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out the analogous formula for {, (1 —2m), where m > 3, we find that there
really is a difference of this order between the Fourier coefficient we are
trying to evaluate and the value of the singular series. The calculation of
the singular series is carried out in Section 4.

Finally, in §5 we give conjectures concerning the Fourier coeﬂiments of
a certain modular form of weight 4m related to the value of (g (1 —2m).

§1. SIEGEL’S FORMULA

In this section, we will state the formula of Siegel for the value of { ()
where K is a totally real algebraic number field and b a negative odd integer.
We will also give a brief description of the proof.

We begin by reviewing the main properties of the zeta-function of a
field. Let K be an algebraic number field of degree n, and @ the ring of
integers in K. For any non-zero ideal U of @, the norm N () is defined as
the number of elements in the quotient O/U. For m = 1, 2, ..., let i (m)
denote the number of ideals of @ with norm m. This number is finite for
each m and has polynomial growth as m — oo, and so the series
2n_1i(m)m™° makes sense and is convergent if s is a complex number
with sufficiently large real part. The function it defines can be extended
meromorphically to the whole s-plane, and the function obtained is de-
noted (g (s). Thus we have the two representations.

1
k() = Y 1
= Ny )
= ] (1=-N®)°, (2)

pt

provided that Re (s) is large enough. The sum in (1) is to be taken over all
non-zero ideals of ¢, and the product in (2) (Euler product) over all prime
ideals. The function obtained by analytic continuation has a simple pole
at s = 1 and is holomorphic everywhere else.

Moreover, the function { satisfies a functional equation relating { (s)
and (g (1—ys). In the case of a totally real field K (i.e. K = Q (o) where «
satisfies a polynomial of degree n with n real roots), this takes the form

F(s) = F(1-5), (3)
where

F(s) = D¥2 g~z [ < ) {x (s). (4)
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(Here D is the discriminant of K.) In particular, we have

{k(—2m) =0, (5)

(g (1=2m) = {(=D"(2m—1)1j22" L g2m 3" D2m= 12 (4 (2m)
(m=1,2,..) (6)
It 1s thus equivalent to give the values of (i (s) at s = 2 4,6, ... or at
s = —1, =3, =5, ...; we shall prefer writing our formula for the latter

values since, as it turns out, they are always rational numbers. For instance,
if K = Q is the field of rational numbers, thenn = 1, D = 1, 0 = Z, and
the only ideals are (r) with r = 1, 2, ..., so

1
Lk (s) = Lo(s) = L(s) = Z = (7)
is the ordinary Riemann zeta-function; in this case (6) says
(—D"(2m—1)!
((1=2m) = Em=T 2m £ (2m) (3)
= - BZm/zm ’ (9)
where B; is the i-th Bernoulli number (B, = 1, B, = —1/2, B, = 1/6,
B; =0, B, = —1/30, ...) and is always rational.

We now proceed to describe Siegel’s formula. We first need some
preliminary notation. Recall the definition of the different d of K: b is the
inverse of the fractional ideal

= {xeK|tr(xy)eZ(yye0)} (10)

(here tr (z) = zP) + ... + z ™ denotes the trace of z e K). The ideal d is
integral, and its norm is related to the discriminant D of K by

D = N(d). (11)
Next, for r = 0, 1, 2, ... we define
o.(n) =Y d (n=1,2,3,..) (12)

dn

to be the sum of the r-th powers of the positive divisors of z#. (This is standard
notation.) We generalize this definition to number fields by setting

o, (W = > N(B) (Ac 0O an ideal). (13)

B A



.
k 3
2

59 —

Here the sum is over all ideals B of @ which divide (i.e. contain) . If
K=0Q,0 =Z, A = (n), this agrees with (12).
Finally, for /, m = 1,2, ..., we define
Slf (2m) = 21 Oam—1 ((V) b)- . (14)

vep —

v>0
tr(v) =l

The sum extends over all totally positive (i.e. all conjugates positive)
elements of the fractional ideal (10) with given trace / (there are only
finitely many such elements). Such a v need not be integral, but the product
of the principal ideal (v) with the different d will be an integral ideal, and
therefore 6,,,—; ((v) ) is defined.

We can now state Siegel’s formula.

THEOREM (Siegel [9]). Let m = 1,2, ... be a natural number, K a
totally real algebraic number field, n = [K:Ql, and h = 2mn. Then

Lo (1=2m) = 2" z b, (h) s (2m) . (15)
I=1

The numbers r > 1 and b, (h), ..., b.(h) €Q depend only on h. In par-
ticular,

r = dimc M, (16)

where IR, is the space of modular forms of weight h; thus by a well-known
formula

h/12 if h=2(modl12),

L { [h/12] ( ) (17)

[R/12] +1 if  h = 2(mod 12),
where [x]| denotes the greatest integer < X.

(We have given a table of the coefficients b, () on page 60, if for no
other reason than to emphasize that they really only depend on the integer
h and not on the field. The values for 4 even, 4 < h < 24, were taken from
Siegel [9]; the values for 4 | h <40 were calculated on the System 370 compu-
ter at Bonn.)

Proof of theorem (sketch): Recall that one can define a modular form
of weight 2m by the Eisenstein series

1
G2m (Z) - Z n . \NOm
iz Az 4"
(4,1) #(0,0)

(18)
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TABLE 1.

The Siegel coefficients b, (h)

h b1 (h) ba (h) b3 (h) by (h)
4 RS
240
6 -1
504
8 b
480
10 -1
264
12 -1 1
8190 196560
14 -1
24
16 -1 1
680 146880
18 22 1
3591 86184
20 —19 b
1650 39600
2 —4 1
207 14904
- —1087 1 1
291200 1092000 52416000
’3 —2529 -1 1
259840 81200 15590400
3 837 -9 1
43520 54400 2611200
36 — 274486 — 899 1 1
29895075 28787850 86363550 6218175600
10 — 602849 —1773 -1 1
39067875 14206500 7441500 1250172000
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(ze $ = upper half-plane, i.e. zeC and Im(z) > 0). Since G, (z) has
2riz

period 1, it has a Fourier expansion as a power series in g = e~"",
Gym(2) ~ag +a;q +a,q° + ... (19)
valid as z — i oo (i.e. ¢ = 0). Then clearly

ag = Y 47 =2002m), (20)
iz

and an easy calculation gives

~N2m
a, = 2%02,,2_1(n) (n=1,2,...). (21)
In an entirely analogous way, for the field K one can construct a modular
form of weight 2m in n variables z, ..., z,€ 9 (the Hecke-Eisenstein series)
and calculate its Fourier coefficients. By setting z; = ... = z, = z, W¢
obtain a modular form G5, (z) in one variable, of weight 2mn = h, with a
known Fourier expansion, namely

Gym(2) ~ag +ayq +ayq* + ... (22)
with
ap = (x(2m), (23)
a, = {Q2n)*"/2m—-11}"D 2" 2T 2m) (1=1,2,..). (24)
On the other hand, since the space 9, of modular forms of weight 4 has
finite dimension r, there must be a linear relation among the first r + 1
coefficients in the Fourier expansion of any such form, i.e. there must exist
numbers ¢y g, Cp 15 -..» ¢, depending only on /4 such that
feM,, f~ag +aq +ag* + ...
= Ch’oao + Ch’lal + iig + Ch’,.a,. —_— O . (25)

Siegel then shows that ¢, , is non-zero for all /, so we can set

by(h) = —cpifeo (I+1,...,7) (26)

to obtain from (25) the relation
o = lZl b,(h) a, (27)

expressing the constant term of a modular form of given weight as a linear
combination of finitely many of the other coefficients of its Fourier ex-
pansion. Substituting (23) and (24) into (27) gives
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(e (2m) = {QriP"(2m—1)1})"D=2m 12 Y by (5K 2m),  (28)

which 1n view of the functional equation (6) is equivalent to the assertion
of the theorem.

Since the numbers o, () and hence s5 (2m) are clearly (rational) integers,
we deduce from (15) not only that {; (1 —2m) is rational, but also that its
denominator is bounded by a number depending only on 4, i.e. only on the
number 1 — 2m and the degree of the field K.

We now juggle the terms in the Siegel formula somewhat to rewrite it
in a suggestive form. If we substitute the definitions (14) and (13) into
equation (15) and invert the order of summation, we obtain

CK(l——z}n) — o VZ bl (h) Z Z N(%)2m~l

vep—1 Bl (v)d
v>0

tr (v) =1

= 3 w(B)N (B!, (29)

B

where the sum is over all non-zero integral ideals B and the “weight”
w (B) is defined by

W(B) =2" Y by (). (30)

veBp—1

V3> 0
The sum in (30) is always finite and is empty for all but finitely many ideals
B (because b, (k) = 0 for / > r) so the sum (29) is in fact finite. Equation
(29) is a rather amusing formulation of Siegel’s theorem, for if we had just
mechanically substituted s = 1 — 2m into (1) without regard for conver-
gence, we would have obtained

(x(1—2m) = ) N(B™ ', (30)
B

which is of course nonsense, but then equation (29) tells us that it is all
right after all, if we just insert “fudge factors” w (B) to weight the summands:
thus one really can evaluate {; (1 —2m) by adding up (2m— 1)-th powers of
norms of ideals.

In this connection, it is perhaps worthwhile to observe that the weights
w (B) are not unique. Indeed, given /4, we can choose any ' > r and find
coefficients b, (h), ..., b., (h) expressing the constant term of any form
feM, in terms of the next r’ coefficients (such collections 5" will form an
affine space of dimension r’ — r). Then Siegel’s theorem is valid with the
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b} in place of the b,, and similarly using the 4; in (30) would give other
weights making (29) hold.

Finally, for completeness’ sake we should mention that Siegel gave a
somewhat more general formula than the one stated. If 4 denotes any
ideal class of the field K, then restricting the ideals A in the sum (1) to
ideals in the class A gives rise to another meromorphic function, denoted
{ (s, A). This function also takes on rational values at negative odd integers,
and Siegel’s formula for these rational numbers is identical to (15) except
that one must modify the definition of o, () by only allowing those ideal
divisors B in (13) that lie in the class 4. In the formulation of Siegel’s
result just given, this can be simply stated

((1—-2m,A4) = > w(B)N(B)*" 1, (32)

BeA

with the same weights w (B) as before.

§2. ZETA-FUNCTIONS OF QUADRATIC FIELDS

We now specialize to quadratic fields. A totally real quadratic field can
be written uniquely as Q (¢'/?) with d > 1 a square-free integer. Then it
is easy to check that

D

D

Il

d if d=1(mod4), (1)
4d if d =2or3(mod4),

and
b =(/D), (2)

1.e. the different is a principal ideal. The decomposition of rational primes
in the ring of integers @ is described in terms of the primitive character

x (mod D) defined by
D
7() = <~>
X

(here y is completely multiplicative, and given on primes by: y(p) = 0 if
D [ D;forp k2D, y(p)is +1 according as D is or is not a quadratic residue
(mod p); for p=2 and D =d odd, y(2) = (= 1)@ V%) as follows: if
p=2,3,5,.. is a rational prime, then the ideal (p) = @ decomposes into
prime ideals according to the value of y (p) —

(3)
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