

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 19.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

satisfying $1 \leq p < 2 < q \leq \infty$, the series (6.6) converges normally in $L_p^q(G)$ to T. Next, T is the limit in E of

$$
S_r = \sum_{n=1}^r \omega_n T_{K_n}
$$

as $r \to \infty$ and, since it is plain that supp $S_r \subseteq \Omega$ for every r, (ii) is easily derived. Finally, if \hat{T} were a measure μ , it would necessarily be the case that supp $\mu \subseteq \overline{\Omega}$ and so, for every $n \in N$, one would have by (6.1) and (6.4)

$$
f_n(T) = | u_n * Tv_n(0) | = | \int_{\Gamma} \hat{u}_n \hat{v}_n d\mu |
$$

\n
$$
\leq | \mu | (\overline{\Omega}),
$$

which is finite since Ω is relatively compact. However, this plainly would entail $f^*(T) < \infty$, in conflict with (6.8), so that T cannot be a measure and (iii) is verified. This completes the proof.

6.4 Remark. Theorem 6.3 was proved by Hörmander ([14], Theorem 1.9) for $G = R^n$ and any given pair (p, q) satisfying $1 \leq p < 2 < q \leq \infty$, this result being extended to ^a general noncompact LCA ^G by Gaudry [5]. The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark immediately following) for the case $G = R^n$ can also be extended to a general LCA G and shows that, if *either* $q \leq 2$ or $p \geq 2$, then every $T \in L^q_p(G)$ is such that \hat{T} is a measure [and indeed a measure of the form $\psi \lambda_r$, where $\psi \in L^2_{loc}(\Gamma)$ if $q \leq 2$ and $\psi \in L^p_{loc}(\Gamma)$ if $p \geq 2$, and so $\psi \in L^2_{loc}(\Gamma)$ in either case]. Thus the hypotheses made in Theorem 6.3 about p and q are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§ 7. Applications to divergence of Fourier series.

7.1 Throughout §§7-10, G will denote an infinite Hausdorff compact Abelian group with character group Γ , and λ_G the Haar measure on G, normalised so that $\lambda_G(G) = 1$. For any $f \in L^1(G)$, \hat{f} will denote the Fourier transform of f; for any finite subset Δ of Γ ,

$$
S_{\Delta}f = \sum_{\gamma \in \Delta} \hat{f}(\gamma)\gamma \tag{7.1}
$$

is the Δ -partial sum of the Fourier series of f; and sp (f) will stand for

the spectrum of f, i.e., for the support supp $\hat{f} = \{y \in \Gamma :$
The term "tripper supportion rely promis!" will frequently 1 $\hat{f}(\gamma) \neq 0$ of \hat{f} . The term "trigonometric polynomial" will frequently be abbreviated to "t.p.". In addition, Φ will denote the largest torsion subgroup of Γ ([7], (A.4)), and π the natural map of Γ onto Γ/Φ . If Δ denotes a subset of Γ , [Δ] will stand for the subgroup of Γ generated by Δ .

By a (convergence) grouping we shall mean a sequence $\mathcal{D} = (A_i)_{i \in N}$ (Λ_j) of finite subsets Λ_j of Γ such that

$$
\Delta_j \subseteq \Delta_{j+1} \quad (j \in N);
$$

 $\bigcup A_j = \Gamma_0$ is a subgroup of Γ , said to be $j = 1$ covered by \mathscr{D} ;

(7.2)

for each $j \in N$, $\Delta_j = \Omega_j + \Lambda_j$, where Λ_j is nonvoid finite subset of Φ and Ω_j is a finite subset of Γ such that $\pi | \Omega_j$ is 1-1.

[The first two conditions are natural enough in the context described in 7.3, but the third is less so and may well be pointless.] The grouping $\mathscr D$ is said to be of *infinite type* if and only if $\pi(\Gamma_0)$ is infinite.

7.2 EXAMPLES. (i) Let Γ_0 be any countable subgroup of Γ such that $\Gamma_0 \cap \Phi = \{0\}$; for example, $\Gamma_0 = \{n\gamma_0 : n \in \mathbb{Z}\}$, where $\gamma_0 \in \Gamma \setminus \Phi$. Then a grouping \mathscr{D} covering Γ_0 results whenever $\Lambda_j = \{0\}$ and $\Lambda_j = \Omega_j$ for every $j \in N$, where $(\Omega_j)_{j \in N}$ is any increasing sequence of finite subsets of Γ_0 with union equal to Γ_0 . This grouping is of infinite type if and only if Γ_0 is infinite.

(ii) If G is connected, and if Γ_0 is any countable subgroup of Γ , then ([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) Γ_0 is an ordered group isomorphic to a discrete subgroup of R. Assuming $\Gamma_0 \neq \{0\}$, Γ_0 has a smallest positive element γ_0 and $\Gamma_0 = \{n\gamma_0 : n \in \mathbb{Z}\}\$. A natural grouping \mathscr{D} covering Γ_0 is that in which $A_j = \{0\}$ and

$$
\varDelta_j = \Omega_j = \{ n \gamma_0 : n \in \mathbb{Z}, \left| n \right| \leq j \}
$$

for every $j \in N$; this grouping is of infinite type.

7.3 A grouping $\mathscr{D} = (A_j)_{j \in N}$ will be thought of as specifying one of the many possible ways in which one may interpret the convergence of Fourier series of functions f on G satisfying $sp(f) \subseteq \Gamma_0$, namely, as convergence of the corresponding sequence of partial sums $(S_{\Delta_i}f)_{j\in N}$.

Indeed, the conditions (7.2) guarantee that $\lim_{j\to\infty} S_{A_j} f = f$ for all sufficiently $j \rightarrow \infty$ ⁴ regular such functions f . However, our concern rests with the possibility of constructing continuous functions f on G satisfying

$$
\operatorname{sp}(f) \subseteq \Gamma_0, \overline{\lim_{j \to \infty}} \operatorname{Re} S_{A_j} f(0) = \infty. \tag{7.3}
$$

It will appear that the possibilities exhibit ^a fairly clear dichotomy, depending largely upon whether G is or is not O-dimensional.

In the first place, it will emerge in 7.6 that the construction principle of § 2, applied to the Banach space $E = C(G)$ of continuous complex valued functions on G [with norm $\|\cdot\|$ equal to the maximum modulus] and to sequences of gauges of the type

$$
f \rvert \to \text{Re } S_{A} f(0) = \text{Re } \int_{G} D_{A} f d\lambda_{G}, \tag{7.4}
$$

where D_A stands for the "Dirichlet function"

$$
D_{\Delta} = \sum_{\gamma \in \Delta} \bar{\gamma}, \tag{7.5}
$$

shows that the problem hinges on the existence of groupings $\mathscr D$ for which

$$
\rho_j = || D_{A_j} ||_1 = \int_G | D_{A_j} | d\lambda_G \to \infty. \tag{7.6}
$$

Accordingly, and in view of the fact $(7, 24.26)$ that G is 0-dimensional if and only if Γ coincides with Φ , it emerges that the dichotomy referred to may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not 0-dimensional (i.e., $\Phi \neq \Gamma$). Then (see Example 7.2 (i)) there exist groupings $\mathcal{D} = (A_i)$ of infinite type; and, for any such grouping, one can construct (fairly explicitly, as described in 7.6) continuous functions f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if Γ_0 is any
countably infinite subgroup of Γ satisfying $\Gamma_0 \cap \Phi = \{0\}$ and if (A) countably infinite subgroup of Γ satisfying $\Gamma_0 \cap \Phi = \{0\}$, and if $(A_j)_{j \in N}$ is any increasing sequence of finite subsets of Γ_0 with union Γ_0 , we can construct a continuous f on G satisfying (7.3).

(ii) G is 0-dimensional (i.e., $\Phi = \Gamma$). Then there exists no grouping of infinite type. However, given any countable subgroup Γ_0 of Γ , there are groupings $\mathcal{D} = (A_j)$ covering Γ_0 , in which $\Omega_j = \{0\}$ and $A_j = A_j$ is a finite subgroup of Γ_0 , and for which

$$
f = \lim_{j \to \infty} S_{A_j} f
$$

uniformly on G for every continuous f satisfying $sp(f) \subseteq \Gamma_0$.
Case (i) will be don't with in 8.8, asso (ii) in 8.9. The grouping

Case (i) will be dealt with in \S 8, case (ii) in \S 9. The groupings described in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 REMARK. Perhaps it should be stressed here that, if Γ_0 is any infinite subgroup of Γ , there is no obstacle to constructing continuous functions f such that $sp(f) \subseteq \Gamma_0$ and finite subsets $\Delta_j \subseteq \Delta_{j+1}$ of Γ_0
for which for which

$$
\lim_{j} S_{A_j} f(0) = \infty.
$$

[One has in fact only to construct a continuous f such that $sp(f) \subseteq \Gamma_0$ A and Σ $\hat{f}(\gamma)$ = ∞ ; it is then trivial that there exist finite subsets Δ of Γ_0 $\gamma \in \Gamma$ for which $|S_A f(0)|$ is arbitrarily large, so that we can choose a sequence (A_j) for which $A_j \subseteq A_{j+1}$ and $|S_{A_j}f(0)| \to \infty$ with j.] However, the sets Δ_j obtained this way will not [and, in view of 7.4 (ii), cannot] in general be such that $\bigcup_{i=0}^{\infty} A_i = \Gamma_0$. For more details, see A.5.1 and A.5.2 of the $j=1$ Appendix.

7.6 Suppose one is given a grouping $\mathscr{D} = (A_i)_{i \in N}$ covering Γ_0 and satisfying (7.6) . As is described in § 10, one may construct polynomials q_{p_i} , in two indeterminates over the real field (v being a suitable fixed integer not less than 36 and p_j any positive number not less than $||D_{\mathcal{A}_j}||_{\infty}$) such that, for suitable unimodular complex numbers ξ_j , the t.p.s

$$
Q_j = \xi_j \left(1 + \frac{1}{\nu} \right)^{-1} q_{p_j, \nu} (D_{A_j}, \bar{D}_{A_j})
$$

satisfy

$$
\left\| Q_j \right\| \leq 1, \, sp(Q_j) \subseteq [A_j] \subseteq \Gamma_0,
$$

$$
S_{A_j} Q_j(0) = \int_G D_{A_j} Q_j \, d\lambda_G \text{ is real and } \geq \frac{1}{2} \rho_j.
$$
 (7.7)

In view of (7.2), (7.6) and (7.7), one may choose inductively ^a sequence $(j_n)_{n \in \mathbb{N}}$ of positive integers so that

$$
S_{A_{j_n}} Q_{j_n}(0) \text{ is real and } > n^3,
$$

$$
j_n < j_{n+1}, \text{ sp } (Q_{j_n}) \subseteq \Gamma_0.
$$
 (7.8)

Accordingly, the t.p.s

$$
- 280 -
$$

$$
u_n = n^{-2} Q_{j_n}
$$

satisfy the conditions

$$
\text{sp } (u_n) \subseteq \Gamma_0, \sum_{n=1}^{\infty} ||u_n|| < \infty
$$
\n
$$
S_{A_{j_n}} u_n(0) \text{ is real and } > n. \tag{7.9}
$$

At this point the construction in § 2 will yield integers $0 < n_1 < n_2 < ...$ and specifiable sequences $(\gamma_p)_{p \in N}$ of positive numbers such that each function of the form

$$
f = \sum_{p=1}^{\infty} \gamma_p u_{n_p}
$$

is continuous and satisfies

$$
sp(f) \subseteq \Gamma_0, \lim_{p \to \infty} \text{Re } S_{A_{j_{n_p}}} f(0) = \infty.
$$
 (7.10)

A fortiori, f
We add satisfies (7.3).

We add here that, if the Δ_j are symmetric, the D_{Δ_j} are real-valued, and we may work throughout with real-valued functions, replacing Re $S_{A_j}f$ by $S_{A_j}f$ everywhere.

§ 8. Discussion of case (i) : G not 0-dimensional

8.1 In this case $\Phi \neq \Gamma$, and we begin by considering a finite subset of Γ of the form

$$
\varDelta = \varOmega + \varLambda, \tag{8.1}
$$

where Ω and Λ are finite subsets of Γ such that $\pi | \Omega$ is 1-1 and $\emptyset \neq \Lambda \subseteq \Phi$. We aim to show that (for a suitable absolute constant $k > 0$)

$$
\| D_A \|_1 \ge k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}}, \tag{8.2}
$$

provided $N = | \Omega |$ (the cardinal number of Ω) is sufficiently large.

8.2 Proof of (8.2). Introduce H as the annihilator in G of Φ and identify in the usual way the dual of H with Γ/Φ . Likewise identify the dual of $K = G/H$ with Φ ([7], (24.11)).