper Campanian of Kabylie, Algeria. Fig. 6: SEM of holotype, ca. ×8000. Fig. 7-9: LM between crossed nicols, at 0°, ca. ×2000.
- Fig. 10–14 Pseudomicula quadrata. Fig. 10–12: SEM of turned specimen from the Lower Danian of DSDP Site 356, ca. ×5000, 7000, 7000. Fig. 13: SEM of holotype (from Perch-Nielsen et al. 1978) from the Upper Maastrichtian of Gebel Oweina, Egypt. ca. ×9000. Fig. 14: SEM of specimen with small "proximal shield" from the Paleocene of El Kef, Tunisia (reworked?), ca. ×5400.

 $\begin{array}{ll} \text{K. Perch-Nielsen: New calcareous} \\ \text{nannofossils} & \text{Plate 2} \end{array}$

Plate 3

Fig. 1, 2	Nannotetrina nitida, Middle Eocene Brocklesham, UK; LM ca. ×2000. From AUBRY (1983).
Fig. 3–5	Quadrum sissinghii n. sp. Late Campanian of Ain Amur, Egypt. Fig. 3: SEM of holotype from Монамер (1982), са. ×6500. Fig. 4, 5: LM, parallel and crossed nicols from Монамер (1982), са. ×2000.
Fig. 6	Cylindralithus serratus, Maastrichtian DSDP Site 524, South Atlantic; SEM of side view, ca. $\times 10,000$.
Fig. 7	Stoverius achylosus. Albian, New Museums Site, Cambridge, UK. TEM of distal view from Black (1973), ca. ×8000.
Fig. 8	Corollithion exiguum. Late Maastrichtian of Bidart, France. SEM of proximal view, ca. ×9000.
Fig. 9	Micula swastica. Late Maastrichtian DSDP Site 524, South Atlantic; SEM of oblique view, ca. ×7000.
Fig. 10	Rotelapillus radians. Kimmeridgian of Armailles, France. SEM of holotype from Noel (1973), ca. ×8400.
Fig. 11	Cribrocorona gallica. Danian (reworked?) of DSDP Site 356, São Paulo Plateau, South Atlantic; SEM of oblique view, ca. ×6000.
Fig. 12	Micula concava. Danian (reworked?) of DSDP Site 356, São Paulo Plateau, South Atlantic; SEM ca. ×7000.

