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and if Rnf & L"2 for some P > V- and w2 satisfying Aphl
then N(F) s L£2 and

IW)IU2 <c[||/||p,W2 + t \\Rjf\\P,w2]-
j=*l

Finally, as a corollary of Theorem 1, we will show that if/, Rjj eL1
(w 1) for all j, then the Fourier transforms satisfy the standard formula

(i/./)A(x) i^/(x)
I x I

A A

for x A 0, and, by continuity, (Rjf) (0) /(0) 0. The simple proof
is given at the end of §3.

§2. Preliminary results

In this section, we prove some facts, including Theorem 2, which will
be useful later.

First, we need several observations about condition Al. If g* denotes

the Hardy-Littlewood maximal function of a function g, it is not hard to
see that w e Ax if and only if there is a constant c such that

(4) w*(x)<cw(x) a.e.

It is also easy to check that if w e A1 and I and J are cubes with I a J,
then

(5)
Ç wdx < c

J—- wdx
j mjj i

Since for any w that is not identically zero, there is a constant c > 0

such that w* (x) > c (1 + |x|)~n, we obtain that w (x) > c (1 + |x|)"n a.e.

if w e At. Actually, if w e Al9 there exists 5, 0 < <5 < 1, such that w1/ô e A1
(see [7]), so that w (x) > e (1 + |x|)-m5 a.e. This shows that iffe L^, w e Au
then P/(x, t) and Qjf{x, t) are finite and tend to zero as t + oo (for
fixed x). In fact, the estimate implies that

w(v)~1
(6) sup —— — (fx, t) fixed, > 0)

y (t +\x-y\)" >

is finite and tends to zero as t-> +co. Thus, since and
Qj (x-y, t)arebounded in absolute value by a multiple of (t + |x-j|)"",
it follows that | Pf(x, t) | and | (Qjf)t) \ are bounded by
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~IV<«n/iii.w{^fr;,w .yj'
J (t + \x-y\)n (t + \x-y\)n!,

Rn

which is finite and tends to zero as t -» +00.
In addition to the pointwise existence of Rjf for feL*, w e Au there

is also a weak-type estimate: if mw(E) denotes the w-measure of a set E

(i.e., mw (E) ^ w d x) and if R* f is defined by

0R*/)(x) sup I (RJtJ) (x) I

then £>0

mw{x: (R*f)(x) > A} <cX~l \\f\\Um 2>0,
with c independent of/and X. A similar estimate holds for/*. (See [2], [7].)

We need several facts about condition Ap,p > 1, all of v/hich can be

found in [2], [6], and [7]. Here we note only that if w e Ap,p > 1, there is

a constant c such that

f w (y) f
(B \ -— dy <ct np \ w (y) dy t > 0

J (t + \x-y\Y' ^ 3

Rn |x-j>|<t

(Cf. lemma 1 of [6].) In particular, w (y) / (1 + \y\)np is integrable over
Rn if w e A p. This shows that Pf and Qjf are finite iffe Lp, w e Ap, p > 1.

In fact, by Holder's inequality,

f dy f w(y)~p,/p \1/p'

RTl RTl

Pr Pl(P~~ !)• Since w e Ap, we have w~p'lp e Ap,, so that

w(y)"^/(l + |yir'
is integrable and the last expression is finite.

We need the following lemma about harmonic.majorization.

Lemma 1. Let s (x, t) be subharmonic in R"j_+1 and satisfy

sup \ I s (x, t) \pw (x) dx < + 00
t> 0 3

Rn

for some p, 1 <p < +00, vwY/z w e Ap. Then for a > 0,

(7) s (x, t + a) <
If s is harmonic, equality holds in (7).
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Proof. First note by the remarks above that P(s(., df) (x, t) is finite,

since s a) e Lp, w e Ap. Inequality (7) is a corollary of Theorem 2 of [8],

provided that we show

/x i I S (x, 0 I

A(a) f,u„p)(TT7Twrî',"<+"'
Rn

f I s CM)] „(t) ,i' id-K+wr*'^0-
Rn

If p> 1,

5
s cm) I

ax\n+l(i+« + wr
/ c

*
y/p(r\1/p'

< (^ I * (m) ^
(1+t + |x|)(„+1)P.

JR" K"

v J (i+t +lxl)(n+1)pJ
Rn

Since (1 +1+ |x|)(n+ 1)p' > (l + t)p' (l + \x\)np' and w~p'lp satisfies Bp>, the
last expression is at most

c /f w(x)-p'lp \1/p' c Ç
_

N1/p'
\ 7 dx I < \ w (x) p lp dx

i +t\) (i + \x\yp J i +1V J
Rn I*I<1

from which (a) and (b) follow. The argument for p 1 is similar, using for
example the simple estimate w (x)~1 < c (1 + |x|)w. Finally, if s is harmonic
then s (x,t +a) P (s a)) (x, t), by applying (7) to both s and —s.

Lemma 2. Let F be a Cauchy-Riemann system for which

sup \ I F(x9t)\pw(x)dx < +oo,
t > o J

RJl
11 1

where —-— < p < oo and w e ApnKn_iy Then F(x,t) converges a.e.

to a limit F(x, 0) as t -> 0. Moreover, || F(x, 0 - F(x, 0) ||p>w 0

r/i1 t -> 0, w a constant c depending only on n such that

71 — 1
^ ft

(8) JV(f)(x)<C(|F(x,0)r+
w/zcre * denotes the Hardy-Littlewood maximal function.



Proof. Except for the last estimate, this lemma is proved in [4]. The
n- 1

method is standard. Let q pn/(n~ 1) and ^ (y, t) \F(y,t) |
n

p

I F(y, t)\q. Then s is non-negative, continuous and (by [9]) sub-

charmonic in jR"++1. Also,

\ s(y,t)qw(y)dy [ \ F {y,(y) < 0.
e' *J

Rn

Since q > 1, there exist {tk} 0 and heL% such that || ft || qq
w < c1

and s tk) converges weakly in L% to ft—i.e.,

s (y tk) g (y) w {y) dy -> \ ft (y) g (y) w (y) dy

ifgeL%,qr ql(q~ 1). For fixed (x, O,chooseg(y) P(x~y, t)w(y)~1.
Since w e Aq, we have w~q'lq w1~q')eBq,9 and therefore g e Lqw. For
this g, the integral on the left above equals P (s tk)) (x, t), which majorizes
s(x,t+tk) by Lemma 3, and the integral on the right equals (Ph)(x,t).
Hence,

s(x, t) — lim s(x, t + tk)<^ (Ph)(x, t).
tk-* o

a

Therefore, | F (x, t) | < (Ph) (x, t)p, so that

i i
(9) N(F)(x)<N (ft) (x) p < ch* (x)p

We have

h*qw dx < c \ I ft |9w dx
«/

i?n J?"

by [7]. Hence, ft*, and so TV (F), is finite a.e., and it follows from [1] that
F has non-tangential boundary values F (x, 0) a.e. Moreover,

I F (x, t) — F (x, 0) Ipw (x) dx —» 0 as t 0

Rn

by dominated convergence:

I F (x,t)I< N((x)< e Lp.
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n—1 n—1

Since s (x, t) | F(x, t) |
" we have s (x, t) -> | F (x, 0) |

" a.e.

This convergence is also in L% norm since
p

\s(x,t)\<N(F)(xyeLqw.
Since s(.,tk) also converges weakly in L% to h, it follows that

n — 1

h (x) I F(x, 0) I " a.e. Inequality (8) now follows immediately from (9).

Proof of Theorem 2. Let F be a Cauchy-Riemann system satisfying

sup \ I F (x, t) IPw1 (x)dx < + oo
t > 0 J

Rn
where

n — 1

< p < co w1eApnKn-1:>.
n

Then F has boundary value F (x, 0) a.e. and in by Lemma 2; moreover,
n - 1 n

n \%n-lN (F)(x) < c(|F(x, 0)| "

If we now assume that
71 — 1

I F (x, 0) \eLrW2 —< r < oo w2 e

then
f* j* n-1 nr
V lV(F)(xyw2(x)dx < c I (|F(x,0)|—)»i=T

<c ^ |F(*,0)|rw2(.x)djc
Rn

by [7]. This gives (3) immediately.

Remark. We note in passing that if
f 71-1

sup |F(x,0 lpw(x)dx < +Qo, <p< oo, iye^wl/(/I„n,
t>o J n '

Rn
then

(10) sup f | F(x, ï) lpvv (x) tlx » II F(-, 0) Up
7 > 0 J

Rn

L'Enseignement mathém., t. XXII, fasc. 1-2. o
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This follows from Theorem 2: the right-hand side is at most a multiple of
the left since F(x,1) -» F (x, 0) in L„; the converse inequality is just (3)
with w2 and r chosen to be w and p, resp.

§3. Proof of Theorems 1 and 3

We will prove Theorem 1 first, beginning with part (i). Let Fe H^,
F (u, vl9 vn)9 w e A±. By Theorem 2, F has boundary values F(x, 0)

{f(x)> gi (x)9 gn (x)) pointwise a.e. and in L^. In particular,

f gi> •••> Sn We will show that u P (/) and Vj P(gJ). Since

w (x, 51) converges to /(x) in L*, P (u s)) (x, t) -> (P/) (x, t) as s -> 0:

\P(u(-,s))(x,t) - (Pf)(x,t)\ I ^ [u(y,s)
Rn

<li"(ss)-/lli,w{sup wiyy1 P
y

where the expression in curly brackets is finite for each (x, t) (see (6)). By
Lemma 1, u (x, s + t) P (u s))(x, t) since u is harmonic. Hence,

letting s -> 0, we obtain u (x, t) (P/) (x, t), as desired. The argument
proving that Vj P (gj) is similar.

Now let G (Pf, Qif,..., Qnf Then G is a Cauchy-Riemann system
with the same first component as P. This implies that the first component
of F-G is zero, and so that the others are independent of t; that is, Vj— Qjf
is independent of t. Thus, Vj Qjf if both Vj (x, t) and (Qjf) (x, t) tend

to zero as t -» + oo (x fixed). We have already observed this for Qjf For

Vj, the mean-value property of harmonic functions gives

\Vj(x,t)\ <crn~1^ IVjtf,r,)\dtdTi
\Z~X\2 + \t-n\2 <t2

< ct~"sup[ I Vj (Ç, I dÇn>oJ

<crB(sup [ \Vj(Ç,rj)\ w(^)dA (sup w(0_1)
Vï >0 J A: |{-*|<t

RTl

<crn sup w(0_1.
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