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This follows from Theorem 2: the right-hand side is at most a multiple of
the left since F(x,1) -» F (x, 0) in L„; the converse inequality is just (3)
with w2 and r chosen to be w and p, resp.

§3. Proof of Theorems 1 and 3

We will prove Theorem 1 first, beginning with part (i). Let Fe H^,
F (u, vl9 vn)9 w e A±. By Theorem 2, F has boundary values F(x, 0)

{f(x)> gi (x)9 gn (x)) pointwise a.e. and in L^. In particular,

f gi> •••> Sn We will show that u P (/) and Vj P(gJ). Since

w (x, 51) converges to /(x) in L*, P (u s)) (x, t) -> (P/) (x, t) as s -> 0:

\P(u(-,s))(x,t) - (Pf)(x,t)\ I ^ [u(y,s)
Rn

<li"(ss)-/lli,w{sup wiyy1 P
y

where the expression in curly brackets is finite for each (x, t) (see (6)). By
Lemma 1, u (x, s + t) P (u s))(x, t) since u is harmonic. Hence,

letting s -> 0, we obtain u (x, t) (P/) (x, t), as desired. The argument
proving that Vj P (gj) is similar.

Now let G (Pf, Qif,..., Qnf Then G is a Cauchy-Riemann system
with the same first component as P. This implies that the first component
of F-G is zero, and so that the others are independent of t; that is, Vj— Qjf
is independent of t. Thus, Vj Qjf if both Vj (x, t) and (Qjf) (x, t) tend

to zero as t -» + oo (x fixed). We have already observed this for Qjf For

Vj, the mean-value property of harmonic functions gives

\Vj(x,t)\ <crn~1^ IVjtf,r,)\dtdTi
\Z~X\2 + \t-n\2 <t2

< ct~"sup[ I Vj (Ç, I dÇn>oJ

<crB(sup [ \Vj(Ç,rj)\ w(^)dA (sup w(0_1)
Vï >0 J A: |{-*|<t

RTl

<crn sup w(0_1.



Since w (0 1 < c (1 + \Ç\)nô for some <5, 0 < ô < 1, we have

I Vj(s,f) I <crn(i + \x\+t)nô.

Hence, Vj (x, t) -> 0 as t -> 00 for each x.
We now know u Pf, Vj P (gj) Qjf. Letting t -> 0 in the equation

P (gj) (x, t) (Qjf)(x,t) gives g,-(x) CR/) (x) a.e. Thus, RjfeLl
and i'j P(Rjf) ß/ as desired. All that remains to prove in (i) is

n

that HI Fj||and ||/||i(W + £ II //||i,ware equivalent. This, however,
j= 1

follows immediately from (10) with p — 1, since

T(x, 0) (f(x),Rlf{x),
To prove (ii), let / be a function in for which each RjfeL„. (The

existence of Rjf as a pointwise limit is guaranteed by the hypothesis

w e A±.) We will show that the vector defined by

F (Pf,QJ9...,Q„f)
is in HOnce this is done, the rest of (ii) clearly follows from (i). We know
F is a Cauchy-Riemann system, and only need to show ||| F||| < +00.
As t -+ 0,F(x,t) converges a.e. to (/, R±/,..., Rnf) F (x, 0), say, so

that I F(x, 0) I Hence, ||| F||| < +00 by Theorem 2 if there exist p
n — 1

and wu < p < co, w1 eA /(n_1), such that
n

(11) sup \ I F (x, t) \pw1 (x) dx < + 00
t > 0 J

Rn

We first claim that if w eAu there exists a > 0 such that the function

r \
W W

W1 (x)
(1+1*1r

also belongs to A±. Note that (1 + |x|)_/? e A1 if 0 < ß < n, and that there
exists s > I such that ws e Av Hence, for any cube /, Holder's inequality
gives

F ^ W1(x)dx<^|L J wfxydxj ^ (l+|x|)-"'dx) '

I I I
s' sj(s~1). Choose a > 0 so small that as' < n. Then both ws and
(1 + |x|)~as' are in Au and
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—— ^
wx (x) dx < c (ess inf ws)1/s(ess inf (1 + |x|)~as')1/s'

Ml J i i
— c (ess inf w) (ess inf (1 + |x|)~a)

i i< c ess inf w1
iThis proves the claim.

With this choice of wu we will complete the proof of (ii) by showing
that (11) holds for any p < 1 which is sufficiently close to 1. Let

(**/)(*)= max
.7 1,...,»

Then, as is well-known, there is a constant c depending only on n such that

It follows from the weak-type estimates referred to in §2 that the radial
maximal function N0 (.F) (x) sup | F (x, t) |) satisfies

t> o

mw { x: Nq(F)(x) >2} <c2-1 l|/||ljW, 2>0.
We will show that any non-negative function cf) with

mw { x: 0 (x) > 2 } < c2_1, 2 > 0

a
belongs to Lp 1 — - < p < 1. Letgr (2), 2 > 0, denote the non-increasing

n

rearrangement of a function g with respect to the measure w (x) dx. Then,
by [5], p. 257,

^ (j)pwidx ^
mJ «7

(j)pw1dx \ (f) (x)p (1 + \x\) aw(x)dx

< \ ^>^(A) {(1 + |x|)~'}r(X)dX.

We have (f)r (2) < c 2 1 and must estimate {(1 + |x|) a}r. However,

mw { x: (l + |x|)"a > 2} mw{x: 1 + |x| < 2~1/3C}

which for 2 > 1 is zero and for 0 < 2 < 1 is less than

wdx < c2 n/a
^ w dx c2 M/a

|x|<A"~l/a J jc 1 c 1

(see (5)). Therefore,
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{(i+ixira}raxc(i+A)-a/", 2>o.
Combining estimates, we obtain

C C00
V $pw1dx<^c \ X~p(l+X) a/ndÀ < + 00"
J Jo
Rtl

ot

ifl — — </?< 1, as desired. This completes the proof of (ii).
n

To prove Theorem 3, let/eLi and weAv Then (11) holds for F, p
and as in the proof of Theorem 1 (ii). (The proof of (11) does not require

R. feL^.) Hence, by Lemma 2 (see (8)),
n -1 n

N(F)(x)<c(\F(x90)\~)*iiz:i

Since F (x, 0) (/(x), (R±f) (x), (Rnf) (x)), the conclusion of Theorem 3

follows immediately with p (n-\)jn.
To prove the fact stated at the end of the introduction, let

f, Rifi Rnfe L1

Clearly,

P(Rjf)*(x,t)P(x,0 (VW*) (x),

(Qjf) (x, t) <2;(x, 0/W î T~ e_2lrt|'r'/(x) a.e.
I ^ I

where the Fourier transform is taken in the x variable with t fixed. (Note
that for fixed t, P(x, t) belongs to L1 and Qj(x9 t) belongs to L2.) However,

these expressions are all equal everywhere since P (Rjf) Ojf by

Theorem 1 and P(RJf)eL1. Therefore, (Rjf) (x) ixj | x |~ 1/(x),
as claimed.
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