4. EXPONENTIAL POLYNOMIALS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 23 (1977)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
12.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1]. For further details see the references cited in the papers mentioned above.

4. Exponential polynomials

We commence by making explicit some folklore the principles of which can be found in [16] and Tijdeman [26], and which is made explicit in another context in van der Poorten [20].

Lemma 5. For some fixed positive integer σ, and some given function g, supposed holomorphic in the domain under consideration, denote by J the set of functions G of the shape

$$
G(z)=\sum_{k=1}^{\sigma} b_{k} g\left(\alpha_{k} z\right),
$$

where $b_{1}, \ldots, b_{\sigma} ; \alpha_{1}, \ldots, \alpha_{\sigma}$ are complex numbers. Then, for all sets of nonnegative integers $\rho(1), \ldots, \rho(m)$ with sum $\sum_{h=1}^{m} \rho(h)=\sigma \quad$ (and all positive integers m such that $1 \leqslant m \leqslant \sigma$), for each function F of the shape

$$
F(z)=\sum_{h=1}^{m} \sum_{t=1}^{\rho(h)} a_{h t} z^{t-1} g^{(t-1)}\left(\omega_{h} z\right),
$$

the $a_{h t}$ complex constants, there is a sequence of functions in J converging uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape F are actually, in a sense, particular cases of, rather than generalisations of functions of the shape G. Indeed, reindex so that G appears as

$$
\begin{equation*}
G(z)=\sum_{h=1}^{m} \sum_{t=1}^{\rho(h)} b_{h t} g\left(\omega_{h t} z\right), \tag{17}
\end{equation*}
$$

and choose the coefficients $b_{h t}$ as functions of $\omega_{11}, \ldots, \omega_{m \rho(m)}$ (so of $\alpha_{1}, \ldots, \alpha_{\sigma}$) so that for each $h=1, \ldots, m$

$$
\begin{equation*}
\sum_{t=1}^{\rho(h)} b_{h t} g\left(\omega_{h t} z\right)=\sum_{t=1}^{\rho(h)} a_{h t} \frac{(t-1)!}{2 \pi i} \int_{C} g(\gamma z) \prod_{s=1}^{t}\left(\gamma-\omega_{h} s\right)^{-1} d \gamma \tag{18}
\end{equation*}
$$

where the closed contour C contains all the $\omega_{h t}$ but excludes any singularities of g. Clearly there exists a sequence of σ-tuples $\left(\omega_{11}, \ldots, \omega_{m \rho(m)}\right)$ which converges to ($\omega_{1}, \ldots, \omega_{1} ; \omega_{2}, \ldots, \omega_{m}$) componentwise, and in the limit, (18) shows that (17) becomes $F(z)$.
I am indebted to D. W. Masser for any felicities in the terminology used in the lemma.

The following theorem is a result due to Tijdeman [26], [27]; see also Waldschmidt [36] p. 164-174. A history of the problem can be found in the above mentioned works.

Definition. Let $\rho(1), \ldots, \rho(m)$ be non-negative integers with sum $\sum \rho(h)=\sigma$, let $a_{h t}(h=1, \ldots, m ; t=1, \ldots, \rho(h))$ be complex numbers which do not all vanish, and let $\omega_{1}, \ldots, \omega_{m}$ be distinct complex numbers. Then a function of the shape

$$
\begin{equation*}
F(z)=\sum_{h=1}^{m} \sum_{i=1}^{\rho(h)} a_{h t} z^{t-1} e^{\omega_{h} z} \tag{19}
\end{equation*}
$$

is called an exponential polynomial of degree σ, with frequencies ω_{h} and coefficients a_{h}.

Theorem 1. The number of zeros $n\left(F, R, z_{0}\right)$ of an exponential polynomial F of degree σ and with frequencies $\omega_{1}, \ldots, \omega_{m}$ satisfying $\max _{h}\left|\omega_{h}\right| \leqslant \Omega$, in a disc of centre z_{0} and radius R, is less than

$$
\begin{equation*}
\frac{\log \gamma}{\log \tau}(\sigma-1)+\frac{(\gamma \tau-1)(\gamma+1)}{\gamma(\gamma-\tau) \log \tau} \Omega R+\frac{1}{\log \tau(\gamma-1)} \tag{20}
\end{equation*}
$$

for all $\gamma>\tau>1$.
Proof. We consider the exponential sum

$$
G(z)=\sum_{k=1}^{\sigma} b_{k} e^{\omega_{k} z}, \max _{k}\left|\omega_{k}\right| \leqslant \Omega,
$$

and suppose that $z_{0}=0$. In lemma 2 take $g_{k}(z)=e^{\omega_{k} z}$ and t_{j}, z_{j} such that $t_{\lambda}=\lambda-1, z_{\lambda}=0(\lambda=1, \ldots, \sigma)$ and observe that the determinant Δ of lemma 2 now coincides with the Vandermonde determinant D of lemmas 3 and 4 . Then from lemmas 2 and 4 we obtain

$$
\begin{equation*}
\left.|G|_{S^{*}}| | G\right|_{S} \leqslant \sum_{\lambda=1}^{\sigma}\left(\frac{S^{*}}{S}\right)^{\lambda-1} \sum_{h=1}^{\sigma} \frac{\left(\Omega S^{*}\right)^{h-\lambda}}{(h-\lambda)!} e^{\Omega S^{*}} . \tag{21}
\end{equation*}
$$

We observe that the information (21) is independent of the coefficients of G and independent of $\min _{h \neq k}\left|\omega_{k}-\omega_{h}\right|$; furthermore, under a translation only the coefficients of G change, so (21) is valid for all centres z_{0}. So by lemma 5 we have, writing $S^{*} / S=\gamma>1$,

$$
\begin{align*}
\left.|F|_{S^{*}}| | F\right|_{S} & \leqslant e^{\Omega S^{*}} \sum_{\substack{\sigma=0 \\
\sigma=1}} \frac{\left(\Omega S^{*}\right)^{h}}{h!} \sum_{\substack{\sigma=1 \\
\lambda=1}}^{\lambda-1} \\
& =\frac{e^{\Omega S^{*}}}{\gamma-1}\left(\gamma^{\sigma} \sum_{h=0}^{\sigma-1} \frac{(\Omega S)^{h}}{h!}-\sum_{\substack{\sigma-1 \\
h=0}} \frac{\left(\Omega S^{*}\right)^{h}}{h!}\right) \tag{22}
\end{align*}
$$

It follows that, with the gain of some tidiness, but the loss of some precision, (and noticing that $\left.-\log \left(1-\frac{1}{\gamma}\right)<\frac{1}{\gamma-1}\right)$,

$$
\left.\log |F|_{S^{*}}| | F\right|_{S}<(\sigma-1) \log \gamma+\frac{1}{\gamma-1}+\Omega\left(S^{*}+S\right)
$$

Finally let $\tau=\left(S^{* 2}+S R\right) / S^{*}(S+R)>1$; then lemma 1 implies that

$$
\begin{equation*}
n\left(F, R, z_{0}\right)<\frac{1}{\log \tau}\left\{(\sigma-1) \log \gamma+\frac{1}{\gamma-1}+\Omega R \frac{(\gamma \tau-1)(\gamma+1)}{\gamma(\gamma-\tau)}\right\} \tag{23}
\end{equation*}
$$ as asserted.

Corollary 1. If $\sigma=1$ then $n\left(F, R, z_{0}\right)=0$. For $\sigma>1$ we have

$$
\begin{equation*}
n\left(F, R, z_{0}\right)<3(\sigma-1)+4 \Omega R \tag{24}
\end{equation*}
$$

(Tijdeman [27]
or

$$
\begin{equation*}
n\left(F, R, z_{0}\right)<2(\sigma-1)+5 \Omega R, \tag{25}
\end{equation*}
$$

(Waldschmidt [36])

$$
\begin{equation*}
n\left(F, R, z_{0}\right)<4(\sigma-1)+3 \Omega R . \tag{26}
\end{equation*}
$$

Proof. The first remark is trivial; we require $\sigma>1$ in order to assimilate the term $1 /(\gamma-1)$ in (20). To obtain (24) choose, say, $\tau=3.5, \gamma=30$, and for (25) $\tau=3.5, \gamma=10$, whilst for (26) $\tau=3.5, \gamma=110$. Parameters were calculated on the HP 65 belonging to John Conway, for whom see Knuth [9].

Notwithstanding the apparent precision of our method, (20) gives quite inadequate results in the asymptotic cases. For example, we know from results of Pólya [15] and Dickson [6] that $\lim _{R \rightarrow \infty} n(F, R) / R<\Omega$, but (22) does no better than $\lim _{R \rightarrow \infty} n(F, R) / R \leqslant e \Omega$. At the opposite extreme, " the local valency problem ", M. Voorhoeve has shown, using an idea of Hayman [8], that if $\sigma \geqslant 4$ then $R \leqslant 1 / 8 \Omega$ implies $n(F, R) \leqslant \sigma-1$, but nothing like this precision is available from (20); incidentally, because F has σ coefficients, it is clear that in every disc, no matter how small, one may have $n(F, R) \geqslant \sigma-1$.

Although theorem 1 is more than adequate for applications to transcendence arguments, one can do better; for example Voorhoeve [31] has shown that $n\left(F, R, z_{0}\right) \leqslant 2(\sigma-1)+\frac{4}{\pi} \Omega R$ by a quite different argument. Actually because the result in the exponential polynomial case is independent of centre z_{0}, lemma 1 is quite crude (note the "extreme case ") because it assumes that the zeros accumulate at a point near the edge of the disc.

We now turn to a generalisation of theorem 1 wherein we show that an exponential polynomial cannot be small at too many points. This result largely includes earlier similar results of Mahler [10], Tijdeman [29] and Cijsouw and Tijdeman [5]. As we shall see, theorem 2 actually contains theorem 1 as a special case.

We shall retain, without further explanation, the notations introduced in the lemmas above. In preparation for the proof of the theorem we require two lemmas.

Lemma 6. Let

$$
F(z)=\sum_{k=1}^{m} \sum_{s=1}^{\rho(k)} \frac{b_{k s}}{(s-1)!} z^{s-1} e^{\omega_{k} z}
$$

be an exponential polynomial of degree at most $\sigma=\sum_{k=1}^{m} \rho(k)$.
Write

$$
\begin{aligned}
& D_{k}=\left|\prod_{\substack{h=1 \\
h \neq k}}^{m}\left(\omega_{k}-\omega_{h}\right)^{\rho(h)}\right|, \Omega_{k}=\left|\omega_{k}\right|, d_{k}=\min _{h \neq k}\left|\omega_{k}-\omega_{h}\right| \\
& (k=1, \ldots, m)
\end{aligned}
$$

Denote by θ a real number such that $(S \theta)^{\sigma-1} \geqslant(\sigma-1)$! and by S a real number we shall suitably determine below. Then

$$
\left|b_{k s}\right| \leqslant 2^{\sigma-s} D_{k}^{-1} \prod_{h=1}^{m}(\theta+\Omega h)^{\rho(h)-\delta_{h k}} d_{k}^{-(\rho(k)-s)}|F|_{S}
$$

and in particular

$$
\left|b_{k \rho(k)}\right| \leqslant D_{k}^{-1} \prod_{h=1}^{m}(\theta+\Omega h)^{\rho(h)-\delta_{h k}}|F|_{s} \quad(k=1, \ldots m: s=1, \ldots, \rho(k))
$$

Proof. Notice (compare lemma 2) that if $\Delta_{\lambda, k s}$ is the cofactor of the typical element in the $\sigma \times \sigma$ determinant

$$
\Delta=\left|\binom{\lambda-1}{s-1} \omega_{k}^{\lambda-s}\right|_{k s, \lambda}
$$

(here rows are indexed by the pairs (k, s) and columns by λ) then plainly

$$
b_{k s}=\sum_{\lambda=1}^{\sigma}\left\{\frac{(\lambda-1)!}{2 \pi i} \int_{|\zeta|=s} \frac{\Delta_{\lambda, k s}}{\Delta} F(\zeta) \frac{d \zeta}{\zeta^{\lambda}}\right\},
$$

$$
\begin{equation*}
\left|b_{k s}\right| \leqslant|F|_{S} \sum_{\lambda=1}^{\sigma}\left|\frac{\Delta_{\lambda, k s}}{\Delta}\right| \frac{(\lambda-1)!}{S^{\lambda-1}} \tag{27}
\end{equation*}
$$

But

$$
\sum_{\lambda=1}^{\sigma} \frac{(\lambda-1)!}{(\lambda-t)!} \omega_{h}^{\lambda-t} \frac{\Delta_{\lambda, k s}}{\Delta}=\left\{\begin{array}{cl}
(s-1)! & (h, t)=(k, s) \\
0 & (h, t) \neq(k, s)
\end{array}\right.
$$

so $\Delta_{\lambda, k s} / \Delta$ is exactly the coefficient of $z^{\lambda-1}$ in the polynomial $P_{k s}(z)$ of degree at most $\sigma-1$ defined by the σ conditions

$$
P_{k s}^{(t-1)}\left(\omega_{h}\right)= \begin{cases}(s-1)! & (h, t)=(k, s) \\ 0 & (h, t) \neq(k, s)\end{cases}
$$

We now make a change of scale whereby we replace z in $F(z)$ by $z \theta$; this is tantamount to replacing each ω_{k} by ω_{k} / θ whilst each $b_{k s}$ become $b_{k s} / \theta^{s-1}$. We arrange that $(S \theta)^{\sigma-1} \geqslant(\sigma-1)$!. Then (27) implies that it suffices to find an upper bound for the sum of absolute values of the coefficients of $P_{k s}(z)$. There is a useful stratagem whereby one obtains such a bound, dependent on the observation that if a polynomial $P(z)$ has non-negative real zeros then $|P(-1)|$ is the sum of the absolute values of its coefficients. For formal details of the required generalisation of this remark see van der Poorten [17], lemma 2.
One confirms readily that the polynomial $P_{k s}(z)$ is given by the integral

$$
\begin{equation*}
P_{k s}(z)=-\frac{1}{2 \pi i} \int_{C_{k}} \frac{\left(\zeta-\omega_{k}\right)^{s-1}}{\zeta-z} \prod_{h=1}^{m}\left(\frac{z-\omega_{h}}{\zeta-\omega_{h}}\right)^{\rho(h)} d \zeta \tag{28}
\end{equation*}
$$

where C_{k} is a suitable contour about ω_{k} excluding the other ω_{h} and formally excluding z; in fact (28) is just a special case of an integral form of the Hermite interpolation formula.
So
$P_{k s}(z)=D_{k}^{-1} \frac{\left(z-\omega_{k}\right)^{\rho(k)-1}}{(\rho(k)-s)!}\left(\frac{\partial}{\partial \zeta}\right)^{\rho(k)-s}\left\{\prod_{\substack{h=1 \\ h \neq k}}^{m}\left\{\frac{z-\omega_{k}}{\frac{\zeta-\omega_{k}}{\omega_{h}-\omega_{k}}-1}\right\}^{\rho(h)} \frac{1}{\zeta-z}\right\}_{\zeta=\omega_{k}}$
whence

$$
\begin{equation*}
\left|P_{k s}(-1)\right| \leqslant D_{k}^{-1} 2^{\sigma-s} \prod_{h=1}^{m}\left(1+\Omega_{h}\right)^{\rho(h)-\delta_{h k}} d_{k}^{-(\rho(k)-s)} \tag{29}
\end{equation*}
$$

But in the estimate (29) we have estimated the numerator as if $P_{k s}(z)$ were a sum of polynomials with non-negative real zeros $\Omega_{1}, \ldots, \Omega_{m}$. Hence (29) gives an upper bound for the sum of the absolute values of the coefficients of $P_{k s}(z)$. Recalling the scaling we are assuming, (27) implies that

$$
\left|b_{k s}\right| \leqslant 2^{\sigma-s} D_{k}^{-1} \prod_{h=1}^{m}\left(\theta+\Omega_{h}\right)^{\rho(h)-\delta_{h k}} d_{k}^{-(\rho(k)-s)}|F|_{s}
$$

In the special case $s=\rho(k)$ we have very simply that

$$
P_{k \rho(k)}(z)=\prod_{h=1}^{m}\left(\frac{z-\omega_{h}}{\omega_{k}-\omega_{h}}\right)^{\rho(h)-\delta_{h k}}
$$

and the estimate for $b_{k \rho(k)}$ follows immediately from (27) and the argument outlined above.

Lemma 7. Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct points such that

$$
\left|\frac{F^{(t-1)}\left(\alpha_{h}\right)}{(t-1)!}\right| \leqslant \chi_{h t} \leqslant \chi_{h} \leqslant \chi
$$

and

$$
\Delta_{h}=\left|\prod_{\substack{k=1 \\ k \neq h}}^{m}\left(\alpha_{h}-\alpha_{k}\right)^{\tau(k)}\right|,\left|\alpha_{h}\right|=R_{h} \leqslant R, \min _{k \neq h}^{k \neq h}\left|\alpha_{h}-\alpha_{k}\right|=\delta_{h}
$$

$(h=1, \ldots, n ; t=1, \ldots, \tau(h))$ where $\tau(1), \ldots, \tau(n)$ are positive integers with $\operatorname{sum} \sum_{h=1}^{n} \tau(h)=N$.
Let S^{*}, S be real numbers satisfying $S^{*}>S>0$ and $S^{*} \geqslant R>0$.
Then.

$$
\begin{gathered}
|F|_{S} \leqslant \frac{S^{*}}{S^{*}-S} \prod_{k=1}^{n}\left(\frac{S^{*}\left(S+R_{k}\right)}{S^{* 2}+S R_{k}}\right)^{\tau(k)}|F|_{S}^{*}+ \\
+\sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} \chi_{h t} N^{-1} 3^{N-1} \Delta_{h}^{-1} \prod_{k=1}^{n}\left(\frac{\left(S^{*}+R_{h} R_{k}\right)\left(S+R_{k}\right)}{S^{* 2}+S R_{k}}\right)^{\tau(k)} \delta_{h}^{-(\tau(h)-t)}
\end{gathered}
$$

Proof. By an integral form of the Hermite interpolation formula we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{|\zeta|=S} F(\zeta) \prod_{k=1}^{n}\left(\frac{S^{* 2}-\zeta \bar{\alpha}_{k}}{S^{*}\left(\zeta-\alpha_{k}\right)}\right)^{\tau(k)} \frac{d \zeta}{\zeta-z} \\
& =F(z) \prod_{k=1}^{n}\left(\frac{S^{* 2}-z \bar{\alpha}_{k}}{S^{*}\left(z-\alpha_{k}\right)}\right)^{\tau(k)}+ \\
& +\frac{1}{2 \pi i} \sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} \frac{F^{(t-1)}\left(\alpha_{h}\right)}{(t-1)!} \int_{C_{h}}\left(\zeta-\alpha_{h}\right)^{t-1} \prod_{k=1}^{n}\left(\frac{\left(S^{* 2}-\zeta \bar{\alpha}_{k}\right.}{\left(S^{*}\left(\zeta-\alpha_{k}\right)\right.}\right)^{\tau(k)} \frac{d \zeta}{\zeta-z}
\end{aligned}
$$

as can be seen directly by the Cauchy residue theorem; here C_{h} is a suitable contour about α_{h} excluding the other α_{k} and formally excluding z. By the argument detailed in lemma 2 we have for $|z|=S$.

$$
\begin{equation*}
\left|\prod_{k=1}^{n}\left(\frac{S^{* 2}-z \bar{\alpha}_{k}}{S^{*}\left(z-\alpha_{k}\right)}\right)^{\tau(k)}\right| \geqslant \prod_{k=1}^{n}\left(\frac{\left(S^{* 2}+S R_{k}\right.}{\left(S^{*}\left(S+R_{k}\right)\right.}\right)^{\tau(k)} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{|\zeta|=S^{*}} F(\zeta) \prod_{k=1}^{n}\left(\frac{S^{* 2}-\zeta \bar{\alpha}_{k}}{S^{*}\left(\zeta-\alpha_{k}\right)}\right)^{\tau(k)} \frac{d \zeta}{\zeta-z}\right| \leqslant|F|_{S^{*}} \frac{S^{*}}{S^{*}-S} \tag{31}
\end{equation*}
$$

We select z such that $|F(z)|=|F|_{s}$ whence we may suppose that z is not near any α_{h}. Then by explicit evaluation similar to that in lemma 6 we obtain.

$$
\begin{align*}
& \left|\frac{1}{2 \pi i} \int_{C_{h}}\left(\zeta-\alpha_{h}\right)^{t-1} \prod_{k=1}^{n}\left(\frac{S^{* 2}-\zeta \bar{\alpha}_{k}}{S^{*}\left(\zeta-\alpha_{k}\right)}\right)^{\tau(k)} \frac{d \zeta}{\zeta-z}\right| \tag{32}\\
& \leqslant N^{-1} 3^{N-1} \Delta_{h}^{-1} \prod_{k=1}^{n}\left(\frac{S^{* 2}+R_{h} R_{k}}{S^{*}}\right)^{\tau(k)} \delta_{h}^{-(\tau(h)-t)} .
\end{align*}
$$

The three inequalities (30), (31) and (32) together with the integral interpolation formula now readily yield the lemma.

Theorem 2. Let

$$
F(z)=\sum_{k=1}^{m} \sum_{s=1}^{\rho(k)} \frac{b_{k s}}{(s-1)!} z^{s-1} e^{\omega_{k} z}
$$

be an exponential polynomial of degree at most $\sigma=\sum_{k=1}^{m} \rho(k) \quad(>1)$ with

$$
\begin{aligned}
& D_{k}=\left|\prod_{\substack{h=1 \\
h \neq k}}^{m}\left(\omega_{k}-\omega_{h}\right)^{\rho(h)}\right|,\left|\omega_{k}\right|=\Omega_{k} \leqslant \Omega, \\
& d_{k}=\min _{h \neq k}\left|\omega_{k}-\omega_{h}\right|(k=1, \ldots, m)
\end{aligned}
$$

Further let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct points such that

$$
\Delta_{h}=\left|\prod_{\substack{k=1 \\ k \neq h}}^{n}\left(\alpha_{h}-\alpha_{k}\right)^{\tau(k)}\right|,\left|\alpha_{h}\right|=R_{h} \leqslant R, \min _{\substack{k \neq h}}\left|\alpha_{h}-\alpha_{k}\right|=\delta_{h} .
$$

and

$$
\left|\frac{F^{(t-1)}\left(\alpha_{h}\right)}{(t-1)!}\right| \leqslant \chi_{h t} \leqslant \chi_{h} \leqslant \chi
$$

$(h=1, \ldots n ; t=1, \ldots, \tau(h))$ where $\tau(1), \ldots, \tau(n)$ are positive integers with $\operatorname{sum} \sum_{h=1}^{n} \tau(h)=N$.
Then if

$$
N \geqslant 2(\sigma-1)+5 \Omega R
$$

we have

$$
\begin{aligned}
\left|b_{k s}\right| & <D_{k}^{-1} d_{k}^{-(\rho(k)-s)}(3 N / 4 R)^{\sigma-1} \sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} \chi_{h t} N^{-1} \Delta_{h}^{-1} \delta_{h}^{-(\tau(h)-t)}(5 R)^{N} . \\
& \leqslant D_{k}^{-1} d_{k}^{-(\rho(k)-s)}(3 N / 4 R)^{\sigma-1} \Delta^{-1}(5 R)^{N} \chi
\end{aligned}
$$

(where $\left.\Delta=\min \Delta_{h} \delta_{h}^{\tau(h)-t}\right) . \quad(k=1, \ldots, m ; s=1, \ldots, \rho(k))$

$$
(h, t)
$$

In particular for $k=1, \ldots, m$

$$
\left|b_{k \rho(k)}\right|<D_{k}^{-1}(N / e R)^{\sigma-1} \sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} \chi_{h t} N^{-1} \Delta_{h}^{-1} \delta_{h}^{-(\tau(h)-t)}(5 R)^{N}
$$

Proof. In the proof of theorem 1 we showed at (22) that

$$
\begin{equation*}
|F|_{S^{*}} \leqslant|F|_{S} \frac{e^{\Omega S^{*}}}{\gamma-1}\left(\left(\gamma^{\sigma} \sum_{h=0}^{\sigma-1} \frac{(\Omega S)^{h}}{h!}-\sum_{h=0}^{\sigma-1} \frac{\left(\Omega S^{*}\right)^{h}}{h!}\right)\right. \tag{33}
\end{equation*}
$$

whilst lemma 7 gives an inequality

$$
\begin{equation*}
|F|_{S} \leqslant|F|_{S^{*}} \frac{\gamma}{\gamma-1} \prod_{k=1}^{n}\left(\frac{S^{*}\left(S+R_{k}\right)}{S^{* 2}+S R_{k}}\right)^{\tau(k)}+E \tag{34}
\end{equation*}
$$

with

$$
E \leqslant \sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} \chi_{h t} N^{-1} 3^{N-1} \Delta_{h}^{-1} \prod_{k=1}^{n}\left(\frac{\left(S^{* 2}+R_{h} R_{k}\right)\left(S+R_{k}\right)}{S^{* 2}+S R_{k}}\right)^{\tau(k)} \delta_{h}^{-(\tau(h)-t)}
$$

Substituting (33) in (34) thus yields an inequality of the shape

$$
\begin{equation*}
|F|_{S}(1-Y) \leqslant E \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
Y \leqslant \frac{\gamma e^{\Omega S^{*}}}{(\gamma-1)^{2}}\left(\gamma^{\sigma} \sum_{h=0}^{\sigma-1} \frac{(\Omega S)^{h}}{h!}-\sum_{h=0}^{\sigma-1} \frac{\left(\Omega S^{*}\right)^{h}}{h!}\right) \prod_{k=1}^{n}\left(\frac{S^{*}\left(S+R_{k}\right)}{S^{* 2}+S R_{k}}\right)^{\tau(k)}, \tag{36}
\end{equation*}
$$

and we require, in order that we obtain a meaningful result, that $Y<1$. Firstly we simplify (36) as in theorem 1, and obtain on writing $\tau=$ $\left(S^{* 2}+S R\right) / S^{*}(S+R)$ that
(37) $-\log Y \geqslant N \log \tau-(\sigma-1) \log \gamma-\Omega\left(S^{*}+S\right)-2 \log (\gamma / \gamma-1)$

We conclude that (seeing that the last term is insignificant) it suffices that $N>n(F, R, 0)$ in order that $-\log Y$ be positive. Moreover lemma 6 yields an inequality of the shape

$$
\begin{equation*}
\left|b_{k s}\right| \leqslant|F|_{S} Z_{k s} \tag{38}
\end{equation*}
$$

with

$$
Z_{k s} \leqslant 2^{\sigma-s} D_{k}^{-1} \prod_{h=1}^{m}\left(\theta+\Omega_{h}\right)^{\rho(h)-\delta_{h k}} d_{k}^{-(\rho(k)-s)} .
$$

Thus (35) together with (38) gives

$$
\begin{equation*}
\left|b_{k s}\right| \leqslant \frac{Z_{k s}}{1-Y} E \tag{39}
\end{equation*}
$$

which is of the shape we require. Then it remains to appropriately choose parameters and to make simplifications so as to obtain a result in simple shape.
For example select $\gamma=10, \tau=3,8$. Then we may choose $N=2(\sigma-1)$ $+5 \Omega R$ and from (37) obtain that $1 /(1-Y)<3$, (provided only that $\sigma>1$). With this choice it suffices for the scaling of lemma 6 , to choose $\theta \geqslant 2(\sigma-1) / e R$ at (38). By now suppressing all details (that is, replacing all $R_{k}, \Omega_{k}, \ldots$ by R, Ω, \ldots respectively) and estimating E with the above choice for the parameters we get

$$
\begin{equation*}
E \leqslant \frac{1}{3}(5 R)^{N} \sum_{h=1}^{n} \sum_{t=1}^{\tau(h)} N^{-1} \chi_{h t} \Delta_{h}^{-1} \delta_{h}^{-(\tau(h)-t)} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{k s} \leqslant D_{k}^{-1} d_{k}^{-(\rho(k)-s)}(2 / e R)^{\sigma-1}(2(\sigma-1)+e \Omega R)_{1}^{\sigma-1} \tag{41}
\end{equation*}
$$

so certainly either

$$
\begin{equation*}
Z_{k s} \leqslant D_{k}^{-1} d_{k}^{-(\rho(k)-s)}\left\{\max \left(8 \Omega, \frac{2(\sigma-1)}{R}\right)\right\}^{\sigma-1} \tag{42}
\end{equation*}
$$

or, more tidily, though less sharply

$$
\begin{equation*}
Z_{k s} \leqslant D_{k}^{-1} d_{k}^{-(\rho(k)-s)}(2 N / e R)^{\sigma-1}<D_{k}^{-1} d_{k}^{-(\rho(k)-s}(3 N / 4 R)^{\sigma-1} \tag{43}
\end{equation*}
$$

We further recall that if $s=\rho(k)$ then (42) and (43) become respectively

$$
Z_{k \rho(k)} \leqslant D_{k}^{-1}\left\{\max \left(4 \Omega, \frac{\sigma-1}{R}\right)\right\}^{\sigma-1}, \quad Z_{k \rho(k)} \leqslant D_{k}^{-1}(N / e R)^{\sigma-1}
$$

These estimates yield the results of the theorem.
One can of course obtain alternative estimates more suitable to a particular application; in particular it would in practice be appropriate to select the parameters, and thus S^{*} and S, according to the relative sizes of $\sigma-1$ and ΩR.
We have made a point of specially mentioning the simpler bounds for $\left|b_{k \rho(k)}\right|$ because in typical estimations in transcendence theory one has the
$b_{k s}$, or even the $b_{k s} /(s-1)$! rational integers; thus as soon as $\left|b_{k \rho(k)}\right|<1$ one has $b_{k \rho(k)}=0$ and then a fortiori one has sequentially $b_{k \rho(k)} \downarrow_{1}=\ldots$ $=b_{k 1}=0$ which eventually shows that F vanishes identically. Thus in this circumstance it suffices to have an estimate only for the leading coefficients of the polynomial coefficients.
In applications it is of course necessary to have good lower bounds for the D_{k} and the Δ_{h}. For some such estimates see Cijsouw and Tijdeman [5], lemmas 5 and 6.
One case is of sufficient interest to mention specifically:
COROLLARY. If $\alpha_{1}=1, \alpha_{2}=2, \ldots, \alpha_{n}=R($ so $n=R)$ and $\tau(h)$ $=T(h=1, \ldots, n)$, so $N=R T$, then

$$
\left|\frac{F^{(t-1)}(h)}{(t-1)!}\right| \leqslant \chi_{h t} \leqslant \chi_{h} \leqslant \chi \quad(h=1, \ldots, R ; t=1, \ldots, T)
$$

and

$$
N=R T \geqslant 2(\sigma-1)+5 \Omega R,
$$

implies that for $k=1, \ldots, m$

$$
\begin{aligned}
& \left|b_{k \rho(k)}\right|<D_{k}^{-1}(N / e R)^{\sigma-1} \sum_{h=1}^{R} \sum_{t=1}^{T} \chi_{h t} N^{-1}(5 R)^{N} /((h-1)!(R-h)!)^{T} \\
& <D_{k}^{-1}(N / e R)^{\sigma-1} 30^{N} \chi
\end{aligned}
$$

Proof. Note only that $(h-1)!(R-h)!>2^{-(R-1)}(R-1)!>(R / 6)^{R}$; (by sharpening lemma 7 for this case one can improve the 30 to about 15).

5. Further results

We consider some further applications of the method of this note. It is instructive to observe that the success of these applications depends, in effect, on forcing an analogy with the simplest case, that of exponential polynomials. The methods of Hayman [8] applies to a different class of functions, which does however intersect with the class considered here. For an example of this different method at work, see Voorhoeve, van der Poorten and Tijdeman [33]. In this context see also Voorhoeve and van der Poorten [32]; the ideas here however relate to the new method of Voorhoeve [31].

Continuing to use the notation of the previous sections, we observe that if in lemma 2 we take $t_{\lambda}=\lambda-1, z_{\lambda}=0$ and $g_{i}(z)=g\left(\omega_{i} z\right)$ where g is given by (14) then the ratio $\Delta_{\lambda},{ }_{k} / \Delta$ of lemma 2 is given by

