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Two-variable kernels behaye very much like their one-variable analogues
as regards integrated Lipschitz conditions. Indeed, the following can be

easily established :

Property 4. Kernels in Lip (a, p) also belong to Lip (a, q) for all
1 < # < p. Kernels in Lip a are automatically in Lip (a,p) for all p > 1.

Property 5. Kernels which are relatively uniformly of bounded
variation belong to Lip (1, 1).

Property 6. If K (x, y) is absolutely continuous in x, for almost all y,
and

p > 1, then K (x, y) is in Lip (1, p).

Property 7. If a kernel belongs both to Lip (a, p) and to Lip (ß, q)
with 1 < p < q, then it belongs to Lip (y, r) for all p < r < q, where

P(l~r) oq(r-p)
y oc+ p

r(q-p)
A somewhat deeper result is

Property 8. Whenever 1 </? < <7, pq (a — ß) > q — p, kernels in
Lip (a, p) are automatically also in Lip (ß, q).

We come now to the main thrust of our narrative. The characteristic
values associated with a given L 2 kernel K (x, y), 0 < x, y < n, are those

special values of X for which there exist nontrivial solutions of the

homogeneous Fredholm integral equation

2/p
I K(1) (x, y)\p dx dy < 00

4. Growth Estimates for Singular Values

The singular values are those positive values 11 for which there exist non-
trivial cj) (x), ¥ (x) satisfying the coupled equations
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(4.1)

y.,
Jo

<j)(x) n [K(xJo

(x) n i K((y)
Jn

There are at most countably many of each, and they are customarily

ordered (indexed) according to increasing modulus, namely

0 < I Ax I < |A2 I <
0 < <n2 <

The important inequalities (Weyl [32], Chang [8]; see also Gohberg and

Krein [16], p. 41, Cochran [11], pp. 243-245)

N

(4-2) In= 1

" / IVZ — p > 0,N arbitrary,
n= 1 W

relate their growth behavior.
The earliest known growth estimates concern characteristic values. In

1909, Schur [23] established for continuous kernels that

z K

(This was subsequently extended to L2 kernels by Carleman [6]). Even

earlier, however, Fredholm himself [15] (see also Cochran [10], [11],

pp. 25Iff.) had essentially shown that

Theorem 4.1. If K (x, y) is in Lip a with a > 1/2, then

< 00

It is interesting to note that this result which, for characteristic values,
mirrors Theorem 2.1, actually predated the work of Bernstein.

Numerous other growth estimates, many of them analogous to our
earlier Fourier series results of Section 2, have been established by various

investigators. Notable among these are the substantial contributions of
Hille and Tamarkin [22] (see also Cochran [11], pp. 251-265). For the most

part, though, these pertain to characteristic values, and, in view of the
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Weyl-Chang inequalities (4.2), the growth behavior of the singular values
is of greater intrinsic interest.

With regards to these singular values, we do know that the associated

singular functions given by (4.1) can be chosen to be orthonormal amongst
themselves as well as biorthogonal with respect to the kernel K. It then
follows that

A V \ V1 ^n(k)
(4.3) K(x,y) X

n

where the right-hand side converges in the mean. Moreover,

(4-4) y(~) =11* ll2>
« w

so that for L2 kernels we readily conclude that the series of reciprocal
singular values is y-summable at least for all y > 2. The convergence of
XO/aO7 f°r exponents y smaller than 2, however, cannot be established

without additional restrictions on the kernel K. *)

The additional restrictions in which we are interested are of the "smoothness"

variety. Let us assume that the square-integrable kernel K (x, y) is

also such that the K(r) (x, y) 0 < r < s — 2, (defined by (3.1)), are
continuous in x, a.e. in y, for some positive (nonnegative) integer ^ K(s~1} (x, y)
is absolutely continuous in x, a.e. in y, and X(s) (x, y) is in Lp(x), a.e.

in y, for some p > 1. Under these conditions Smithies [24] essentially
showed that

Theorem 4.2. If K(s)(x,y) belongs to Lip (a, p), then ^ (1/aO7

converges for all y > p where

1

a + s + 1 — lip

I
i

a + s + 1/2

When s 0, the additional proviso a + 1/2 > 1 fp may be needed since

K s L2.

1) Although now-a-days it is rather routine to convince yourself of this fact (recall
our earlier discussion on difference kernels) Carleman [5] was probably the first to carefully

establish that even continuity of the kernel was not generally sufficient to ensure
convergence for any y < 2.

1 < p < 2

p> 2.
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The Smithies proof is very instructive. As a key ingredient it makes use

of the fact that the best mean square approximation to a given square-

integrable kernel K by degenerate kernels of the form

(4.5) K„ (x, y) Z an <X> t>„ (y) a„, bn e L2

occurs, for fixed N, when the an, bn are proportional to the singular functions
(j)n, Wn of K [25]. Indeed, if we carry out the details we find

K (x, y) Z an(x)b„(y)
n= 1

< K (x, y)-Z
n 1

N / i \ 2

ßn

(4.6) K z L)

i (-)2>
n N +1 VA4«/

where we have assumed that the singular functions are orthonormalized
and then employed (4.4). In the special case, moreover, when the an are the

appropriate normalized trigonometric functions, namely {s/l/n cos nx}
if s is even and {->/2/7i sin nx) if s is odd (recall the earlier discussion of
Section 3 where we imbued K with certain periodicity properties), and the

bn are the resulting Fourier coefficients of K (x, y) viewed as a function
of x alone, (4.6) takes the form

z
7Î=(V + 1

1)1
MnJ

K
N f

n= 1 Jo
b„(y) I

In fact, using essentially Parseval's relation, the right-hand side of this
inequality can be further rewritten as

(4.7)
oo / -j \ 2 oo

Z Ü < Z
n N + l \"n/ n N+l Jo

K(y) I

The intimate relationship that exists between the growth behavior of
the singular values associated with two-variable kernels and the asymptotic
character of allied classical one-variable Fourier coefficients is rather clearly
exhibited by the expression (4.7). This, then, is the essential relationship
which engenders the desired analogies. Care must be taken in carrying out
the details, however, to ensure that each of the K{r\ 0 < r < s - 1, is
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continuous in the wide-sense, and thus some modification of the behavior
of the Kir) (x, y) for x 0, n may be necessary. Fortunately, this can be

accomplished with a degenerate perturbation which, as the following lemma
shows, leaves unchanged the fundamental asymptotics in question.

Lemma. *) Let K (x, y)9 L (x, y)9 a < x, y < b9 be two L 2 kernels which
differ by a degenerate kernel, i.e. K L + KN where KN has the form (4.5)
for some fixed positive integer N. Then their respective singular values

Pn (K)> Pn (L) satisfy

Pn-N (L) < Pn (K) < fin + N(L)

for all n > N, and hence

pn{K) OM iff pn(L) 0(n%

Returning to Theorem 4.2, although Smithies didn't use the fact, we
note that the special case s 0 is the precise analogue of the Fourier
series result Theorem 2.3. In view of Property 4, this case also contains the

analogues of the earlier Theorems 2.1, 2.2. Recalling Property 6, moreover,
the general case of Theorem 4.2 clearly is analogous to Theorem 2.8 and,
as such, actually generalizes to arbitrary p > la result alternatively established

for p 2 by Smithies' student Chang [9] (see also Gohberg and

Krein [16], pp. 119-123).

As in the Fourier series situation, the convexity of the class Lip (a, p)
plays an important and extremely useful role. Blending Property 7 with
Theorem 4.2, for example, we obtain the following extended analogy to
Theorem 2.6:

Theorem 4.3. If K^s)(x,y) belongs both to Lip (a, p) and to Lip (/?, q),
with p < q9 then (1 /pn)y converges for all y > p where p is as given
in Theorem 2.6 but with a, ß replaced by a + s, ß + s respectively.

In fashion similar to before, Properties 4, 5 then lead to the special cases

Theorem 4.4. If K(s) (x, y) is relatively uniformly of bounded variation
and also in Lip (ß, q) for some ß > 0, q > 1, then J] (1/Pn)y converges for
all y > p where p is as given in Theorem 2.9 ;

1) This particular Lemma is a special case of results of Fan [14]. Already in [24],
however, Smithies essentially had established the asymptotic invariance property of the
singular values under such perturbations.
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Theorem 4.5. If K{s)(x,y) belongs both to Lip (a,p) and to Lip ß,

then X (1/aO7 convergesfor all y > p where p is as given in Theorem 2.10.

Naturally, these theorems also contain the analogues of the Zygmund and

Waraszkiewicz results, Theorems 2.4, 2.5.

In closing it is worth remarking that all of the above kernel function
results are equally as sharp as the corresponding Fourier series results

since, as we have seen earlier, for periodic difference kernels the singular
values and the related Fourier coefficients are essentially reciprocals. In
view of the Weyl-Chang inequalities (4.2), moreover, these theorems amplify
and extend our knowledge concerning the growth behavior of the characteristic

values of "smooth" kernels (see [22], [11], for example).

5. Acknowledgement

Our original interest in this entire inquiry owed much to numerous
stimulating discussions with our former colleague D. W. Swann.

REFERENCES

[1] Bary, N. K. A treatise on trigonometric series. Vol. II (translated from the 1961
Russian ed. by M. F. Mullins). Pergamon, New York, 1964.

[2] Bernstein, S. N. Sur la convergence absolue des séries trigonométriques. C.R. Acad.
Sei. Paris 158 (1914), pp. 1661-1663.

[3 ] On the absolute convergence of trigonometric series. Soobshch. Khar 'kov.
Mat. Obshch. (2) 14 (1914), pp. 139-144 (in Russian); ibid. (1915) pp. 200-201 ;

see also Collected Works, Vol. I, 1952, pp. 217-223 (in Russian).
[4] Sur la convergence absolue des séries trigonométriques. C.R. Acad. Sei.

Paris 199 (1934), pp. 397-400.
[5] Carleman, T. Über die Fourierkoeffizienten einer stetigen Funktion. Acta Math.

41 (1918), pp. 377-384; see also Edition complète des articles, Malmö, 1960,
pp. 15-22.

[6] Zur Theorie der linearen Integralgleichungen. Math. Zeit. 9 (1921), pp. 196-
217; see also Edition complète des articles, Malmö 1960, pp. 79-100.

[7] Chang, S. H. A generalization of a theorem of Lalesco. J. London Math. Soc. 22
(1947), pp. 185-189.

[8 ] On the distribution of the characteristic values and singular values of linear
integral equations. Trans. Amer. Math. Soc. 67(1949), pp. 351-367. MR 11, 523.

[9] A generalization of a theorem of Hille and Tamarkin with applications. Proc.
London Math. Soc. (3) 2 (1952), pp. 22-29. MR 13, 950.

[10] Cochran, J. A. The existence of eigenvalues for the integral equations of laser
theory. Bell Syst. Tech. J. 44 (1965), pp. 77-88. MR 30. 1368.

[11 ] The analysis of linear integral equations. McGraw-Hill, New York, 1972.


	4. Growth Estimates for Singular Values

