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SOME CONVERSE THEOREMS ON THE ABSCISSAE

OF SUMMABILITY OF GENERAL DIRICHLET SERIES

C. T. Rajagopal

To the memory of J. Karamata

Introduction

Chandrasekharan and Minakshisundaram have generalized ([6], p. 21,

Theorem 1.82) a fundamental theorem which asserts the convergence of a

series when the series is (i) summable by a Riesz mean of general type X and

some positive order, (ii) subject to an appropriate Tauberian condition in
two-sided Schmidt form. Basing themselves on their generalization, they
have extended at one stroke ([6], pp. 86, 88, Theorems 3.71, 3.72), certain

converse theorems on the abscissae of summability of general Dirichlet
series, due in the first instance to Ananda-Rau ([2], Theorems 7, 8, 9) with
Tauberian conditions on individual coefficients of the series, and due

subsequently to Ganapathy Iyer ([7], Theorems 7, 8, 10) with Tauberian
conditions formally including those of Ananda-Rau. Now the fundamental
theorem generalized by Chandrasekharan and Minakshisundaram contains,
besides the two-sided Schmidt hypothesis taken into account by them, an
alternative one-sided hypothesis. And this theorem in its entirety, with both
alternative hypotheses, has a natural generalization in Theorem A (§ 1) of
which it is, in fact, the special case a b 0. In the present context the

significance of Theorem A lies in its being a basis, not only for the extensions
of Ananda-Rau's and Ganapathy Iyer's theorems given by Chandrasekharan

and Minakshisundaram, but also for some further extensions of the

same type (§§ 2, 3, 4).

It is relevant to mention here that the earliest version of Theorem A
is due to Karamata ([8], § 1.1) and concerned with the Cesàro first-order
mean of a series or sequence in place of a Riesz mean of general type X and
some positive order. Two later versions, also due to Karamata and found
in a paper by him dated November 1939 ([9], Théorèmes la), 3f)), are
concerned with an integral mean including as a special case a Riesz mean
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of general type X and some positive integer order. These later versions are

proved by him by using a difference formula applicable to such an integral
mean ([9], Lemma 2); and each of them has a hypothesis which is an
extension of the one-sided or two-sided Schmidt condition of slow growth
of a function. Theorem A is a reformulation of Karamata's later theorems

for any Riesz mean of a sequence, of general type X and some positive non-

integer order. In its fundamental case, a b 0, Theorem A has an analogue

for the Abel mean of type X instead of a Riesz mean of type 2, consisting
of a classical theorem ([5], Theorem E) and Bosanquet's addition thereto

([5], Theorem D). Theorem A itself has been proved by me ([12], Theorem

VI) by means of certain difference formulae due to Bosanquet ([4],
Theorem 1) which extend Karamata's difference formula just mentioned
to an integral mean of non-integer order. Bosanquet first proved his extended

difference formulae in 1943, independently of Karamata. But, as a matter
of fact, he had used them much earlier in 1931 in a form equivalent to
Karamata's ([3], Lemma 5). To complete the references in relation to
Bosanquet's difference formulae, mention may be made of certain other
difference formulae independently evolved by Minakshisundaram and

myself ([10], formulae (2.32), (2.38)) which are serviceable for much the

same purposes as Bosanquet's formulae.
This paper deals specifically with general Dirichlet series of type / as

distinguished from those of type X. However, as far as Riesz typical means
alone are concerned, there is no distinction between means of the two types,
and so (for convenience) the Riesz means of this paper are taken to be of

type / or (more explicitly) of type ln, where / or ln (n 1, 2, is a divergent

sequence strictly increasing and positive.

§ 1. Notation and auxiliary results

Let <^+<22 + be a real series and / a sequence {/„} such that

1 /jl <C I2 < • • • 5 ln > 00

Then, as usual, we define the Riesz mean of Ian of type / or ln and order

r>0 by

t\ r1-- dMt) =-x) xr
W

0 0

1 ^ AV(X)\r-1 .«r /v\ 7. — i \ /(x — ty 1
Ax (t) dt

where A\ (x) is the usual Riesz sum of lan of type / or ln and order r,
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Ai(t) + <2 2 "F ••• + ûn ln<t < 4+1 (n>l)

^(0 0 for t < lt

Again, as usual, we define A°t(t) Ax (t) and define as follows summability
of Ian to sum S by the Riesz mean of type ln and order r>0, briefly called

summability (R, r) of Zan to S:

Al (Y)
— » S or Ari(x).— Sxr o (xr), x -> co

xr

In using this definition we may suppose (without loss of generality) that
S 0 since this merely means our considering Zan — S instead of Zan.

Furthermore, when considering any other series Z?1+Z?2 + ...5 it is convenient

to denote by B\ (x), r>0, the Riesz sum for that series, defined exactly as

A\ (x) for Zan.

In the usual notation again, the general Dirichlet series of type / or 4,
with coefficients {an}, is

Vfl"Li7' S CT + !T
1 Ln

Corresponding to the summability (R9ln9r), r>0, of this series, to sum-
function f(s), we have the abscissa of summability ar (— oo <ar< oo)
characterized by the property that the series is summable (R, lni r), or not
summable (R, ln, r), according as o>or or a<ar.

In the above notation, we may state as under the lemmas and auxiliary
theorems used in this paper, denoting Riesz sums of order r>0, of Zan
and Zbn respectively, by Ar (x) and Br (x), with omission of the suffix / indicative

of the type which remains the same throughout.

Lemma 1 ([1], Theorem 6; [2], Theorem 1). Let Zbn 2anlyn, where

y >0 is a constant. If Ar (x) o (xß), x->oo, where j8>r>0, thenBr (x)
o (xß+7).

Lemma 2 ([1], Theorem 9; [2], Theorem 3). If Ak (x) o (xk+ß), x->oo,
where /c>0, ß>0, then Zbn ~ Zan l~nß is either summable (R, ln, k) or never
summable (R, ln, r) for any r however large.

Lemma 3 ([1], Theorem 4; [2], Theorem II). If
Ar(x) o { W(x) } (r > 0), A (x) O { V(x) } x -> oo
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where W(x), V(x) are positive monotonie increasing functions of x>0, then,

for 0<k<r, Ak (x) o(Vl~klr Wk,r) where V= F(x), W= W(x),x-+oo.

Lemma 3 is proved, in the papers referred to ([l], [2]), for any integrate

function 0 (x) instead of A (x) an.
In —x

Theorem A ([12], Theorem VI). If
Ar (x) o (xr+b), x —>• co where r>0,r + fr>0, (1.1)

and if with

0(x) ss xi~i*-b)lr9 a>bf
we have

either (a)

an + an+1 + ••• + an
lim max
n->co ln ^ lm < ln + £0 (ln) T

— °R (1) 9
C 0

:

OR (b)

— I an+l +an + 2+ ••• +IA nlim max ja o (1), -> 0,
n-yoo ln ^ Im < In + ^ On)

(1.2)

then

A (U O (O-> CO

Theorem B (Riesz; see e.g. [6], p. 81, Theorem 3.66). Suppose that the

Dirichlet series

00

V1 _L5 (T + IT,
1 ln

is summable (R, ln, q) for some g> 0 whena>d. 2) Suppose also that the sum-

function f (s) thus defined is regular for a>rj where rj<d, and

f(s) 0( |tD, 0, uniformly for o^rjJr£>r]

Then the Dirichlet series is summable (R, r'), r'>r, for o>t].

1) an,+ 1 + an,4-2 + ••• + am is to be interpreted as 0 when n m or ln lm.
2) This is no restriction since otherwise <?q co for all q.
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§ 2. A BASIC THEOREM

The theorem which follows supplies a basis for all the other theorems of
this paper, whether by itself or not.

Theorem I. (A) For the Dirichlet series

°o ~
SP n - •I 7s > s g Fit,
1 Ln

suppose that <Jr<p for some r> 0. Suppose also that there is a y and an
associated 6 (a) such that

cr < y < p 0 (x) x 1 - (p~y)/r (2.1)

with

EITHER (a)

— an + an+1 + ••• + am
urn max — oR (1), e - 0
n-^co I n ^ I m < E0 (ln) 'n

OR (b)

— I an+l + an + 2 + ••• + am I

lim max — o (1), s 0
n—+co ln ^ Im < £0 (ln) n

Then

(r-k)p +
<*k<

(2.2)

(2.3)

(B) If gr>p, instead of gr<p as in (A), and p is such that

either (a)

— an an+1 + + am
lim max - oR (1), e - 0
n—>co ln ^ I m < £ ln n

OR (b)

77—
I an +1 + an + 2 + ••• + «m I

lim max — o (1), s -» 0
n—*00 I n — ^ m *7 £ I n n

I (2.4)

then

Gk Gr (0 < k < r) (2.5)
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Proof. (A) The proof is given below only for the case in which {<an}

satisfies the hypothesis in alternative (2.2) (a), the remaining case of alternative

(2.2) (b) being exactly similar.
By the definition of or and that of y in (2.1), lan I~ny is summable

(R, ln, r) to sum S (say), and so

b1+b2 + (G?! l~i — S) + a2 l~2 + ••• is summable (R, /„, r) to 0,

i.e.,
Br (x) o(xr) x -> co (2.6)

while it is easy to prove that

lim max K + bn+1 + + bm
_ ^ ^ ^ ^ ^

oo in & im < in + £0 (in) j^~y — > e -> u, (Z. /;
n

distinguishing between the case y > 0 and y < 0. If y > 0, then

bn + bn+1 + + bm anln 7 + an+1 4+i + + am lmy (n > 1)

< l~y max (an + an+1 + + av)

from which and (2.2) (a) we have (2.7) as an immediate consequence.
On the other hand, if y < 0, then

bn + bn+1 + + bm < lmy max (av +av+1 + +am), (2.8)

where

4 < 4 < lm </„ + £# (4) < (1 + £) 4

0(0 //„y-"*»1"
< (l+g)|r-''+''1/r (say).

0(o Vv

Hence (2.8) gives us

+ 1 + ••• + b„
max ip-y

/ ~ 7

< max (av+ av+1 +...+aw)
M ly iT < ln + £0 (^n)

- W + av+i + ••• + ^ mMr) r) max r }
\'v/ \v (v <lv + eKB(ly)v
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In (2.9),

since y<0, p-y>0. Hence (2.9) in conjunction with hypothesis (2.2) (a)

leads to (2.7) again.
After this we appeal to Theorem A with (1.1) and (1.2) (a) replaced by

(2.6) and (2.7) respectively, to obtain

B(x) =B(ln) o(lpn-y) o(xO~v) in+i >x>ln^ co

From the last step and (2.6), we get, by using Lemma 3,

f (l--)(p-y) + - rl
Bk(x) r Vfor 0 <k <r

o (.xk+ß) where ß 1 — (p —y) > 0
r

Hence lanl~y~ß, being summable (R, /„, r), is also summable (R, /„, k)
by Lemma 2, i.e., Ianl~ns is summable (R, /„, k) for

o>y + ß y + 1 -~)(p-y) (l-~)p +- y. (2.10)
\ r \ r r

Since y><rr may be taken as near to or as we please x), (2.10) immediately
gives us the conclusion (2.3).

In arriving at (2.3) we have tacitly assumed that ar>—oo. When

ar —oo, we still reach (2.3) in the sense that ok — — oo for 0 <k<r, as

we may see by taking y — G (G positive and arbitrarily large) in the

preceding argument.

(B) As in (A), we confine ourselves to the hypothesis (2.4) (a), the
treatment of (2.4) (b) being precisely similar. Defining as in (A)

hi + b2 + (a1l1y — S) + a2l2 7 + (y><Jr),

we see that (2.6) holds again, while (2.4) (a) implies

— (h„ + h„+i + +bm)
lim max — oR (1), e 0
n—>°o ln — 'm < 'n "f" n

1) The truth of hypothesis (2.2) for some y, ar < y < p, implies its truth for any y\ ar < y' < y, so
that y may be replaced by y'.
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exactly as (2.2) (a) implies (2.7). Since now y>crl.>p, the above condition
in its turn implies

lim max (bn + bn+1 + +bm) oR( 1), e- 0

nIn l m < ^ n ® In

By Theorem A with hypothesis (1.2) (a) and a b 0, it follows that
lan l~s is convergent for any o such that o^y>or and therefore a0 <or.
But, in any case, (r0>(7/c>crJ. for 0<&<r and so we have the conclusion (2.5).

In the preceding argument we have supposed that ar<oo since or=co
implies trivially ak= oo.

§ 3. Applications to theorems of the Schnee-Landau type

Theorem II given next is the simplest of the theorems of the type
mentioned above and it is a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau's and Ganapathy Iyer's
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),

as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

Theorem II. Suppose that (i) the Dirichlet series,

Va"L *s a + it
i L

is summable (R, /n, q) for some when cr>p, (ii) the sum-function f (s)
thus defined is regular for o>r\ when q<p, and satisfies the condition

fis(|tD, r>0, uniformly for

(iii) the coefficients an of the Dirichlet series satisfy one of the two alternatives

(a), (b) of (2.2), but with 6 (x) x1_Then the Dirichlet series

is summable (R, k), 0</v<r, for

(r — k) p + krj
a >

r

Proof. By Theorem B, the Dirichlet series is summable (R, /n, rr), /*'>/*,
for G>rj and hence or> < j? < p. Therefore it is evident from the proof of



Theorem I (A) ending with (2.10) that the Dirichlet series is summable

(R, /„, k), 0<fc<r', for

whence the desired conclusion follows when we let r'-±r.

Theorem III. In Theorem II, let p be replaced by a+1 in hypotheses (i)
and (ii) ; also let hypothesis (iii) be replaced by

an 0R[rn(!„-/„_,)],/„ - /„-! (t^'j (3-1)

Then the conclusion is that Ian l~ns, 5 cr-j-h, is summable (R, k),
0 < k < r, for

Proof. As in the proof of Theorem II, the series Ian l~ns is summable

(R, r% r'>r, for <r>rj where now rç<a+l, so that cr,<f/<a+l. We
begin by choosing y and correspondingly 6 (x) as follows :

(r' —k)p + krj
a >

<7 >
(r — fc) (oc + 1) + (fc + 1) n

r + 1
(3.2)

rj < y < a. + 1 0 (x) x(r/~<x+y)/^/ + 1\

Then, since r'>r and y>rj, we have

r' — a + y r — a + y r — a + rj

(3.3)

r' + l r + 1 1

And so (3.1) gives us, as 72-+00,

"n oR rnin'+1 0r <"+1 (/„)]. (3.4)

Also, if /„ </m</n+£0 (/„), (3.1) again gives us as 00,

Or K Cm -0] if a > 0

an+l + an + 2 + + Clm —

Or K Cm - U] if a < 0

so that, whether a>0 or a<0,

an+1 + an+2 + ••• + am 0R [/" e 0(Z„)] (3.5)
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In (3.4) and (3.5),

^0(1«) K where p' a +
** 1

(>y).

Hence, combining (3.4) and (3.5), we get

lim max
n—>o° ln --I' I m < ln + eO (ln

an + an+1 + + a?J

—

r' + 1

oR( 1), e -> 0 (3.6)

(3.6) and the fact, following from Theorem B, that lan l~ns is summable
(R, /„, r'), enables us to use (2.10) in the proof of Theorem I (A) with r,
p replaced by r', p' respectively, so as to infer that Ian l~ns is summable
(R, /„, fc), 0</c<r', for

a >
(r' —k) p' + ky (rf —k) (a+ 1) + (fc + l)y

r' r' + 1

This yields (3.2) as required when we let r'~+r and recall that y (>rj) can be

taken arbitrarily close to rj.

Theorem IV. In Theorem III, (3.1) alone can be changed to

n

Z (av + |av|)^(/v-/v_1)1-" 0(C"+1>+1)1), /„ - /„_!

O
r — a — +

l r+l-p-iln p>l, a + I+ p
1 > 0,

(3.7)

w/Y/z //ze conclusion changed in consequence to the assertion that Ian I ns is

summable (R, /„, /c), 0 </t<r,/br

cr >
(r — k) (a + 1) + (k + 1 — p *) rj

r + 1 - p-1
(3.8)

Proof. We observe that Theorem III may be viewed as the limiting
case p oo of Theorem IV.

The proof itself is similar to that of Theorem III with the difference

that the choice of y and 6 (x) in (3.3) is now altered as below:

i; < y<a + 1 0(x)

1) We suppose that /0 0.
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And furthermore the step corresponding to (3.6) is obtained as follows.

Writing 1-1 /p 1 /p',weget, for /„</m</„+£0 (/„),

a„+1 + a„+2 + + am<an + 1 + | an+1 + + |

m-n
Z (av+n + \av+n\)lv+

V =1

(/v+„-/v+„_1)1/"'
X

X! (^v + « I^v + /j I) ^v + ti^Jv + n K + n—l)
.V =1

1 -p
1!p

X

X
-m-« 7 _ 7

V + 71 V + 71 1

o

o

/a +1 + l/p
»7

.V 1 V ~b 7Î

Hp'

71+1
(ft-* 00)

ja+l + l/p { g ^ (0 } 1/P'

(3.9)

where we have used the hypothesis (3.7) in the passage to the step preceding
(3.9). Taking m ft+1 in the step preceding (3.9), we get also

an + i — Or ja + l + l/p 0.+1 -01/p''
ln+ï

(ft-b 00)

Or [

oR[e+\ip{e(in+1)y»"]. (3.10)

From (3.9) and (3.10) with ft+1 changed to ft, we obtain, instead of (3.6)
in the proof of Theorem III,

lim max
n—><x> ln d; lm < ln + £0 (In)

ün + an+l + + an

ii:
— 0R (1) 8 -> 0

where
1 (r'-x-l+y)

p — cc + — + —
p (r' + l-p x)p'

After this the proof is completed exactly like that of Theorem III subsequent
to (3.6).
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It may be observed that the assumption a+l+/7-1>0 involves no loss

of generality since a+l+/?_1<0 makes successively an+\an\ 0, an 0

and so ar -co for all r>0.

Theorem Y. In Theorem II, let hypothesis (i) be omitted on account

of its being implicit (with q 0, p — a+1) in hypothesis (iii) modified as
under. Let hypothesis (ii) be retained with p changed to a+1, and hypothesis

(iii) replaced by

a„ OK(/„-/„_!)]• (3-11)

Then the conclusion is that Ian l~ns is summable (R, ln, k), 0<^k<r, for <j

satisfying (3.2).

Theorem VI. If in Theorem V, (3.11) alone is changed to

£ I av \p1FV(/„—Zv_1)1~p 0[Z£<«">+1], 1, « + 1

V =1

the conclusion will become the assertion that Ian l~ns is summable (R, /<),

0 <k<r,/or o satisfying (3.8).
The proofs of Theorems Y, VI are omitted, being obvious simplifications

of those of Theorems III, IV, involving the use of Theorem I (A) with
hypothesis (2.2) (b) instead of (2.2.) (a) as formerly. Theorems Y and VI,
as pointed out by Chandrasekharan and Minakshisundaram, yield Ananda
Rau's and Ganapathy Iyer's extensions of the Schnee-Landau theorem
when a->+0.

§ 4. Further applications

Theorem I (A) is a base which, combined with Theorem B, produces
Theorem II, and in this sense Theorem I (A) may be said to correspond
to Theorem II. There are results corresponding to each of Theorems III-VI
in the same sense. For instance, Deduction 1 below corresponds to Theorem

III and shows how other deductions corresponding to Theorems IV-YI
may be formulated. Deductions 2,3 are further examples of results based

on Theorem I.

Deduction L (A) In Theorem I (A), suppose that ar<a+1 and that

(2.2) (a) is replaced by

an 0*K 0(zr*+ff')/(r+1)). (4.1)



— 257 —

Then

(Tk<(r~/c)(a+ 1) +(fc + 1)<T"
(0<fc<r). (4.2)

r + 1

(B) In Theorem 1 (B), suppose that crr> a+1 and that (2.4) (a) is

replaced by

an 0R K (Z„ CO. (4.3)

Then

ak — (7r(0</c<r). (4.4)

Proof. The proof of part (A) is on the lines of that of Theorem III
excepting that now there is no appeal to Theorem B. The proof of part (B)

may need a further explanation as follows. The two conditions of (4.3)

together imply an oR (f^'1) which, along with the first condition of (4.3),

readily gives us

— an + an+i + ••• + r\lim max -xgpi oR (1), s -> 0
M—-> CO I I jfi I ji "H £ I n n

The conclusion (4.4) now follows obviously from Theorem I (B) with
alternative (2.4) (a) and p a+1.

The following deduction supplements the preceding and has been

kindly suggested by Prof. Bosanquet.

Deduction 2. Suppose that, in Deduction 1, we replace (4.1) in (A)
and (4.3) in (B) by the common hypothesis

an - 0R\rn (/„-/„-!)], <7r>0. (4.5)

Then we have, for 0</c<r, either (A) crfc<a+l, or (B) ok or,according
as Gr<a+1 or crr> a+3.

Proof (A) We choose y such that (0<) or<y<oc+l and, as in (2.6),
assume that Br (x) o (vr). Then we infer, from an application of Lemma 1,

Ar (x) o(xr+y) o(xr+a+1+5) for every 5 > 0. (4.6)

On the other hand, our hypothesis on an gives us first an — 6+(/* + 1)

°r Un
+ 1+Ô) and then, as in the proof of part (B) of Deduction 1,

r "h ß/J + l •** /1x A / a n\lim max —^ oR(1) 8 -> 0 (4.7)
n >0° In "SÊ, I m < Ine In n
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From (4.6) and (4.7) we obtain, appealing first to Theorem A and then to
Lemma 3,

A(x) o(xa+1+ô), Ak{x) o(xk+a+1+ô), 0 </c <r. (4.8)

Now Lemma 2 establishes the summability (R, /„, k) of lan l~(a+1 +<5), or, of
Ianl ns for cr>a+l+<5 with arbitrary <5>0. Hence <rfc<a+l as required.

(B) We now choose y such that (a+1 <) <7r<y and note that a+l+<5
can be replaced by y in (4.7) and (4.8), so that, arguing as before, we establish

the summability (R, ln, k), 0<&<r, of Ian l~f where y > or is arbitrary.
Hence ok<^or while ur< ak universally, i.e.,<7fc <rr as we wished to prove.

Deduction 3. If, for the Dirichlet series Ianl~n\ or> — oo and lim
/„//„_ i > 3, ok — orfor 0</c<r.

Proof The hypothesis lim 4//n_1> 1 makes

^n + i on+2 "F ••• ~f~ 0 for ln ln -j- sln

if s is sufficiently small and «>/z0 (s). Hence, for any p, in particular, for
p<crr,

— I an+l + ßn + 2 + ••• + I

/1X Alim max — o (I), s -> 0
n—>oo ln l m <. In s In n

The desired conclusion now follows from Theorem I (B) with alternative
(2.4) (b).

In the above proof we have supposed that ur<oo, the case or oo

being trivial.

Concluding Remarks

A few remarks are offered in conclusion, supplementing some made in
the beginning. Though Theorem A in one form is Karamata's (as already
said), a particularization of it ([12], Corollary VI with Tauberian O-condi-

tion) is a much older theorem of Ananda-Rau's ([1], Theorem 16; [2], Theorem

4). Ananda Rau left open one case of his theorem which Bosanquet
([4], Theorems 2, 3), Minakshisundaram and Rajagopal ([10], Theorem 1

and Corollaries 1.1, 1.3; [11], Theorem A and Corollaries Au A2) have

independently settled, even for some extensions of Ananda Rau's theorem.

The theorem mentioned at the outset as being due to Chandrasekharan

and Minakshisundaram ([6], p. 21, Theorem 1.82) is, in fact, a further
extension of one of the extensions of Ananda Rau's theorem given by
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Bosanquet ([4], Theorem 3). In the present context, it is rather less effective

than the completely independent two-fold result of Karamata's in the same

direction ([9], Théorèmes la), 3f)), reformulated as Theorem A. That is

to say, precisely, Theorem A gives rise to a basic converse theorem on
abscissae of summability of general Dirichlet series (Theorem I of this paper)
which is more natural and suggestive as well as more comprehensive than
the like basic theorem resulting from the line of development followed by
Chandrasekharan and Minakshisundaram ([6], p. 86, Theorem 3.71). 1)

I am indebted to Prof. Bosanquet for some very useful remarks on the

original version of this paper which have led to the preparation of the

present version.
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i) Indeed the Chandrasekharan-Minakshisundaram theorem just referred to is deducible from Theorem
I, its case or < a + p. [or, case ar ^ a + p.] from part (A) [or, part (B)] of Theorem I with hypothesis

(2.2) (b) and ' ,« 0 (.v) > ", 0 « - ('"« + >)/(' + /), Cr < y < a + „ [or> hypothesis (2.4) (b)
and x" *a+"]-
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