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such that I(f) = I.Lf(x) g(x) dm(x) for all fe L(1,1) and I;{f(x) dm(x) |

< B || f||is- If (M, m) is non-atomic we can use this to show that g = 0 a.e.
and, hence the trivial functional | = 0 is the only continuous linear functional
on L(1,q9), 1 < g < o0.

Section 3. INTERPOLATION THEOREMS

Suppose T is an operator which maps L (p;, ¢;) boundedly into L(p';, q';),
i = 0, 1. An interpolation theorem for L (p, q) spaces can then be described
as a method which leads to inequalities of the form || 7f || ;.o < B||f ||
B independent of f'e L (p, g). The intermediate spaces L (p, g) and L(p’, q')
and the corresponding constant B are determined by the method of inter-
polation.

Interpolation theorems can generally be classified as either weak type
or strong type. The two types of theorems are easily characterized. The
weak type theorems are proved by real variable methods which utilize
only minimal hypotheses. Since the weak hypotheses are characteristic of
the real method of proof, the conclusions are limited. In the case of Lorentz
spaces the essential part of the weak type hypothesis is that the range spaces
of the given end point conditions are weak L? spaces. We can then conclude
only that an intermediate space L (p, q) is mapped boundedly into an appro-
priate space L (p’, q¢'), where ¢' = ¢. In order to utilize a stronger hypothesis
to arrive at a stronger conclusion, we must go to the complex methods of
proof which are characteristic of the strong type theorems. The two methods
also differ in the intermediate spaces obtained and in the behavior of the
corresponding constants B. In general, we obtain more intermediate spaces
by the weak type methods. However, the constants corresponding to the
weak type methods are, in some sense, not as satisfactory. This is seen in
the prototypes of the weak and strong type theorems, the interpolation
theorem of Marcinkiewicz and the Riesz-Thorin convexity theorem.

An operator 7 mapping functions on a measure space into functions
on another measure space is called quasi-linear if T ( f+g) is defined when-
ever Tf and Tg are defined and if |T(f+g)| £ K(| If|+| Tg|) ae.,
where K is independent of f and g. An argument similar to that which led
to (1.6) gives

(3.1) (T(f+9)* () £ K((TH*(t/2) + (Tg)* (1/2)).
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Our weak type theorem is a consequence of Hardy’s inequality.

WEAK TYPE THEOREM: If T is quasi-linear and

H) |11,
then

Y

. 5 i=031: Po <DPi, p;7ép’13

PLQE ==

where q <s and, for 0<0 <1, 1/py= (1-0)/po + 0/py, 1/p,

= (1=0)/po + 0/py. If t = min (q, qo, qy), then By = O ([9(1— 01 ”’)

Proof. Letp = p,and p’ = p,. Since
it 1s sufficient to prove C) with s = gq. Slmllarly, we assume that Jo = g1 =
oo and that ¢,, g, < ¢, except when p; = g, = oco. Put

ORI VYRS
HOE

0 otherwise

1/py — 1/p° 1/p’ — 1/p]|
and £, (x) = £(x) — £(x), wherey:lﬁ _12‘; =1;§_1/Lp.

It follows from the definitions that

t* f*(y) O<y<ty
f () = { y =
(3.2) < and
x f*@® O<y<?t
Lft(y)é{f*(y) y =1,

Case 1: p; < o0, g < 0. ,
We use (3.1), a change. of variables and Minkowski’s inequality (or, if
g < 1, an obvious substitute which introduces an additional factor of 2'/9)

to obtain

| Tf ;e = K217 (q/p)“q{(f [£/7 (Tf‘)*(t)]q )”"\

® , d
+ (j' [tllp (Tft)*(t)]q-t—t)”q} .
0
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By H), this sum is majorized by

Podo

: v . opp . dt .,
K2 Gl ([ [Bo 017 | [ )
0

. dt

P1‘11]q _2_)1/4 } )

By using (3.2) and Minkowski’s inequality again, we dominate this by
{ K21p (q/pf)llq } .

+ (J [By P
0

o0 t7 ’
{Bo (J‘ t—q(l/p{,—l/p’) [@ j‘ [f* (y)]qoy(qo/po)~1 dy]q/qofl_t)l/q
0 Poo l

o , , q (9] _ dt
+ Bl(i (1 =UPD [ ZL [ [ f* () ]aytar/ey) 1dy]q/q17)1/q

Pivw
© ! dt
+ B; (j 1a(1/p"=1/p}) [@_ j' [f* (t)’)]th y(q1/p1)—1 dy]q/ql _)1/q } ‘
0 Pio t

Again changing variables and then using Hardy’s inequality, we majorize
the last sum by

K217 |y I“”q(P/p’)“q{ " " & T Bl} I ‘
(1 = (po/p))!* ~ ((ps/p) — D' |

(Note that in order to apply Hardy’s inequality it was necessary to weaken
the hypothesis so that g/q; = 1,1 = 0, 1.)

Case 2: py < 00, g = 0.

Following the proof of case 1, we obtain

1y

VP (Tf)* (f) < K-2/¥ { B, tllp’—l/p{,(flﬂj' [j* (y)]qoy(qo/po)—l dy)llqo
Po o

+ B1 (1P =1/p" (C‘_Il }o[f* (y)]q1 y(fh/m)-l dy)1/q1

Py
ty
+ B, 1P =1/p; (q_l j [f* (t)]q1y(q1/p1)-l dy)l/‘“ } .
Pio

Then, after use of the estimate y'/? f* (y) < || /||, the proof of case 2
is clear.
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The remaining cases are

Case 3: p, =¢q, = o, g < 0,
and
Case 4: p; = q, = q = 0.

The proofs of these cases follows the proofs of cases 1 and 2, except we
now use the estimate || £, || < f* (7).

An operator 7 which maps functions on a measure space into functions
on another measure space is called sublinear if whenever Tf and Tg are
defined and c is a constant, then T ( f+g) and T (¢f) are defined with

JIT(f+9)|§ITf|+|Tg| and

(3.3)
LIT(h)] = lel-|TSf].

It follows that
(3.4) [[Tfl = 1Tgll =21T(f—g)]|.

Our analogue of the Riesz-Thorin convexity theorem depends on
harmonic majorization of subharmonic functions.

STRONG TYPE THEOREM: Suppose T is a sublinear operator and
* .
” Tf HI’;q; é Bi ”f Pid;? I = 0, 1.

Then || Tf || ygq0 < BBo ™ By || ||y, Where 1/pg = (1—06)/po + 0/p1,
1/pe = (1= 0)/ps + 0/py, 1/qp = (1—06)/go -+ 6/q; and 1/qy = (1—-0)/qe
- 0/q;, 0 < 0 < 1.

Proof. Let py=p, gy = g, s == P, and g = ¢.
Suppose that fis a simple function. Then f can be written in the form

f(x) = T (Go (%)) 7°(Gy (x)),
where G; is a non-negative simple function such that
;i‘Ii é B(”f”;‘l)q/ql 2 i = 0’ 1 ‘

To see this, consider (f*)**, 0 < r < min (po, P1> 90> 915 q’o, ‘]’1)- We have
(f*)** (¢) = (ho (1))' ~° (hy (1))°, where

h,(f) = [(f*)* *(t)]q/qi ta/ai) @/p—qilpi) , i =0,1.

(3.5) | G:
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> dt
If Sh(u)=(]I[h (t)]’Y)”', it is not difficult to see that f* (u)

< S ((f*)**) (1), and hence, by Holder’s inequality, that f *(u) < (Sh, (1))' ~°
(Sh, ())°. G; is obtained by choosing values smaller than Sh;. (3.5) follows
from Hardy’s inequality.

Let F(x,z) = /™ [G, (0] 2 [G; (x)]5, z complex, 0 < Rez £ 1.

Since G; is simple and non-negative, i = 0, 1, TF ( , z) is defined for z
fixed. By considering first a countable dense set {zk} x>1 and then.extend-
ing by continuity to all z, we may assume that except for a set of measure
zero | TF (v, z) | is defined for all z and y fixed and (3.3) and (.3.4) are true
pointwise in y. Fix such a point y. (3.3) and (3.4) imply that [ TF (y, z)[
i1s a bounded and continuous function of z, 0 < Rez < 1. We need that
log | TF (y, z) | is subharmonic in 0 < Rez < 1. This follows from the
fact that |TF (y, z) | €"® is subharmonic for every harmonic function / (z).
That is, let H (z) be analytic with real part 4 (z). For a fixed point z let
Zrms K = 1, ..., m, be points which are evenly distributed over the circle with
radius r and center z, m = 1. If D (x, m, z) is defined by

1 m
e F (x,z) = — Y F(x, zy,,) "™ 4+ D(x, m, z),
k=1

then

m

1
"D TF(y,2)| < — 3 "™ | TF(x, 24, | + | TD(y, m,2)].

k=1
N m
Since D (x, m, z) is of the form ) (¢;(z) — - Y @, (z,) Xe; (x), with @;
j=1 Ny=1
analytic, we may again assume that (3.3) holds pointwise in y, so
| TD (y, m, z) | - 0 as m — 0. Then

2n

1 : .
eI TF(y,2)| < o~ O TF(y, z+re) | 0,
o
so log | TF (v, z) | is subharmonic.

The preceding paragraph implies that log l TF (y, z)| 1s majorized in
0 < Rez < 1 by the Poisson integral of its boundary values. In particular,

log | TF (y,0) | = [ Po(6,¢)log| TF (y, ity | dt + | P,(6,t) log | TF(y,
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1+ it) | dt, where Py (0, ) and P, (0 t) and P, (6, t) are positive, [ Py(0,1)

dt =1—0and | P, (0,1)dt = 0. We then obtain

— O

| TF(y,0) " = {exp(l—_l_—ej Py (0,0 1og | TF (y, it) l’dt)}“"

{exp( [ P 0,0)log | TF(y,1+it)|" dt)}

-~ 00

Noting that TF (y, 0) = Tf(y), we use Jensen’s inequality to obtain
| Tf ()| < Ho(»)' ™% Hy (y)°,
where

1
Hy(y) = (-—-—I Py (0,1) | TF (y,it)|"dt)''"

== 0D
and

1
Hy(y) = (———~f Py (0,0 TF(y, 1+it)[mde)'/".

== 00

Holder’s inequality implies (Tf)** (y) = { Ho (» }'~° {H" (»)}° and then

Hpoq H 1 Hpm

1
By Fubini’s theorem, H, () < (——~ j P (0, t) [TE** (y, it)]"dr)!/".

— 00

Hence

L7 .
“ H, “Poqo < (p I (1 9-[ Py (6,1 [TF**(y,it)]’dt)q"/'y(q“/p")_ldy)'/q _
00 —V -
By Jensen’s inequality the right hand term is dominated by
1
po (j) (____j P, (0, t)[TF**(y lt)]qodt) (90/pd) - ldy)llqu

Thus, using Fubini’s theorem, our hypothesis and (3.5), we have

1
” Hy ”poqo = (__ j Py (0,1) ” TF(-,it) “ dt 1y
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< BBy (1] o0 | FCin) [, d0)
= 58, Gy 5, < BB L1 [1Jo
Similarly, | I, Hpiqi < BB, []If s/

We now have

(3.6) | Tf | e < BBo™°BY ||f || g

where f is any simple function. |

For any f'e L (p, q) we find a sequence of simple functions f, such that
1/ lloa = ||.f |loq and | Tf, | = | If | a.e. Then, using Fatou’s lemma, we have
(TF)** (¢) £ lim inf (Tf,)** (¢) and || If||, o < liminf || TF, ||,q. (3.6)
then implies that || Zf||;, < BBo ™ BY || /|| e

Note that in case p, = Go, P; = q1, Po = qo and p; = ¢; the proofis
simpler and the constant B may be omitted from the conclusion so the
constant By % B of the Riesz-Thorin convexity theorem is retained.

Section 4. APPLICATIONS

Many classical operators are known to map L? boundedly into L7,
where the points (1/p, 1/p") form a non-degenerate line segment and p < p'.
Operators of this type are, for example, the Fourier transform [32, Vol. I,
p. 254], the Hilbert transform [23], the Hardy-Littlewood maximal function
operator [32, Vol. I, p. 32], singular integral operators [4] and fractional
integral operators [12] and [28]. We see from the weak type interpolation
theorem that operators of this type map L (p, g) boundedly into L (p’, ¢),
0 < g £ oo. Hence, we know the behavior of the operators acting on some
additional spaces. If p = p’, this is the only extension of the L? results.
However, if p < p’, the L? result is improved, since we see that L? is
mapped boundedly into L (p’, p), a space which is continuously contained
in L7,

The germ of the weak type theorem can be seen in a theorem of Hardy
and Littlewood on the rearrangement of Fourier coefficients. (See [32, Vol. 11,
p. 130].) Let us develop an L (p, q) version of this result for the Fourier
integral transform.
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