Definitions

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 13 (1967)
Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
12.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
4) Let P_{1} and P_{2} be any two distinct points on $\bar{E}, Q_{1}=f\left(P_{1}\right)$, and $Q_{2}=f\left(P_{2}\right)$. Let $P_{1} P_{2}$ denote the closed interval determined by P_{1} and P_{2} and $Q_{1} Q_{2}$ the closed interval determined by Q_{1} and Q_{2}. Let the curve $C=f\left(P_{1} P_{2}\right)$. Then there exists a point R on C such that the tangent line to C at R is parallel to $Q_{1} Q_{2}$.
5) With the notation as in 4), let the deviation $D\left(P_{1} P_{2}\right)$ denote the L.U.B. of the acute angles φ between the surface chord $Q_{1} Q_{2}$ and any tangent line to C. Then for every $\in>0$ there exists $\delta>0$ such that if $0<\rho\left(P_{1}, P_{2}\right)<\delta$ then $D\left(P_{1} P_{2}\right)<\epsilon$.
6) For every $\in>0$ there exists $\delta>0$ such that if P_{1} and P_{2} are any two distinct points of \bar{E} such that $\rho\left(P_{1}, P_{2}\right)<\delta$ then $\psi<\epsilon$, where ψ is the acute angle between the surface normals at $f\left(P_{1}\right)$ and at $f\left(P_{2}\right)$.

We need to give some preliminary definitions.

Definitions

We shall call a surface $S=f(\bar{E})$ simple when the boundary of \bar{E} is a simple closed polygon. We shall first be concerned only with simple surfaces.

A polyhedron Π is said to be inscribed on S when all the vertices of Π are in S and the orthogonal projection, Proj Π, on the $x y$ plane is \bar{E}. By the norm of a polyhedron we shall mean the greatest of the diameters of the faces (triangles) of Π.

Let Π be inscribed on S and let A be a face of Π. By the deviation $D(A)$ of A we shall mean the L.U.B. of the acute angles between the normal to A and the surface normal at a point of the surface subtended by A. By the deviation norm of Π we shall mean the greatest of the deviations of its faces.

We shall consider sequences of polyhedra which are inscribed on S. A sequence $\left\{\Pi_{1}, \Pi_{2}, \ldots\right\}$ of such polyhedra is said to be a proper sequence of polyhedra inscribed on S when the corresponding sequence of norms $\left\{N_{1}, N_{2}, \ldots\right\}$ converges to zero and the corresponding sequence $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ of deviation norms also converges to zero.

We now give our basic definition of surface area:
Let E be a bounded set on the $x y$ plane whose boundary is a simple closed polygon. Let $f(x, y)$ be defined and continuously differentiable on \bar{E}. If to every proper sequence of polyhedra inscribed on $S=f(\bar{E})$ the corresponding sequence of polyhedral areas $\left\{A_{1}, A_{2}, \ldots\right\}$ converges, then
then we say that S is quadrable anf that the necessarily unique limit of $\left\{A_{1}, A_{2}, \ldots\right\}$ is the area of the surface S.

Theorem 1.

Let E be a bounded set on the $x y$ plane whose boundary is a simple closed polygon. Let $f(x, y)$ be defined and continuously differentiable on \bar{E}. Then there exist a proper sequence $\left\{\Pi_{1}, \Pi_{2}, \ldots\right\}$ of polyhedra inscribed on S.

Proof:

For every positive number r there exists a decomposition of \bar{E} as the union of closed right triangles whose diameters are all less than r. The vertices of these right triangles determine a finite set of points in S whose projection is precisely the set of these vertices. This set of points in S determines a triangular polyhedron which is inscribed on S. We shall show that by making the norm of the decomposition of \bar{E} sufficiently small we can make the acute angle between the normal to each polyhedral face and the surface normal at any point of the portion of S which is subtended by the particular face to be arbitrarily small. Let $\varepsilon>0$ be given.

By property 3) there exist positive real numbers $k<1$ and δ_{1} such that if $P P_{1} P_{2}$ is a right triangle on \bar{E} (P being the right angled vertex) with diameter $<\delta_{1}$, then $\left|\cos \left(\overrightarrow{Q Q}_{1}, \overrightarrow{Q Q}_{2}\right)\right|<k$. Let the decomposition of \bar{E} by right triangles be of norm less than δ_{1}.

By property 1) there exists a positive real number θ such that if $\left|\sin \left(\overrightarrow{Q Q}_{1}, \overrightarrow{Q Q}_{1}{ }^{\prime}\right)\right|<\theta$ and $\left|\sin \left(\overrightarrow{Q Q}_{2}, \overrightarrow{Q Q}_{2}{ }^{\prime}\right)\right|<\theta$, then the acute angle between ${\overrightarrow{Q Q_{1}}}^{\prime} \times \overrightarrow{Q Q}_{2}$ and $\overrightarrow{Q Q}_{1}{ }^{\prime} \times{\overrightarrow{Q Q_{2}}}^{\prime}$ is less than $\varepsilon / 3$.

By properties 4) and 5) there exists a positive real number δ_{2} such that if $P P_{1} P_{2}$ is a right triangle on \bar{E} with diameter less than δ_{2}, then the angle between the chord $\overrightarrow{Q Q}_{1}$ and the tangent line at Q to the curve on S subtented by $\overrightarrow{Q Q}_{1}$ is less than θ. Similarly, the angle between the chord $\overrightarrow{Q Q}_{2}$ and the tangent line at Q to the curve on S subtended by $\overrightarrow{Q Q_{2}}$ is less than θ. It follows that the angle between the normal to the polyhedral face $Q Q_{1} Q_{2}$ and the surface normal at Q is less than $\varepsilon / 3$.

By property 6) there exists a positive real number δ_{3} such that if the diameter of the triangle $P P_{1} P_{2}$ is less than δ_{3}, then the angle between the surface normals at any two points of the portion of S which is subtended by the polyhedral face $Q Q_{1} Q_{2}$ is less than $\varepsilon / 3$.

Let δ be the least of δ_{1}, δ_{2}, and δ_{3}. If D is any decomposition of \bar{E} int closed right triangles of norm less than δ, then if $Q Q_{1} Q_{2}$ is any of the
polyhedral faces, the L.U.B. of the angles between the normal to $Q Q_{1} Q_{2}$ and the surface normals at any point of the portion of the surface subtended by $Q Q_{1} Q_{2}$ is less than ε.

Thus corresponding to a sequence $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots\right\}$ converging to zero, there exists a sequence of polyhedra with corresponding sequence of norms converging to zero and also with corresponding sequence of deviation norms converging to zero.

Theorem 2.

Let E be an open set on the $x y$ plane whose boundary is a simple closed polygon. Let $f(x, y)$ be defined and continuously differentiable on \bar{E}. Then for every proper sequence of polyhedra inscribed on S the corresponding sequence $\left\{A_{1}, A_{2}, \ldots\right\}$ of polyhedral areas converges and moreover it converges to the double integral

$$
\int_{\bar{E}} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d(x, y)
$$

Proof:

For each n, the projection of the faces of Π_{n} constitute a decomposition D_{n} of \bar{E} as the union of a finite set of closed triangles. Let the triangle $\Delta_{m n}=Q Q_{1} Q_{2}$ be the face of Π_{n} and let $\Delta_{m n}^{\prime}=\operatorname{Proj} Q Q_{1} Q_{2}=P P_{1} P_{2}$. Let $\beta_{m n}$ be the acute angle between the normals to $\Delta_{m n}$ and to $\Lambda_{m n}^{\prime}$. Let $A_{m n}$ and $\Delta_{m n}^{\prime}$ denote the areas of $\Delta_{m n}$ and $\Delta_{m n}^{\prime}$, respectively. Then $A_{m n}=A_{m n}^{\prime}$ $\sec \beta_{m n}$ and the area A_{n} of Π_{n} is $\Sigma A_{m n}^{\prime} \sec \beta_{m n}$.

Let $P_{m n}$ be any point in $\Delta_{m n}^{\prime}$ and let $Q_{m n}$ be the point of S whose projection is $P_{m n}$. Let $\theta_{m n}$ denote the acute angle between the surface normal at $Q_{m n}$ and the z-axis.

Let $\left\{\Pi_{1}, \Pi_{2}, \Pi_{3}, ..\right\}$ be any proper sequence of polyhedra inscribed on S. We shall associate to $\left\{\Pi_{1}, \Pi_{2}, \Pi_{3}, \ldots\right\}$ certain related sequences.

$$
\begin{aligned}
& \Pi_{1}, \Pi_{2}, \Pi_{3}, \ldots \\
& \phi_{1}, \phi_{2}, \phi_{3}, \ldots \\
& \Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots \\
& \Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}, \Sigma_{3}^{\prime}, \ldots
\end{aligned}
$$

The sequence $\left\{\phi_{1}, \phi_{2}, \phi_{3}, \ldots\right\}$ is the corresponding sequence of deviation norms. The sequence $\left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, ..\right\}$ is the corresponding sequence
of polyhedral areas. $\Sigma_{n}==\sum_{m} A_{m n}^{\prime} \sec \beta_{m n}$. In the fourth sequence $\Sigma_{n}^{\prime}=\Sigma A_{m}^{\prime}$ $\sec \theta_{m n}$. Here sec $\theta_{m n}$ is the value of $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ at some point of $A_{m n}^{\prime}$. Thus the sequence $\left\{\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}, \Sigma_{3}^{\prime}, \ldots\right\}$ is a sequence of Riemann sums of the function $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ on \bar{E} with corresponding sequence of norms converging to zero. Since $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ is continuous on \bar{E}, this converges to the double integral $\oint=\int_{\bar{E}} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d(x, y)$. We will now consider the sequence $\left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots\right\}$.
Let θ denote the acute angle between the surface normal at a point of S and the z-axis. $\operatorname{Sec} \theta=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ is bounded on \bar{E}. Thus there exists an acute angle $\theta^{*}>0$ such that $\theta<\theta^{*}$ for all points of \bar{E} (i.e. for all points of S). Since $\sec \theta$ is uniformly continuous on the closed interval $\left[0, \theta^{*}\right]$, for every $\eta>0$ there exists $\tau>0$ such that if $0<\theta_{1}<\theta^{*}, 0<\theta_{2}<\theta^{*}$, and $\left|\theta_{1}-\theta_{2}\right|<\tau$, then $\left|\sec \theta_{1}-\sec \theta_{2}\right|<\eta$.

We now compare the corresponding sequences

$$
\begin{aligned}
& \left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots\right\} \\
& \left\{\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}, \Sigma_{3}^{\prime}, \ldots\right\}
\end{aligned}
$$

Let $\varepsilon>0$ be given. Take $\frac{\varepsilon}{2 A}$, where $A=$ area of \bar{E}. There exists $\tau>0$ such that if $\left|\theta_{1}-\theta_{2}\right|<\tau$, then $\left|\sec \theta_{1}-\sec \theta_{2}\right|<\frac{\varepsilon}{2 A}$. Since $\left\{\phi_{1}\right.$, $\left.\phi_{2}, \phi_{3}, \ldots\right\}$ converges to zero, there exists a positive integer N_{1} such that if $n>N_{1}$ then $\phi_{n}<\tau$. Thus if $n>N_{1}$, then

$$
\left|\Sigma_{n}-\Sigma_{n}^{\prime}\right|=\left|\sum_{m} A_{m n}^{\prime}\left(\sec \beta_{m n}-\sec \theta_{m n}\right)\right|<\frac{\varepsilon}{2 A} \Sigma_{m} A_{m n}^{\prime}=\frac{\varepsilon}{2} .
$$

Since $\left\{\Sigma_{n}^{\prime}, \Sigma_{2}^{\prime}, \Sigma_{3}^{\prime}, \ldots\right\}$ converges to \ddagger, there exists a positive integer N_{2}. such that if $n>N_{2}$, then $\left|\Sigma_{n}^{\prime}-\mathfrak{f}\right|<\frac{\varepsilon}{2}$. Let N be the larger of N_{1} and N_{2}. If $n>N$ then
$\mid \Sigma_{n}-$ 甲 $\left|=\left|\Sigma_{n}-\Sigma_{n}^{\prime}+\Sigma_{n}^{\prime}-\emptyset\right| \leqslant\left|\Sigma_{n}-\Sigma_{n}^{\prime}\right|+\left|\Sigma_{n}^{\prime}-母\right| \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\epsilon\right.$.

Thus $\left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots\right\}$ converges to 円.
Thus far we have defined the concept of area only for surfaces which are not only continuously differentiable but are also simple. We now remove this latter restriction.

Let E be any quadrable (i.e. Jordan measurable) open set on the $x y$ plane having for boundary a simple closed curve. Let f be defined and continuously differentiable on \bar{E}. Let P be any subset of \bar{E} whose boundary is a simple closed polygon. The surface $S_{p}=f(P)$ is quadrable. Denote its area by A_{p}. Consider now the set of all such areas A_{p}. Since $\sec \theta$ is bounded on \bar{E}, for every polygonal subset P of $\bar{E}, A_{p} \leqq A M$, where A is the area of \bar{E} and M is an upper bound of $|\sec \theta|$ on \bar{E}. We now define the area of $S=f(\bar{E})$ as the L.U.B. of the set [all $\left.A_{p}\right]$.

Theorem 3.

Let E be a quadrable open set on the $x y$ plane having for boundary a simple closed curve. Let f be defined and continuously differentiable on \bar{E}. Then the area of $S=f(\bar{E})$ is given by

$$
\oint=\int_{\bar{E}} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d(x, y) .
$$

Proof:

Let B denote the L.U.B. of the set [all $\left.A_{p}\right]$. For each $P, A_{p} \leqslant \Phi$ and hence $B \leqslant$ ¢. Suppose now that $\ddagger-B=2 \varepsilon>0$.

Let $\left\{D_{1}, D_{2}, D_{3}, \ldots\right\}$ be any sequence of triangular " decompositions" of \bar{E} with corresponding sequence of norms converging to zero. Here we permit the triangles to abut beyond the boundary of \bar{E}. On each D_{n} form a Riemann sum of $F(x, y)=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}$ in the following manner: If a triangle does not abut beyond the boundary of \bar{E}, then take for the point P any point of the triangle. However, if a triangle does abut beyond the boundary of \bar{E}, let its contribution to the Riemann sum be zero. Now every sequence $\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ of such Riemann sums converges and moreover, it converges to \ddagger. Since $\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ converges to $\dot{\text { d }}$, there exists a positive integer N such that if $n>N$ then \mid 由 $-S_{n} \left\lvert\,<\frac{\varepsilon}{2}\right.$.

On D_{n}, the set of the triangles which do not abut beyond the boundaries of \bar{E} constitutes a polygonal subset of \bar{E}. Call it P_{n}. There exists a triangular
decomposition D_{n}^{\prime} of P_{n} such that if S_{n}^{\prime} is a Riemann sum of $f(x, y)$ on D_{n}^{\prime}, then $\left|A_{p_{n}}-S_{n}^{\prime}\right|<\frac{-}{4}$ and \mid 由 $-S_{n}^{\prime} \left\lvert\,<\frac{\varepsilon}{2}\right.$. It follows that $A_{p_{n}}>B$. This contradiction shows that $B=$ ゅ.

BIBLIOGRAPHY

[1] Serret, J. A., Cours de Calcul Differentiel et Integral. 1868.
[2] Schwarz, H. A., Sur une définition érronée de l'aire d'une surface courbe. Ges. Math., Abhandl. II, 1882, p. 309.
[3] Lebesgue, Henri, Intégrale, longueur, aire. Annali di Mathematica pura ed applicata. 1902.
[4] Tonelli, A., Sulla quadratura delle superficie. Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Natur., Ser. I, 6 e série, 3 (1926).
[5] Rado, M., Sur le calcul des surfaces courbes. Fundamenta Math., 10 (1927).
[6] Zoard de Geocze, Quadrature des surfaces courbes. Math. Naturwiss. Berichte Ung., 26 (1910).
[7] Kempisty, Sur la méthode triangulaire du calcul de l'aire d'une surface courbe. Bull. Soc. Math. de France, 1936.
[8] Young, M. W. H., On the triangulation method of defining the area of a surface. Proc. London Math. Soc., 2nd series, 19 (1919).
[9] Rademacher, M., Ueber partielle und totale Differenzierbarkeit, II. Math. Ann., 81 (1920).

Dep. of Math.
New York University
New York, N.Y. 10453.

