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numbers œ such that there are infinitely many polynomials P with rational

integer coefficients of degree ^ d and with

0 < | P (a) | < H(P)~C0.

By Corollary 6D it is clear that cod ^ d unless a is algebraic of degree % d.

Furthermore if a is algebraic of degree n, then one can show using the norm
of P (a) that œâ ^ n — 1 (d= 1, 2, ...)• Thus Mahler could characterize the

algebraic numbers a by the property that cod (a) (d=l, 2, remains

bounded.
Koksma (1939) defines œ*d œ*d (a) as the supremum of the numbers co*

such that there are infinitely many algebraic numbers ß of degree d with

1 a ~ ß \ KHißy1-«*.

It is easy to see that œ*d ^ ood and Wirsing (1961) showed that cod ^ \ (cod + 1)

if a is transcendental. Hence the algebraic numbers can also be characterized

by the property that œ*d (a) (d= 1, 2, is bounded. We have cod ^ cod

^ n — 1 if a is algebraic of degree n, and the results of the last section
show that oid d if d ^ n — 1. Since cod and cod increase with d, we have

for algebraic a of degree n,

à if d S n — 1

n — 1 if d ^ n

Thus the exponent in Theorem 7H is best possible precisely if d < n.

Another characterization of algebraic numbers by approximation
properties was given by Gelfond (1952, §111.4, Lemma VII) and refined by
Lang (1965a) and Tijdeman (1971, Lemma 6). This lemma was slightly
improved by D. Brownawell (unpublished).

8. Tools from the Geometry of Numbers

8.1. To prove the theorems enunciated in the last section one needs
certain results from the Geometry of Numbers. This field was first investigated

under this name by Minkowski (1896). Other books on the Geometry
of Numbers are Cassels (1959) and Lekkerkerker (1969).

Let K be a symmetric 1) convex set in Euclidean En. For convenience
let us assume that K is compact and has a non-empty interior. For X > 0
let )X be the set consisting of the points 2x with xeK. Minkowski defines

b I.e. if xe K, then also — x e K.
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the first minimum X1 as the least positive value of X such that XK contains

an integer point x ^ 0. More generally, for 1 ûjûn, the 7-th minimum Xj
is the least positive value of X such that XK contains j linearly independent
integer points. It is clear that 0 < Xx 3* X2 ^ ^ Xn < oo, and that there

are linearly independent integer points x1? xn with

(8.1) Xj e XjK 0' l,...,n).
Minkowski's Theorem 6H is easily seen to be equivalent with the inequality

XIV(K) S 2" •

Later Minkowski could refine this to the much stronger

Theorem 8A (Minkowski's Theorem on Successive Minima).

(8.2) 27«! ^ Xt XnV(K) g 2n.

Like Theorem 6H this result can be generalized to arbitrary lattices Ay

and then (8.2) is to be replaced by

(8.3) d(A) 2nln\ ^ XnV(K) < d(A)2n.

Of particular interest to us will be the situation when L1 (x), ...,Ln (x)
are linearly independent linear forms and Rl9 Rn are positive numbers,
and when K is the parallelepiped defined by 1)

(8.4) I Li(x) I ^ Ri (i l,...,«).
In the special case when Rx Rn — 1 and when | det(Ll5 ...,Ln) | A,

say, we have V(K) 2n/A, whence A/nl ^ Xx Xn ^ A. In particular we

have

(8.5) 1 < X, ...Xn< 1,

where the notation A B means that A ^ cB with c c (n, A). Later on
the notation A <4 B will mean that both A B and B A.

8.2. We shall need three so-called " transference theorems " which
relate the successive minima of certain parallelepipeds to the successive

minima of other parallelepipeds.

1) The case when ^ >.. Rn « t is just as general, but the factors R1, Rn
will be convenient for later applications.
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Theorem 8B (" Davenport's Lemma " (Davenport, 1937)). Let 21? An

be the successive minima of the parallelepiped IT given by (8.4). Let pl9 pn

be numbers with

pi ^ p2 ^ ••• ^ Pn > 0 and P\K PnK •

Then there is a permutation (tl9 t2, •••, O ö/05 2, «) such that the successive

minima Xl9 Xn of the new parallelepiped II' given by

|L;(x)| rgT^p"1 (i l,...,n)
satisfy

(8.6) 2} > p^. 0' l,...,w).

Moreover, let xl9 xn linearly independent integer points with (8.1),

/.e. w/fA 7?f1 I Lf (xj) | ^ 2y (/, j= 1, «). Let T0 be the subspace consisting

of 0, and for 1 ^ j ^ n let Tj be the subspace spanned by x1? Xj. Then

every integer point x outside the subspace Tj^i where 1 ^ ^ n satisfies

max (Rî1 ph I Lt(x)|,R;1 pjn \ L„(x) |) > Aj

Note that the ratios of p^, pnAn are equal to or smaller than the

ratios of Al9 A„, so that the successive minima have been " pushed closer

together ". Usually in transference theorems only inequalities such as (8.6)
are given. But the last statement of the theorem will also be needed.

8.3. Every linear form L (x) is of the type L (x) ax where a is

a fixed vector and where ax denotes the inner product. Now suppose that
Ll (x), Ln (x) are linearly independent linear forms. Then if Li(x)

atx (/= 1, n)9 the vectors a1? an are linearly independent. There are

unique vectors a*, a* with

f 1 if i ja.a,- — Ô:: — 1
J J

[ 0 otherwise.

The linear forms L*, ...,L* given by L*. (x) » a*x (/= 1, n) are called
dual to Lu Ln; they satisfy the identity 7^(x) L\ (y) + + Ln (x) L*n (y)
«= xy. The dual linear forms are again linearly independent, and they have
determinant 1 if Ll9 ...,Ln have determinant 1. The parallelepiped

77*: |L;(x)| (i=*l, ..,n)
is called the dual of the parallelepiped 77 defined by (8.4).
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Remark. One can define the polar set of any convex symmetric set,

and the dual of a parallelepiped is closely related to its polar set. But the

polar set of a parallelepiped has the disadvantage that it need not be a

parallelepiped.

Theorem 8C (Mahler 1939). Let 21? Xn and 2*, 2* be the successive

minima of a parallelepiped LI and of its dual /7*, respectively. Then

x] > < Kh-j 0 1, •

Moreover, if xl5 xn are linearly independent points with (8.1), i.e. with
I Lt (Xj) I ^ XJRi (/,/= 1, ft), and if x*, x* are defined by x^x*

ôij (/, j= 1, ft), then

(8.7) \£itâ + i-j)\ < A^r1 (ij l, ...,n).

8.4. Suppose 1 ^ p <: ft and put / Q). Vectors in En will be denoted

as usual by a, b, and vectors in El will be denoted by A, B, By

ax A A ap

we shall denote the exterior product of the vectors a1? ap, i.e. the vector
in El whose coordinates are the (p x ^-determinants formed from the matrix
with rows a1? ap9 and arranged in lexicographic order. For example if
77 4 and p 2, then 1=6, and if a (al5 a2, a3, a4), b (ß1, ß2, ß3, ßf),
then

«1 «2 ai a3 a1 a4 a2 a3 a2 a4 a3 a4

{ ßl ' ßi ßi ßi ß\
5

ßl ^3
5

ßl ß4- ' ^3 /?4

Let C(n,p) be the set of all ^-tuples of integers /l5 ip with 1 ^ i\
< < i 77. There are / such/?-tuples.

Now suppose that L1 (x) axx, ...,Ln(x) a„x are independent linear
forms. For cr { /l5 ip } in C(ft,/?), let be the vector

A,7 a A aip

Let L(ap) be the linear form in El defined by L{ap) (X) A^X. The / linear
forms L(ap) with a e C (n,p) are again linearly independent, and they have

determinant 1 if L1, ...,Ln have determinant 1. Let R1, Rn be positive
constants with RlR2 Rn 1 and define Rby Ra El Rt. The inequal-

iecF

ities

\L["\X)\^RC
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define a parallelepiped 77(p) in El which we shall call thep-thpseudocompound
of the parallelepiped IJ defined by (8.4).

Remarks. Mahler (1955) defined the /7-th compound of any symmetric
convex set, and the pseudocompound of a parallelepiped is closely related

to its compound. But the compound of a parallelepiped is not necessarily a

parallelepiped. Except for the notation, the (n — l)-st pseudocompound is

the same as the dual of a parallelepiped, and hence the results of the last
subsection may be interpreted as special cases of the results of the present
subsection.

Theorem 8D (Mahler 1955). Let Xl9 Xn and v1? vt be the successive

minima of a parallelepiped II and of its p-th pseudocompound II (p\ respectively.

For g e C (n, p) put Xa 17 f and order the elements of C (/?, p) as
is (J

g ...,<7Z such that À ^ ^ Xal. Then

0'= 1,...,/)•

Moreover, ifx1; x„ are linearly independent integer points (8.1),
i.e. with \Li(xj) \ ^ lJRi(i.,j=li,,.,n),andif for x ]
C(n,p) we put XT xJl a a xjp,then

I LiP)(Xt) [ Ar Ra(a,t e C p)).

9. Outline of the proof of the theorems on simultaneous
APPROXIMATION TO ALGEBRAIC NUMBERS

9.1. Let us see what happens if we try to generalize Roth's proof to
prove, say, Corollary 7B. In Roth's proof we constructed a polynomial
P(*i, xj in m variables xu xm which had a zero of high order at
(a, a). Hence the natural thing to try would be

(a) to construct a polynomial P(x11( Xl in
variables of total degree g rhineach block of variables
(h 1, m)witha zero of high order at (a1; a,;...; a1; a,). Then

(b) one would have to show that if each of m given rational /-tuples

(h l,..., m) satisfies (7.2), then P also has a zero of high
\ Qh Qh J

order at
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