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satisfying 1 ^p<2<q^co, the series (6.6) converges normally in
Lqp{G) to T. Next, T is the limit in E of

as r -» oo and, since it is plain that supp Sr ç Q for every r, (ii) is easily
A

derived. Finally, if T were a measure jn, it would necessarily be the case

that supp ji c q and so, for every ne TV, one would have by (6.1) and (6.4)

fn (T) I U„*Tv„(0)[ I v„ du I

Ü M (ßh

which is finite since 0 is relatively compact. However, this plainly would

entail/* (F) < oo, in conflict with (6.8), so that T cannot be a measure and

(iii) is verified. This completes the proof.

6.4 Remark. Theorem 6.3 was proved by Hörmander ([14], Theorem

1.9) for G Rn and any given pair (/?, q) satisfying 1 < 2 < q ^ oo,

this result being extended to a general noncompact LCA G by Gaudry [5].

The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark

immediately following) for the case G =* Rn can also be extended to a

general LCA G and shows that, if either q ^ 2 or p ^ 2, then every
A

T e Lqp{G) is such that Lisa measure [and indeed a measure of the form
ij/Àr, where \jj e Lfoc (T) if q ^ 2 and ij) e Lfoc (T) if p ^ 2, and so

\j/ e Lfoc (T) in either case ]. Thus the hypotheses made in Theorem 6.3

about p and q are necessary for the validity of the conclusion.

Part 3: Applications to Fourier series

§ 7. Applications to divergence of Fourier series.

7.1 Throughout §§7-10, G will denote an infinite Hausdorff compact
Abelian group with character group T, and XG the Haar measure on G,

A
normalised so that Xg(G) 1. For any/e L^G), / will denote the Fourier
transform of /; for any finite subset A of F,

sAf I/(y)y (7.1)
yeA

is the d-partial sum of the Fourier series of /; and sp (/) will stand for



277 —

the spectrum offi i.e., for the support supp f {y e T \ f (y) ^ 0} of /.
The term "trigonometric polynomial" will frequently be abbreviated to

"t.p.". In addition, $ will denote the largest torsion subgroup of F

([7], (A.4)), and n the natural map of r onto r/$. If A denotes a subset

of r, [A] will stand for the subgroup of r generated by A.

By a (convergence) grouping we shall mean a sequence 3 (AfijsN

(Aj) of finite subsets A j of T such that

Jj +1 (jeN);

U Aj T0 is a subgroup of r, said to be

j i
covered by 3;

for each j e TV, dy ßy+Zy, where dy iS

nonvoid finite subset of $ and ßy is a finite
subset of r such that n Qj is 1-1.

(7.2)

[The first two conditions are natural enough in the context described in 7.3,

but the third is less so and may well be pointless.] The grouping 3 is said

to be of infinite type if and only if n (F0) is infinite.

7.2 Examples, (i) Let F0 be any countable subgroup of r such that

r0 n 0 {0}; for example, T0 {ny0 : n e Z}, where y0 e F\&. Then

a grouping 3 covering T0 results whenever Aj {0} and Aj I2y for
every y e A, where (&j)jeN is any increasing sequence of finite subsets of
r0 with union equal to f0. This grouping is of infinite type if and. only
if r0 is infinite.

(ii) If G is connected, and if T0 is any countable subgroup of T, then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) T0 is an ordered group
isomorphic to a discrete subgroup of R. Assuming T0 ^ {0}, T0 has a

smallest positive element y0 and T0 {ny0 : n e Z}. A natural grouping
H covering T0 is that in which Aj {0} and

Aj Qj {;ny0 : n e Z, | n | ^ j]
for every j e N; this grouping is of infinite type.

7.3 A grouping 3 (Aj)jeN will be thought of as specifying one of
the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (/) T0, namely, as

convergence of the corresponding sequence of partial sums (SA.f)JeN.
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Indeed, the conditions (7.2) guarantee that lim SAf f for all sufficiently
j -+00 3

regular such functions /. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (/) £ r0, lïm Re SAjf(0) - oo. (7.3)

j ->00

It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.

In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E — C (G) of continuous complex
valued functions on G [with norm || • || equal to the maximum modulus]
and to sequences of gauges of the type

/I- Re SAf(0) Re jG (7.4)

where DÀ stands for the "Dirichlet function"

DA I y, (7.5)
yeA

shows that the problem hinges on the existence of groupings Sf for which

Pj || Da. ||i Jg I da. I d)-Cj -* oo. (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional

if and only if F coincides with #, it emerges that the dichotomy referred to

may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., <P ^ F). Then (see Example 7.2 (i))
there exist groupings ÇÙ — (Aj) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions

f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if F0 is any
countably infinite subgroup of F satisfying F0 n # {0}, and if (Aj)jeN
is any increasing sequence of finite subsets of F0 with union F0, we can
construct a continuous f on G satisfying (7.3).

(ii) G is O-dimensional (i.e., $ F). Then there exists no grouping
of infinite type. However, given any countable subgroup F0 of F, there

are groupings @ (Aj) covering F0, in which Qj {0} and Aj Aj is

a finite subgroup of F0, and for which

/ lim SA f
j~> oo

3
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uniformly on G for every continuous / satisfying sp (/) £ F0.
Case (i) will be dealt with in § 8, case (ii) in § 9. The groupings described

in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 Remark. Perhaps it should be stressed here that, if T0 is any
infinite subgroup of F, there is no obstacle to constructing continuous

functions / such that sp (/) Ç F0 and finite subsets Aj c Aj + 1 of F0
for which

lim SA J(0) co.
j 3

[One has in fact only to construct a continuous / such that sp (/) £ F0
A

and J / (y) I oo ; it is then trivial that there exist finite subsets A of F 0
yer

for which | SAf(0) | is arbitrarily large, so that we can choose a sequence

(AJ) for which A} ç Aj + 1 and | SAJ(0) | -> oo with j.] However, the

sets Aj obtained this way will not [and, in view of 7.4 (ii), cannot] in general
00

be such that U Aj T0. For more details, see A.5.1 and A.5.2 of the
j= i

Appendix.

7.6 Suppose one is given a grouping 3 (A3)jeN covering T0 and

satisfying (7.6). As is described in § 10, one may construct polynomials
qp in two indeterminates over the real field (v being a suitable fixed

integer not less than 36 and p} any positive number not less than || DA. || œ)

such that, for suitable unimodular complex numbers the t.p.s

satisfy

\\Qj\\£i,sp(Qj)ç[Aj]çr0,
Sa Qj (0) jG Dj, Qj dlG is real and ^ ^ pj.

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
Jn)neN °f positive integers so that

Sa Qjn (0) is real and > n3, I

"
(7-8)

j„ <jn+i,sp(Qj)sr0. ]

Accordingly, the t.p.s

(7.7)
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-"2ô,„
satisfy the conditions

sp(u„) £ r0, £ || || c °°

Sa un (0) is real and > n-

(7.9)

At this point the construction in § 2 will yield integers 0 < nx < n2 <
and specifiable sequences (yp)peN of positive numbers such that each function
of the form

oo

/= I yPu-p
P l p

is continuous and satisfies

sp (/) <= r0, lim Re SA. /(0) oo. (7.10)

A fortiori, / satisfies (7.3).
We add here that, if the A ; are symmetric, the DA are real-valued,

j
and we may work throughout with real-valued functions, replacing
Re SA f by SA f everywhere.j j

§ 8. Discussion of case (i) : G not 0-dimensional

8.1 In this case 0 ^ T, and we begin by considering a finite subset

of r of the form -

A Q + A, (8.1)

where Q and A are finite subsets of r such that n | Q is 1-1 and 0 / A c 0.
We aim to show that (for a suitable absolute constant k > 0)

/ log N \*ii^ii' • <8-2)

provided N | Q | (the cardinal number of Q) is sufficiently large.

8.2 Proof of (8.2). Introduce H as the annihilator in G of # and

identify in the usual way the dual of H with r/&. Likewise identify the

dual of K — G/H with $ ([7], (24.11)).
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We then have

II A.Ill 1*1 E y| A
yeA

— Jg/H ^G/H(X) I S X ® (X^"~^ ^ (X^~y) I d^n(y)>
de£2 (f>eA

the inner integral being viewed as a function of x x-^H Thus, writing
0 for n (9) and noting that (j) (y) 1 for $ e A ç $ and y e H, we obtain

|| Ad ||i 1g/h dXG/H(x) J# | S a x)® W I (8-3)
06fi

where

a (0, x) 0 (x) J] 0 (x).
<£e/i

Now, since the dual of H (namely r/&) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we

have

/ log N \*
J„ I Z a (9, »>8 m I JIM a 4 I « (9. *> I

t(rrETl S (8'4)
\log log NJ 4,sA

since | 0 (x) | 1 and <j>(x) depends only x. By (8.3) and (8.4),

/ loa N\*|| A ||i =^(T j ~ Jg/W I E ^ W I ^c/i/W' (8-5)
VloglogiV/ 4*A

Since A # 0, the remaining integral is not less than the maximum modulus
of the Fourier transform of the function 3c | —> <fi (x), i.e., is not less

<f>eA

than unity. Thus, (8.2) follows from (8.5).

8.3 Proof of 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If Q) (Aj)jeN is a grouping of infinite type
covering r0, | n (Aj) | oo and so, since Aj ç $, | n (Qj) | -> oo. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 Supplementary remarks. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups F0 of F and suitable groupings
3f (Aj)jeN covering F0 can be derived without appeal to Theorem A
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of [8]. To do this, it suffices to take yk e F\ $ (k 1, 2,m) such that
the family (yk)i^k^m is independent (see [7], (A.10)), define

ro :nkeZfor1,2,..., m},

and make use of the formula

Jg F(Ji (•*)>..., ym(x))dyG(x)
(277:) 11'... ft* Fie" (8.6)

valid for every Fe C(Fm), where T denotes the circle group. (Recall that
Yfc i nk Jk denotes the character x |-> yi(x)"i... ym(x)nm of G.) It then

appears that (7.6) holds when one takes

Ai {111 1nkyk:I nk|^ for k—l,2,..., },

where the rjk are positive integers satisfying rj,k ^ rj,k+ 1 and limy^^ rjk
oo. Moreover, when m — 1, the Cohen-Davenport result (essentially

Theorem A of [8] for the case G — T) shows that (7.6) holds for every
grouping Q) covering T0.

The verification of (8.6) is simple. First note that, if G and G' are

compact groups, and if (j) is a continuous homomorphism of G into G',
then

\G{Fo4>)dXG=\Fd).HC(8.7)

for every F e C {G'). (This is a consequence of the fact that
F I Jg (F ° <t>)dÀG is invariant under translation by elements of (j) (G),
combined with the uniqueness of the normalised Haar measure on a

compact group.) Taking G' Tm and (j) : jc | —> (y± (x), ym (x)), the

stated conditions on the yk are just adequate to ensure that the annihilator
in Zm (identified in the canonical fashion with the dual of Tm) of (j) (G) is

{(0,..., 0)} and so ([7], (24.10)) that 0 (G) Tm. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that k is an arbitrary
nonvoid set and that (yk)kSK is a finite or infinite independent family of
elements of F\ 0. Denote by F0 the subgroup of F generated by
{yk : k e k}. Taking G' i* TK and (j) : x |-> (yk(x))kGK, one may use (8.7)

in a similar fashion to show that there is an isometric isomorphism
F <-> F o (j) f between LP(TK) (or C (TK)) and the subspace of LP(G) (or
C (G)) formed of those/eLp(G) or C (G)) such that sp (/) ç F0. Moreover,

if one identifies in the canonical fashion the dual of TK with the weak
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.j. A A
direct product ZK the said isomorphism is such that F f o (j)', where

<£' is the isomorphism of ZK onto F0 defined by (nk) 2^fc6K nk yk.

One consequence of this may be expressed roughly as follows: If the

compact Abelian group Gis such that r\ <P contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series

on Tm.

Another consequence is that, if A is a subset of F0, then A is a Sidon

(or A(p)) subset of F if and only if 4>,~1(A) is a Sidon (or A(p)) subset
*

of ZK

8.5 Further results. Theorem A of [8] implies something stronger
than (8.2), namely: if co is any complex-valued function on F such that

CO (y + (j)) œ (y)e <P), (8.8)

so that co can be regarded as a function on r/<P, and if we write

E ® (y) % saAf E © / (y), (8.9)
yeA yeA

then, for A Q + A as in (8.1), we have

/ Ior N \*
l|z>ï|11 (U0)

provided N | Q|is sufficiently large.
So, if we can arrange for Q Qj to vary in such a way that the right-

hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous / satisfying sp (/) e F0 and

lim ReS1?./(0) co. (8.11)
j~* 00

Taking the most familiar case, in which r Z and ^ {0},
and supposing A Qtorange over a sequence (zly) of finite subsets of Z
such that, if Nj| Aj|,/ log Nj \*

lim i i 77 mm co (n) oo,
; Voglog^.; ueAj[

1

the construction will lead to a continuous / on such that

lim Re S%.f(0)oo.
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In particular, taking Aj {n e Z :2j^ n <1} it can be arranged
that

v ± fin)
nëZ (log (2+\n\)T

diverges for any preassigned distribution of signs ± and any preassigned
a < £.

Of course, much stronger results are derivable by using random (and
unspecifiable changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii : G 0-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups IF. For each such W the
annihilator A W° in r of IF is a finite subgroup of r. Define

X characteristic function of IF. (9.1)

A
Thsn kw is continuous, kw ^ 0, JG kw dXG 1. The transform kw of kw
is plainly equal to unity on A. On the other hand, since IF is a subgroup,
we have for a e W and y e T

A

kw(?)Ig kw (x) y (x) dlG (x) jc kw {x+d) y dlG (x)

Ig kw (y) y (y-a) dXG (y)

A
y(a)kw(y),

A A
which shows that kw(y) 0 if yeT\A. Thus kw is the characteristic

function of A, and so

kw Dw o. (9.2)

By (9.1) and (9.2), a routine argument shows that, if 1 ^ p < oo and

feLp(G), then

/ lim SWof (9.3)
w

in U(G); and that (9.3) holds uniformly for any continuous /.

9.2 Proof of 7.4 (ii). If T0 is any countably infinite subgroup of r
we can choose a sequence Wj of compact open subgroups of G such that
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Wj + £ Wj and r0 £ U IF], where IF] is a finite subgroup of f and
y=1

IF] £ 1F}+1. The 4, W) n T0 satisfy (7.2) and, from (9.3),

/ lim SA.f(9.4)

j
uniformly for any continuous / with sp(/)^r0. This verifies the

statements made in 7.4 (ii).

9.3 By using the results in [3], more can be said in case (ii) of 7.4;
cf. [3], Theorem (2.9) and Example (4.8).

Let feL1(G) and let T0 be any countable subgroup of r containing
SP (/)• Choose the Wj as in 9.2. Then, apart from the fact that (W3) is

not in general a base at 0 in G (they can be chosen to be so if and only if
G is first countable), (Wj) is an open-compact D"-sequence ([3], p. 188).
The proof of Theorem (2.5) of [3] is easily modified to show that

fix) lim Sw°.f (9.5)
j ->oo

holds for almost all x e G. Moreover, Theorem (2.7) of [3] applies to
show that the majorant function

S*f(x) sup I I (9.6)
jeN J

satisfies the estimates

l
II SV||p â 2(p(p-l)-1)p||/|| p(1oo)

||SV||i ^ 2 + 2jG|/|l0g+ |/|
1

||SV||p^2(l-p)'||/||1 (0<p<l).

In particular, the convergence in (9.5) is dominated whenever

|/| log+ \f\eL1(G).

A more immediate consequence of (9.1) and (9.2) is a strong version
of localisability of the convergence of Fourier series: life Ll(G) vanishes
a.e. on some neighbourhood of x0 e G, we can choose the Wj so that
SAjf(*o) 0 for every sufficiently large [A suitable choice of IV} may
be made once for all, independent off if is first countable.] Nothing
similar is true for general G;see,for example, [11], Vol. II, pp. 304-305.

(9.7)

(9.8)

(9.9)
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§ 10. Concerning the polynomials Qj.

There is no difficulty in making fairly explicit the construction of
t.p.s Qj of the type employed in 7.6.

For p > 0, t ^ 0 define

1 if t ^ p9

if p ^ t ^ 2p,
±p J

[ 0 if t 2p.

if z 0,

hp ~ I 2 1-

For all complex z define

/,(*) —
z I

1
z hp (\ z\) if z ^ 0.

Write
(z) n

1
n exp {—n | z |2,

S.ftOO 7Z ~7j— (nIz 12)J

i=o 7!

(10.1)

(10.2)

(10.3)

Let ju denote Lebesgue measure on C (identified with R2 in the canonical
fashion).

It is then routine to verify that

lis."/J» ^ l|/P|U i,

lim En*/„=/„
(10.4)

uniformly on any compact set omitting 0. From this it follows that to

every p > 0 and every positive integer v correspond positive integers
h (p, v), k (p, v) such that

z\ z - fp*P^(z)
1 1

^ for ^ I z I ^ p,
v v

1

|/p*-P»,iï(z)| ^ 1 + ~ for |z| ^
(10.5)

Now

fp * Pn, k00?p,v (*> Z), (10.6)
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where

Hp,v) — n(p,v))J JL 2L" Z Z1p,v (X,Y) n 1n(p,v) £ -, - _
J 0 7! i 0 m 0

k(p,y)

£ Cp>v (/, m) X'7m.
l,m 0

It is easily verifiable that the Cp>v (/, m) are real-valued.

If 0 is a bounded measurable function on G and

öp,v ?p,v(0, 0),^ ^ || ||c

we have from (10.5)

M-15- e;,v
1

»

1

< - whenever | 6 | ^

I Ql v
I ^ 1 + - everywhere on G.

v

If 0 is a t.p., then v is a t.p. and

Sp (ôp.v) £ [sp (0)].

I 0 I whenever | 0 | >

2 H— j I 0 I everywhere,

(10.7)

(10.8)

(10.9)

(10.10)

From (10.9) we obtain

101 - 0 e;.v

whence it follows that, if 6 =£ o,

I Jo 0 Q°P,V dXG I > (I - v "') || |], — v~1 (2+ v-1)

^ (1—2v-*)||0||1

provided v ^ 9 || 0 ||72.
Taking 0 DA. and pj ^ || DA.||, the trigonometric polynomials

:w-K"

(10.11)

Ô, 1 + ÔPj,v 1 + - (DAf (10.12)
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are then seen from (10.9), (10.10) and (10.11) to satisfy

\\Qj\\è.h
SP (Qj) S [Aj],

I Jv DAj Q'jdXGI£ (l-3v-*)|| A..U,

(10.13)

provided v is chosen ^ 9 || DAj [|7 » In view of (7.6), we may choose

the integer v ^ max^ (36, 9 || DAj fli"1)- Then (10.13) shows that there

are unimodular complex numbers ^ such that the Qj Q] satisfy (7.7).

Appendix

Rudin-Shapiro sequences

A.l Notations and definitions. As hitherto, all topological groups G

are assumed to be Hausdorff; and, for any locally compact group G, XG

will denote a selected left Haar measure, with respect to which the Lebesgue

spaces LP(G) are to be formed. Cc(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Horn (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke Cc(G),

Tk will denote the convolution operator

with domain Cc(G) and range in Cc(G); and || k ||M will denote the (p, q)-

norm of this operator, i.e., the smallest real number m ^ 0 such that

\\f*k\\q^m\\f\\p (feCc(G)).

It is well-known that, if G is Abelian, || k ||2,2 is equal to
A A

|| k ||oo supyer I k (y) |,

A
where T is the character group of G and k is the Fourier transform of k.

(Something similar is true whenever G is compact, but we shall not use

this.)
£/-RS-sequences on G are as defined in 5.4.
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