6. Inverse function theorems (continued).

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 9 (1963)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 09.08.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

— 141 —

Then by the mean value theorem and because

$$\frac{d}{du}\frac{1}{\cos^2 u}=\frac{2\sin u}{\cos^3 u},$$

is increasing for increasing

$$u\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),$$

it follows that

$$m(u) = \frac{1}{\cos^2(u+r)} - \frac{1}{\cos^2 u}$$
 for $0 \le u < \frac{\pi}{2}$ and $u+r < \frac{\pi}{2}$.

In the following we restrict ourselves to these u. From the above we get

$$\left(\| K^{-1} \|^{-1} - m \right) r > \left(\frac{1}{\cos^2 (u+r)} - \frac{4r}{\cos^3 (u+r)} \right) r, \ 0 < r < \frac{\pi}{2} - u.$$

Now choosing r as the smallest positive solution of $r = r(u) = \frac{1}{8} \cos(u+r)$, which implies $u+r < \frac{\pi}{2}$, we get

$$(\parallel K^{-1} \parallel^{-1} - m)r > \frac{1}{16 \cos(u+r)} > \frac{1}{16} \cdot (1)$$

The same is true for $-\frac{\pi}{2} < u < 0$ as can be proved in the same way. Thus the conditions of Theorem 4.1 are valid. In particular γ) is true for $c = \frac{1}{16}$.

6. Inverse function theorems (continued).

As was indicated by the example $\tan u = w$ in the last chapter, the assumptions of the Theorems 4.1 and 4.1 *a* are not sufficient to insure that the operator *T* will have an inverse

¹⁾ Here we use the fact that u is real.

defined on the whole space B_2 , i.e. that the equation Tu = w has exactly one solution for each w in B_2 . We will now obtain conditions under which the existence of a local inverse implies the existence of a global inverse.

THEOREM 6.1. Let T satisfy the assumptions of Theorem 4.1 and let T be a continuous operator in its domain of definition, D.

Then there exists a finite or infinite number A of open connected domains $D_a \subset D$ with the properties:

 $U D_a = D$, for each $a \in A$ the restriction T_a of T on D_a is a homeomorphism¹) of D_a onto B_2 , and the sets D_a are mutually disjoint.

Furthermore, if T is defined on the whole Banach space B_1 then T is itself a homeomorphism of B_1 onto B_2 .

This theorem implies that under the assumptions there is for each $w \in B_2$ the same finite or infinite number A of solutions of Tu = w, and each solution lies in a domain D_a for which the existence of a local inverse implies that of a global one.

Proof. a) We first prove the following statement: Let w_1 and w_2 be two points of B_2 with $||w_1 - w_2|| < c$ (c from γ) in Theorem 4.1) and let $Tu_1 = w_1$. The existence of at least one such u_1 follows from Theorem 4.1. Furthermore, it is shown that there exists a sphere $S(u_1, r_1) = S_1$ in which the equation Tu = w has a unique solution u(w) for all w with $||w - w_1|| < c$. Therefore there exists a unique solution u_2 in S_1 of $Tu = w_2$.

Conversely, let $S(u_2, r_2) = S_2$ the corresponding neighborhood of u_2 in which a unique solution \tilde{u} of $Tu = \tilde{w}$ for $\|\tilde{w} - w_2\| < c$ exists. Then $w = \tilde{w} \in S(w_1, c) \cap S(w_2, c)$, $u \in S(u_1, r_1), \ \tilde{u} \in S(u_2, r_2), \ Tu = w, \ T\tilde{u} = \tilde{w}$ implies $u = \tilde{u}$. If $u \in S_2$ the assertion is true because of the uniqueness of $\tilde{u} = u(\tilde{w})$ in S_2 for $\|\tilde{w} - w_2\| < c$. Now, let $u \notin S_2$. Then we connect w_2 with w by the straight line $g = w_2 + \lambda (w - w_2)$, $0 \leq \lambda \leq 1$, and consider the images C_1 and C_2 of this line in S_1 and S_2 , respectively. These images exist and form connected curves $\varphi_i(\lambda) \in S_i$, i = 1, 2, using the fact that

¹⁾ One-to-one mapping continuous and with continuous inverse.

 $g \in S(w_1, c) \cap S(w_2, c)$ in B_2 and applying the theorem that the continuous image of a connected set is connected, which holds in our spaces. We also have $\varphi_i(0) = u_2$, i = 1, 2, $\varphi_1(1) = u, \ \varphi_2(1) = \tilde{u}$. In the intersection $S_1 \cap S_2$ the curves C_i coincide because of the uniqueness of u(w), $\tilde{u}(w)$ in S_1 , S_2 respectively.

We proceed with increasing λ from u_2 along C_1 . Since $u \notin S_2$ there is a first point u^* (with a least $\lambda = \lambda^*$) on C_1 which does not belong to $C_2 \in S_2$. However, in each neighborhood of u^* there are points of C_2 . Let $w^* = w_2 + \lambda^* (w - w_2)$, the corresponding point with $Tu^* = w^*$. Then, because of the continuity of C_2 , there cannot be another point u on C_2 with $Tu = w^*$, i.e. $u^* \in S_2$ and $C_1 = C_2$ in contradiction to our assumption.

b) Let u_0 be a solution of $Tu = \theta$, which exists by Theorem 4. This theorem also yields a neighborhood $S(u_0, r_0) = S_0$ such that the equation Tu = w has a unique solution u(w) in S_0 for all w with $||w|| \leq c - \epsilon$, $0 < \epsilon < c$, and u(w) is continuous there.

We choose a number R > 0 arbitrarily large and construct a continuous mapping T_a^{-1} with $T_a^{-1} T = I$ defined for all w with $||w|| \leq R$ and with range in a certain domain of B_1 . This can be done as follows:

For $||w|| \leq c - \epsilon$ the equation Tu = w has a unique and continuous solution, u(w), if u is prescribed to lie in S_0 . The (inverse-) images u for these w form a connected closed set in B_1 . Let Tu = w be uniquely solvable for all w in the disk $||w|| \leq R_1$ by the continuous function u = u(w) and let the set $D_{(R_1)} = \{u = u(w) : ||w|| \leq R_1\}$ be a connected, closed set containing the point u_0 .

Because of the continuity of T the restriction of T to $D_{(R_1)}$ is a one-to-one mapping of $D_{(R_1)}$ onto $\overline{S}(\theta, R_1) \subset B_2$ which is continuous in both directions, i.e. a homeomorphism. In particular, the intersection $S(\tilde{w}, c) \cap \overline{S}(\theta, R_1)$ has its preimage in the corresponding intersection $S(\tilde{u}, r) \cap D_{(R_1)}$ for each $\tilde{w} \in \overline{S}(\theta, R_1)$ with $T\tilde{u} = \tilde{w}$. Now we consider the sphere $||w|| \leq R_1 + \frac{c}{2} = R_2$. Each w in the shell $R_1 < ||w|| \leq R_2$ lies in some sphere $||w - \tilde{w}|| < c$ with $||\tilde{w}|| \leq R_1$. We assign to these w the u = u(w) with Tu = w which lies in the corresponding neighborhood $S(\tilde{u}, \tilde{r})$ with $T\tilde{u} = \tilde{w}$. This defines u(w) uniquely. This follows from a) since if \tilde{w}_1 and \tilde{w}_2 are two points in $S(\theta, R_1)$ with $||w - w_i|| < c, i = 1, 2$, then w, w_1 and w_2 lie also in the sphere $S(w^*, c)$ with $w^* = \frac{1}{2}(w_1 + w_2)$ and $||w^*|| \leq R_1$. Therefore, it follows from a) that our assumptions stated for $||w|| \leq R_1$ are

true also for $||w|| \leq R_1 + \frac{c}{2}$.

Thus, we get a homeomorphism between a certain domain $D_a \subset B_1$ and B_2 . Contrary to the case of a linear operator there may be more than one such domain. If there is another solution $u^* \notin D_a$ of $Tu = w^*$ for any $w^* \in B_2$ then by the same construction, with w^* as new center, we obtain another domain D_a^* , and the restriction of T to D_a^* is a homeomorphism on D_a^* onto B_2 .

We prove that D_a and D_a^* are disjoint. Let $\tilde{u} \in D_a \cap D_a^*$. Then we connect \tilde{u} with u^* by a curve C^* lying in D_a^* . This curve has an image TC^* in B_2 , which is also a curve because of the continuity of T. TC^* has an inverse image $C'_a = T_a^{-1} TC^*$ in D_a given by the homeomorphism D_a onto B_2 , which is also a curve. C'_a and C^* coincide in $D_a \cap D_a^*$. Let u' be the first point of C^* from \tilde{u} lying on the boundary of D_a . This exists since $u^* \notin D_a$. Then it follows from the continuity of C'_a that $u' \in C'_a \subset D_a$, in contradiction to the openess of D_a . Therefore, D_a and D_a^* are disjoint.

Let T be defined on the whole space B_1 . If there is only one domain D_a then the assertion is true. Let there be at least two such domains. Then by a similar consideration connecting two points, $u \in D_a$ and $u^* \in D_a^*$, with the same image by a curve one finds that T cannot be defined on the boundary of such a domain D_a . This contradicts the assumption and completes the proof.

Corollary. If we merely require the assumptions of Theorem 6.1 to be satisfied on a subdomain $D' \subset D$ then all

assertions remain true except the last one that T is a homeomorphism of B_1 onto B_2 . If there exist two subdomains D_a and D_a^* of D' then the assumptions of Theorem 6.1 cannot hold on a whole path P in B_1 connecting D_a and D_a^* : Either T is not defined everywhere on P as a continuous operator or there does not exist an operator K with bounded inverse satisfying α), β and γ of Theorem 4.1.

A similar theorem can be stated using the assumptions of Theorem 4.1 a as a basis.

7. DIFFERENTIABLE OPERATORS, IMPLICIT FUNCTION THEOREMS.

If the operator T is assumed to be differentiable in the sense of Fréchet (section 2 c) then the operator $T'_{(u_0)}$ can be taken as operator K in the previous theorems and similar theorems can be stated.

THEOREM 7.1. a) Let T_0 be defined on the sphere $S_0 = S(u_0, r_0) \subset B_1$ and let

$$T_0 u_0 = \theta . \tag{7.1}$$

b) Let T_0 have a (not necessarily bounded) derivative $T'_{0(u_0)} = K$ at the point u_0 and let K have a bounded inverse K^{-1} defined on B_2 .

c) Assume there are positive numbers $r' \leq r_0$ and $m = m(r') < ||K^{-1}||^{-1}$ with

$$|T_0(u_0 + u - v) - T_0 u + T_0 v|| \le m ||u - v||, u, v \in S(u_0, r').$$
(7.2)

Then an $\Omega = (u_0, r, a, b)$ -neighborhood of T_0 exists in which the equation

$$Tu = \theta, \qquad (7.3)$$

2

is uniquely solvable and the solution u(T) is continuous at $T = T_0$. More precisely in Ω we have.

 $\| u(T) - u_0 \| \leq C \| T u_0 \|$ with a constant C. (7.4)

L'Enseignement mathém., t. IX, fasc. 3.