Zeitschrift: L'Enseignement Mathématique

Band: 8 (1962)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SURVEY OF COBORDISM THEORY

Kapitel: 3. MISCELLANEOUS COBORDISM THEORIES.

Autor: Milnor, J.

DOI: https://doi.org/10.5169/seals-37949

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 19.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Example 3. Let X be a space on which O operates trivially. Then an X-structure on V is just a preferred homotopy class of maps $V \to X$. As cases of particular interest X might be an Eilenberg-MacLane space or the classifying space of a group. How does one compute he groups $N_k(X)$?

The above definitions can be modified slightly by admitting only oriented manifolds. Thus one obtains groups $\Omega_k(X)$ where X is any space on which the rotation group SO acts. Again I do not know how to compute these groups. (Added in proof: See Conner and Floyd [21].)

Example 4. Let P denote the infinite real projective space, with the infinite rotation group SO acting in the natural way. The cobordism groups $\Omega_k(P)$ for oriented manifolds with P-structure can be called the $spinor\ cobordism\ groups$. This name is appropriate since a P-structure is roughly a "lifting" of the structural group of the tangent bundle to the infinite spinor group. A manifold admits a P-structure if and only if its Stiefel-Whitney class w_2 is zero. The groups $\Omega_k(P)$ have no odd torsion, but otherwise I do not know much about them.

3. Miscellaneous cobordism theories.

So far we have concentrated on differentiable manifolds. However one could equally well define a cobordism group based on the class \mathcal{T} of all compact topological manifolds. (Compare Brown [3, Theorem 3].) The natural correspondence $\mathcal{D} \to \mathcal{T}$ induces a homomorphism from the differentiable cobordism group $N_k = H_k(\mathcal{D})$ to the topological cobordism group $H_k(\mathcal{T})$.

Since Thom [16] has shown that Stiefel-Whitney classes can be defined topologically, we have:

Theorem 3 (Thom). — The homomorphism $N_k \to H_k(\mathcal{T})$ has kernel zero.

Problem: Is this homomorphism onto?

Another possibility would be to consider the class \mathscr{C}_o of all compact, oriented, combinatorial manifolds. Whitehead [20] has shown that each differentiable manifold has a preferred class of triangulations. Hence there is a natural homomorphism from

 $\Omega_k = H_k(\mathcal{D}_o)$ to $H_k(\mathcal{C}_o)$. Thom, Rohlin and Švarč have shown that Pontrjagin classes can be defined for combinatorial manifolds. Therefore we have:

Theorem 3'. — The homomorphism $\Omega_k \to H_k(\mathscr{C}_o)$ has kernel zero.

However examples show that this homomorphism is not onto. The reader is referred to [13, 18].

Another interesting possibility would be to look at the class of compact homology manifolds.

Returning to the differentiable case, interesting cobordism groups can be obtained by restricting the connectivities of the manifolds involved. As an extreme case we can consider only differentiable manifolds which are either homotopy spheres or homotopy cells. The resulting cobordism groups are closely related to the problem of classifying differentiable structures on spheres. The reader is referred to Milnor [8] and Smale [14].

As a final, quite different, example consider differentiable imbeddings of the circle S^1 in the 3-sphere S^3 . Such an object (a knot) is said to bound if it can be extended to a differentiable imbedding of the disk D^2 in the disk D^4 . The resulting cobordism group has been studied by Fox and Milnor [5]. This group is not finitely generated.

REFERENCES

- [1] Atiyah, M., Bordism and cobordism, Proc, Cambridge Phil. Soc., 57 (1961), 200-208.
- [2] Averbuh, B. G., Algebraic structure of internal homology groups. Doklady Akad. Nauk S.S.S.R., 125 (1959), 11-14.
- [3] Brown, M., Locally flat embeddings of topological manifolds. A.M.S. Notices, 7 (1960), 939-940.
- [4] Dold, A., Erzeugende der Thomschen Algebra N. Math. Zeits., 65 (1956), 25-35.
- [5] Fox, R. H. and J. Milnor, Singularities of 2-spheres in 4-space and equivalence of knots. Bull. Amer. Math. Soc., 63 (1957), 406.
- [6] HIRZEBRUCH, F., Neue topologische Methoden in der algebraischen Geometrie. Springer (Berlin), 1956.
- [7] Komplexe Mannigfaltigkeiten. Proceedings Int. Congr. Math., 1958 (1960), 119-136.