§4. Asymptotic Stability of Canonically Polarized Curves

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 23 (1977)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
12.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

§ 4. Asymptotic Stability of Canonically Polarized Curves

The chief difficulty of using the numerical criterion of Theorem 2.9 to prove the stability of a projective variety is that it is necessary to look inside $\mathcal{O}_{X \times \mathbf{A}^{1}}$ to compute the multiplicity $e_{L}(\mathscr{I})$. To circumvent this difficulty, we will construct an upper bound on $e_{L}(\mathscr{I})$ in terms of data on X alone. For curves, this bound involves only the multiplicities of ideals $\mathscr{I} \subset \mathcal{O}_{X}$, but for higher dimensional varieties-in particular, surfaces-it requires a theory of mixed multiplicities, i.e. multiplicities for several ideals simultaneously. To motivate the global theory, we will first describe what happens in the local case. Here the basic ideas were introduced by Teissier and Rissler [22]. Recall that if \mathcal{O} is a local ring of dimension r with infinite residue field and l is an ideal of finite colength in it then whenever $f_{1}, \ldots f_{r}$ are sufficiently generic elements of $I, e(I)=e\left(\left(f_{1}, \ldots, f_{r}\right)\right)$. This suggests

Definition 4.1. If \mathscr{O}^{r} is a local ring and I_{1}, \ldots, I_{r} are ideals of finite colength in \mathcal{O}, the mixed multiplicity of the I_{i} is defined by

$$
e\left(I_{1}, \ldots, I_{r}\right)=e\left(\left(f_{1}, \ldots, f_{r}\right)\right)
$$

where $f_{i} \in I_{i}$ is a sufficiently generic element. (The set of integers $e\left(\left(f_{1}, \ldots, f_{r}\right)\right)$ has some minimal element and a choice $\left(f_{1}, \ldots, f_{r}\right)$ is sufficiently generic if the minimum is attained for these f_{i}.)

The basic property of these multiplicities is:
Proposition 4.2. Let I_{1}, \ldots, I_{k} be ideals of finite colength of a local ring \mathcal{O}^{r} and let

$$
P_{r}\left(m_{1}, \ldots, m_{k}\right)=\sum_{\substack{\Sigma_{i}=r \\ r_{i} \equiv 0}} \frac{1}{\prod\left(r_{i}!\right)} \cdot e\left(I_{1}^{\left[r_{1}\right]}, \ldots, I_{k}^{\left[r_{k}\right]}\right) \cdot m_{1}^{r_{1}} \ldots m_{k}^{r_{k}}
$$

where $I_{i}^{\left[r_{i}\right]}$ indicates that I_{i} appears r_{i} times. Then

$$
\left|\operatorname{dim}\left(\mathcal{O} \mid \prod_{i=1}^{k} I_{i}^{m_{i}}\right)-P_{r}\left(m_{1}, \ldots, m_{k}\right)\right|=0\left(\left(\sum m_{i}\right)^{r-1}\right)
$$

ii) There exists a polynomial of total degree r

$$
P\left(m_{1}, \ldots, m_{k}\right)=P_{r}\left(m_{1}, \ldots, m_{k}\right)+\text { lower order terms }
$$

and an N_{0} such that if $m_{i} \geq N_{0}$ for all i, then

$$
\operatorname{dim}\left(\mathcal{O} / \prod I_{i}^{m_{i}}\right)=P\left(m_{1}, \ldots, m_{k}\right) .
$$

Proof. See Teissier and Rissler [22].
Using this we obtain the estimate:
Proposition 4.3. Let $I \subset \mathcal{O}[[t]]$ be an ideal of finite codimension and let $I_{k}=\left\{a \in \mathcal{O} \mid a t^{k} \in I\right\} ;$ then $I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{N}=\mathcal{O}, N \gg 0$. Then for all sequences $0=r_{0}<r_{1}<\ldots<r_{l}=N$,

$$
e(I) \leq \sum_{k=0}^{l-1}\left(r_{k+1}-r_{k}\right) \sum_{j=0}^{r} e\left(I_{r_{k}}^{[j]}, I_{r_{k+1}}^{[r-j]}\right) .
$$

Proof. Since $I \supset \oplus t^{r_{i}} I_{r_{i}}$

$$
\begin{aligned}
I^{n} & \supset I_{r_{0}}^{n}\left(\mathcal{O}+t \mathcal{O}+\ldots+t^{r_{1}-1} \mathcal{O}\right)+I_{r_{0}}^{n-1} I_{r_{1}}\left(t^{r_{1}} \mathcal{O}+t^{r_{1}+1} \mathcal{O}+\ldots+t^{2 r_{1}-1} \mathcal{O}\right) \\
& +\ldots+I_{r_{0}} I_{r_{1}}^{n-1}\left(t^{(n-1) r_{1}} \mathcal{O}+\ldots+t^{n r_{1}-1} \mathcal{O}\right) \\
& +I_{r_{1}}^{n}\left(t^{n r_{1}} \mathcal{O}+\ldots+t^{(n-1) r_{1}+r_{2}-1} \mathcal{O}\right)+I_{r_{1}}^{n-1} I_{r_{2}}\left(t^{(n-1) r_{1}+r_{2}} \mathcal{O}+\ldots\right) \\
& +\ldots+I_{r_{l-1}}^{n}\left(t^{n r_{l-1}} \mathcal{O}+\ldots\right)+I_{r_{l-1}}^{n-1}\left(t^{(n-1) r_{l-1}+r_{l}} \mathcal{O}+\ldots\right) \\
& +\ldots+t^{n r l} \mathcal{O}[[t]] .
\end{aligned}
$$

whence

$$
\operatorname{dim}\left(\mathcal{O}[[t]] / I^{n}\right) \leq \sum_{k=0}^{l}\left(r_{k+1}-r_{k}\right) \sum_{i=0}^{n-1} \operatorname{dim}\left(\mathcal{O} /\left(I_{r_{k}}^{n-i} \cdot I_{r_{k+1}}^{i}\right)\right)
$$

$$
\begin{equation*}
=\sum_{k=0}^{l}\left(r_{k+1}-r_{k}\right) \sum_{i=0}^{n-1}\left[\sum_{j=0}^{r} \frac{1}{j!(r-j)!} e\left(I_{r_{l}}^{[r-j]}, I_{r k_{k+1}}^{[j]}\right)(n-i)^{r-j_{i}^{j}}+R_{i}\right] \tag{4.4}
\end{equation*}
$$

By Proposition 4.2 i) each remainder terms R_{i} is $O\left(n^{r-1}\right)$. Indeed, ii) of 4.2 says that except when i or $n-i<N_{0}$, the R_{i} are all represented by a polynomial of degree $r-1$ so that we can obtain a uniform $O\left(n^{r-1}\right)$ estimate for the R_{i}; hence $\sum_{i=0}^{n-1} R_{i}=O\left(n^{r}\right)$.

But the n.l.c. of the $(r+1)^{\text {st }}$ degree polynomial representing $\operatorname{dim}\left(\mathcal{O}[[t]] / I^{n}\right)$ is by definition $e(I)$; so evaluating the n.l.c. of the sum in (4.4) using the lemma below, gives the proposition.

LEMMA 4.5. $\quad \frac{j!(r-j)!}{(r+1)!} n^{r+1}=\sum_{i=0}^{n-1}(n-i)^{r-j} i^{j}+O\left(n^{r}\right)$
Proof. We can reexpress the left hand side in terms of the β-function as

$$
\frac{j!(r-j)!}{(r+1)!} n^{r+1}=\beta(j, r-j) n^{r+1}=\left(\int_{0}^{1} t^{j}(1-t)^{r-j} d t\right) n^{r+1}
$$

and the right hand side is just another expression for n^{r+1} times this integral as a Riemann sum plus error term.

To globalize these ideas we combine them with some results of Snapper $[5,21]$.

Definition 4.6. Let X^{r} be a variety, L be a line bundle on X and $\mathscr{I}_{1}, \ldots, \mathscr{I}_{r}$ be ideals on \mathcal{O}_{X} such that $\operatorname{supp}\left(\mathcal{O}_{X} \mid \mathscr{I}_{i}\right)$ is proper. Choose a compactification \bar{X} of X on which L extends to a line bundle \bar{L} and let $\pi: \bar{B} \rightarrow \bar{X}$ be the blowing up of \bar{X} along $\prod_{\mathscr{I}_{i}}$ so that $\pi^{-1}\left(\mathscr{I}_{i}\right)=\mathcal{O}_{\bar{B}}\left(-E_{i}\right)$. Let $\pi^{*} L=\mathcal{O}_{\bar{B}}(D)$. We define

$$
e_{L}\left(\mathscr{I}_{1}, \ldots, \mathscr{I}_{r}\right)=\left(D^{r}\right)-\left(\left(D-E_{1}\right) . \cdots \cdot .\left(D-E_{r}\right)\right)
$$

We omit the check that this definition is independent of the choice of \bar{X} and \bar{L}.
4.7. Classical geometric interpretation. Suppose X is a projective variety, $L=\mathcal{O}_{X}(1)$ and $\mathscr{I}_{i} . L$ is generated by a space of sections W_{i} $\subset \Gamma\left(\mathbf{P}^{n}, \mathcal{O}(1)\right)$. If H_{1}, \ldots, H_{r} are generic hyperplanes of \mathbf{P}^{n}, then $\#\left(H_{1}\right.$ $\left.\cap \ldots \cap H_{r} \cap X\right)=\operatorname{deg} X$. One sees by an argument like that of Proposition 2.5 , that as the H_{i} specialize to hyperplanes defined by elements of W_{i} but otherwise generic, the number of points in $H_{1} \cap \ldots \cap H_{r} \cap X$ which specialize to a point in one of the W_{i} 's is just $e_{L}\left(\mathscr{I}_{1}, \ldots, \mathscr{I}_{r}\right)$.

We can globalize Proposition 4.2 to give an interpretation of the mixed multiplicity by Hilbert polynomials.

Proposition 4.8. i) Let X^{r} be a variety, L_{1}, \ldots, L_{n} be line bundles on X and $\mathscr{I}_{1}, \ldots, \mathscr{I}_{l}$ be ideals in \mathcal{O}_{X} such that $\operatorname{supp}\left(\mathcal{O}_{X} \mid \mathscr{I}_{i}\right)$ is proper for all i. Then there is a polynomial $P(n, m)$ of total degree r and an M_{0} such that if $m_{j} \geq M_{0}$ for all j then

$$
\chi\left(X, \stackrel{k}{\otimes} L_{i=1}^{n_{i}} / \prod_{j=1}^{l} \mathscr{I}_{j}^{m_{j}} \cdot \bigotimes_{i=1}^{k} L_{i}^{n_{i}}\right)=P(n, m)
$$

Now suppose all the line bundles are the same, say L and let

$$
P_{r}\left(m_{1}, \ldots, m_{l}\right)=\sum_{\substack{\Sigma_{i}=r \\ r_{i} \geq 0}} \frac{1}{\prod\left(r_{i}!\right)} e_{L}\left(\mathscr{I}_{1}^{\left[r_{1}\right]}, \ldots, \mathscr{I}_{l}^{\left[r_{l}\right]}\right) m_{1}^{r_{1}} \ldots m_{l}^{r_{l}}
$$

Then
ii) $P\left(\sum m_{i} ; m_{1}, \ldots, m_{l}\right)=P_{r}\left(m_{1}, \ldots, m_{l}\right)+$ lower order terms
iii) $\left|\chi\left(X, L^{\Sigma_{m_{i}}} / \prod \mathscr{I}_{j}^{m_{j}} \otimes L^{\Sigma_{m_{i}}}\right)-P_{r}\left(m_{1}, \ldots, m_{l}\right)\right|=O\left(\left(\sum_{j=1}^{l} m_{j}\right)^{r-1}\right)$ (i.e. we retain an estimate assuming only $\sum m_{j}$ is large).

Proof. Making a suitable compactification of X will not alter the Euler characteristics so we may assume X is compact.

Before proceeding we recall certain facts: If $R=\underset{n_{i} \geqslant 0}{\oplus} R_{n_{1}, \ldots, n_{l}}$ is a multigraded ring we can form a scheme $\operatorname{Proj}(R)$ in the obvious way from multi-homogeneous prime ideals. Quasi-coherent sheaves \mathscr{F} on $\operatorname{Proj}(R)$ correspond to multigraded R-modules $M=\oplus M_{n_{1}, \ldots, n l}$. Suppose $R_{0}, \ldots,{ }_{0}$ $=k$ a field and that R is generated by the homogeneous pieces $R_{0}, \ldots,{ }_{0},{ }_{1},{ }_{0}, \ldots,{ }_{0}$. Then we get invertible sheaves L_{1}, \ldots, L_{l} on $\operatorname{Proj}(R)$ from the modules M_{i}, where $M_{i}=\left(R\right.$ with $i^{\text {th }}$-grading shifted by 1$)$, and the multigraded variant of the F.A.C. vanishing theorem for higher cohomology says that if \mathscr{F} is a coherent sheaf on $\operatorname{Proj}(R)$ then

$$
H^{i}\left(\mathscr{F} \otimes\left(\otimes L_{j}^{n_{j} j}\right)\right)=\left\{\begin{array}{l}
M_{n_{1}, \ldots, n l}, i=0 \\
(0), \quad, i>0
\end{array} \quad \text { if } n_{j} \gg 0, \text { all } j\right.
$$

Now if $\mathscr{I}_{1}, \ldots, \mathscr{I}_{k}$ are ideal sheaves on X such that $\operatorname{supp}\left(\mathcal{O}_{X} / \mathscr{I}_{j}\right)$ is proper for alt i, let $\mathscr{A}=\oplus \mathscr{I}_{1}^{m_{1}} \ldots \mathscr{I}_{l}^{m l}$. Then \mathscr{A} is a multigraded sheaf of \mathcal{O}_{X}-algebras. Let $B=\operatorname{Proj}(\mathscr{A})$; the blow up of X along $\prod_{\mathscr{I}_{j}}$ is just $\pi: B$ $\rightarrow X$. If E_{j} is the exceptional divisor corresponding to \mathscr{I}_{j}, then when $\mathcal{O}_{B}\left(-\sum m_{j} E_{j}\right)$ is coherent and when all the m_{j} are large the relative versions of the vanishing theorems say:
a) $R^{i} \pi_{*}\left(\mathcal{O}\left(-\sum m_{j} E_{j}\right)\right)=0, i>0$
b) $\pi_{*} \mathcal{O}\left(-\sum m_{j} E_{j}\right)=\prod_{j=1} \mathscr{I}_{j}^{m_{j}}$

In any case,
c) $\operatorname{supp} R^{i} \pi_{*}\left(\mathcal{O}\left(-\sum m_{j} E_{j}\right)\right)$ has dimension less than $r, i>0$,
d) $\pi_{*}\left(\mathcal{O}\left(-\sum m_{j} E_{j}\right)\right)=\prod \mathscr{I}_{i}^{m_{i}}$ except on a set of dimension less than r.

From a) and b) we deduce that when all the m_{j} are large, $\chi\left(\prod \mathscr{I}_{j}^{m_{j}}\right)$ $=\chi\left(\pi^{*} \mathcal{O}\left(-\sum m_{j} E_{j}\right)\right)$. Thus, $\chi\left(X, \otimes L_{i}^{n_{i}} / \prod \mathscr{I}_{j}^{m_{j}} L_{i}^{n_{i}}\right)=\chi\left(X, \otimes L_{i}^{n_{i}}\right)$ $-\chi\left(B, \otimes L_{i}^{n_{i}}\left(-\sum m_{j} E_{j}\right)\right)$ and both of these last Euler characteristics polynomials of degree $\leqslant r$ by Snapper [5,21]. Now if $\pi^{*} L=\mathcal{O}_{B}(D)$, his result also says,

$$
\begin{aligned}
& r \text { !.n.l.c. }\left(\chi\left(X, L^{\Sigma_{j}} / \prod \mathscr{I}_{j}^{m_{j}} \otimes L^{\Sigma_{j}}\right)=\left(\sum m_{j}\right)^{r}\left(D^{r}\right)-\left(\left(\sum m_{j}\left(D-E_{j}\right)\right)^{r}\right)\right. \\
& =\sum_{\substack{r_{j}=r \\
r_{j} \geqslant 0}} \frac{r!}{\prod\left(r_{j}!\right)} \prod\left(m_{j}\left(D-E_{j}\right)\right)^{r_{j}} \\
& =\sum_{\substack{\Sigma r_{j}=r \\
r_{j} \geqslant 0}} \frac{r!}{\prod\left(r_{j}!\right)} e_{L}\left(\mathscr{I}_{1}^{\left[r_{1}\right]}, \ldots, \mathscr{I}_{l}^{\left[r_{l}\right]}\right) . m_{1}^{r_{1}} \ldots m_{l}^{r_{l}}
\end{aligned}
$$

which is ii). Fix an N such that ii) holds when all $m_{j} \geq N$.
Now suppose I is a proper subset of $\{1, \ldots, l\}, J$ is its complement and that values $m_{i}<N$ are fixed for all $i \in I$. Let $\pi_{J}: B_{J} \rightarrow X$ be the blow up of X along $\prod_{j \in J} \mathscr{I}_{j}$. As above we deduce that $\exists N^{\prime}$ depending on I and the $m_{i}, i \in I$ such that if $m_{j}>N^{\prime}, \forall j \in J$, then

$$
\chi\left(X, \mathscr{I}_{1}^{m_{1}} \ldots \mathscr{I}_{k}^{m_{k}}\right)=\chi\left(B_{J}, \prod_{i \in I} \mathscr{I}_{i}^{m_{i}}\left(-\sum_{j \in J} m_{j} E_{j}\right)\right)
$$

Then applying c) and d) we see that for some C, also depending on I and the $m_{i}, i \in I$,

$$
\left|\chi\left(B, \mathcal{O}\left(-\sum m_{i} E_{i}\right)\right)-\chi\left(B_{J}, \prod_{i \in I} \mathscr{I}_{i}^{m_{i}}\left(-\sum_{j \in J} m_{j} E_{j}\right)\right)\right| \leq C\left(\sum_{j \in J} m_{j}\right)^{r-1}
$$

Combining this with the argument used in the proof of i) and ii) shows that for some C^{\prime} (depending on I and the $m_{i}, i \in I$)

$$
\left|\chi\left(X, L^{\Sigma_{j}} / \prod \mathscr{I}_{j}^{m_{j}} L^{\Sigma_{m}}\right)-P_{r}\left(m_{1} \ldots m_{l}\right)\right| \leq C^{\prime}\left(\sum_{j \in J} m_{j}\right)^{r-1}
$$

From ii), we get an estimate of this type with a uniform constant C^{\prime}, when all the $m_{j} \geq N$. Since there are only finitely many sets I and for each of these only finitely many choices for the $m_{i}, i \in I$ with $m_{i}<N$ we can combine all these estimates to show: there exists M and $C^{\prime \prime}$ such that if any $m_{i}>M$, then

$$
\left|\chi\left(X, L^{\Sigma_{m_{j}}} / \prod_{j} \mathscr{I}_{j}^{m_{j}} L^{\Sigma_{m}}\right)-P_{r}\left(m_{1}, \ldots, m_{l}\right)\right| \leq C^{\prime \prime}\left(\left(\sum_{j} m_{j}\right)^{r-1}\right)
$$

which is iii).
The following analogue of Proposition 2.6 allows us to calculate mixed multiplicities in terms of the dimensions of spaces of sections.

Proposition 4.9. If $L, \mathscr{I}_{1} L, \ldots, \mathscr{I}_{l} L$ are generated by their sections, then

$$
\begin{aligned}
& \left|\chi\left(X, L^{\Sigma_{m_{j}}} /\left(\prod \mathscr{I}_{j}^{m_{j}}\right) L^{\Sigma_{m}}\right)-\operatorname{dim}\left(\Gamma\left(X, L^{\Sigma_{m j}}\right) / \Gamma\left(X, \prod \mathscr{I}^{m_{j}} L^{\Sigma_{m j}}\right)\right)\right| \\
& =O\left(\left(\sum m_{j}\right)^{r-1}\right)
\end{aligned}
$$

Proof. We give only a sketch of the proof which is very similar to that of Proposition 2.6. One first shows as in the proof of 2.6a), that for $i>0, h^{i}\left(L^{\Sigma m_{j}} / \prod \mathscr{I}^{m_{j}} L^{\Sigma m_{j}}\right)=O\left(\left(\sum m_{j}\right)^{r-1}\right)$, hence that

$$
\begin{aligned}
& \left|\chi\left(X, L^{\Sigma m_{j}} / \prod \mathscr{I}_{j}^{m_{j}} L^{\Sigma m_{j}}\right)-\operatorname{dim} \Gamma\left(X, L^{\Sigma m_{j}} / \Pi \mathscr{I}_{j}^{m_{j}} L^{\Sigma m_{j}}\right)\right| \\
& =O\left(\left(\sum m_{j}\right)^{r-1}\right)
\end{aligned}
$$

Using the long exact sequence

$$
0 \rightarrow \Gamma\left(X, \prod \mathscr{I}_{j}^{m_{j}} L^{\Sigma m_{j}}\right) \rightarrow \Gamma\left(X, L^{\Sigma m_{j}}\right) \rightarrow \Gamma\left(X, L^{\Sigma m_{j}} / \prod \mathscr{I}_{j}^{m_{j}} L^{\Sigma m_{j}}\right) \rightarrow \ldots
$$

this reduces the proposition to showing that

$$
\operatorname{dim}\left(\operatorname{coker}\left(\Gamma\left(X, L^{\Sigma m_{j}}\right) \rightarrow \Gamma\left(X, L^{\Sigma m_{j}} / \prod \mathscr{I}_{j}^{m_{j}} L^{\Sigma m_{j}}\right)\right)=O\left(\left(\sum m_{j}\right)^{r-1}\right)\right.
$$

and this is done exactly as in the proof of 2.6b). (Note that the extra hypotheses of 2.6 b) were not used in this part of the proof.)

The global form of Proposition 4.3 is:

Proposition 4.10. Given a variety X, a line bundle L on X and an ideal $\mathscr{I} \subset \mathcal{O}_{X \times \mathbf{A}^{1}}$ with $\operatorname{supp}\left(\mathcal{O}_{X \times \mathbf{A}^{1}} / \mathscr{I}\right)$ proper in $X \times(0)$, let $\mathscr{I}_{k}=\{a$ $\left.\in \mathcal{O}_{X} \mid t^{k} a \in \mathscr{I}\right\}$ so that $\mathscr{I}_{0} \subseteq \mathscr{I}_{1} \subseteq \ldots \subseteq \mathscr{I}_{N}=\mathcal{O}_{X}$ and let $L_{1}=L \otimes \mathcal{O}_{\mathbf{A}^{1}}$. Suppose that $L, \mathscr{I}_{k} L$ and $\mathscr{I} L_{1}$ are generated by their sections. Then for all sequences $0=r_{0}<r_{1}<\ldots<r_{l}=N$,

$$
e_{L_{1}}(\mathscr{I}) \leq \sum_{k=0}^{l}\left(r_{k+1}-r_{k}\right) \sum_{j=0}^{r} e_{L}\left(\mathscr{I}_{r_{k}}^{[j]}, \mathscr{I}_{r_{k+1}}^{[r-j]}\right) .
$$

Proof. By Proposition 4.9, $e_{L_{1}}(\mathscr{I})$ is calculated by the order of growth of

$$
\operatorname{dim}\left[H^{0}\left(X \times \mathbf{A}^{1}, L_{1}^{n}\right) / H^{0}\left(X \times \mathbf{A}^{1}, \mathscr{I}^{n} \cdot L_{1}^{n}\right)\right]
$$

Exactly as in Proposition 4.3, for each n, we introduce using the $r_{i}{ }^{\prime}$ s an approximating ideal sheaf \mathscr{I}_{n}^{\prime} :

$$
\mathscr{I}^{n} \supset \mathscr{I}_{n}^{\prime}=\underset{k=0}{\infty} t^{k} \cdot \mathscr{I}_{n, k}
$$

where $\mathscr{I}_{n, 0} \subset \mathscr{I}_{n, 1} \subset \ldots \subset \mathscr{I}_{n, N}=\mathcal{O}_{X}$ for $N \gtrdot 0$. Since

$$
H^{0}\left(X \times \mathbf{A}^{1}, \mathscr{I}^{n} \cdot L_{1}^{n}\right) \supset H^{0}\left(X \times \mathbf{A}^{1}, \mathscr{I}_{n}^{\prime} \cdot L_{1}^{n}\right)=\underset{k=0}{\infty} H^{0}\left(X, \mathscr{I}_{n, k}, L^{n}\right)
$$

it follows that

$$
\begin{gathered}
\operatorname{dim}\left(H^{0}\left(X \times \mathbf{A}^{1}, L_{1}^{n}\right) / H^{0}\left(X \times \mathbf{A}^{1}, \mathscr{I}^{n} \cdot L_{1}^{n}\right)\right. \\
\leq \sum_{k=0}^{\infty} \operatorname{dim}\left(H^{0}\left(X, L^{n}\right) / H^{0}\left(X, \mathscr{I}_{n, k} \cdot L^{n}\right)\right)
\end{gathered}
$$

The rest of the proof follows Proposition 4.3 exactly, using 4.9 again to get the estimate

$$
\operatorname{dim}\left(H^{0}\left(X, L^{n}\right) / H^{0}\left(X, \mathscr{I}_{r_{k}}^{i}, \mathscr{I}_{r_{k+1}}^{n-i}, L^{n}\right)\right)
$$

for $\chi\left(L^{n} / \mathscr{\mathscr { F }}_{r_{k}}^{i}, \mathscr{J}_{r_{k+1}}^{n-i}, L^{n}\right)$.

Corollary 4.11. If in Proposition 4.10, X is a curve

$$
e_{L_{1}}(\mathscr{I}) \leqslant \min _{0=r_{0}<r_{1} \ldots<r_{l}=N}\left[\sum_{k=0}^{e}\left(r_{k+1}-r_{k}\right) \cdot\left(e_{L}\left(\mathscr{I}_{r_{k}}\right)+e_{L}\left(\mathscr{I}_{r_{k+1}}\right)\right)\right]
$$

If X is a surface,
$e_{L_{1}}(\mathscr{I})$
$\leq \min _{0=r_{0}<r_{1} \ldots<r_{l}=N}\left[\sum_{k=0}^{l}\left(r_{k+1}-r_{k}\right) \cdot\left(e_{L}\left(\mathscr{I}_{r_{k}}\right)+e_{L}\left(\mathscr{I}_{r_{k}}, \mathscr{I}_{r_{k+1}}\right)+e_{L}\left(\mathscr{I}_{r_{k}}\right)\right)\right]$
We now show how this upper bound proves the asymptotic stability of non-singular curves. It turns out that the estimate is, however, not sufficiently sharp to prove the asymptotic stability of curves with ordinary double points: more precisely, if \mathscr{I} is the ideal associated to a 1-PS λ with normalized weights ρ_{i} then the estimate of the corollary may be greater than $\frac{2 \operatorname{deg} X}{n+1} \cdot \sum \rho_{i}$ (cf. Theorem 2.9)

Theorem 4.12. If $C^{1} \subset \mathbf{P}^{N}$ is a linearly stable (resp.: semi-stable) curve, then C is Chow stable (resp.: semi-stable).

Proof. We prove the stable case; the semi-stable case follows by replacing the strict inequalities in the proof by inequalities.

Fix coordinates X_{0}, \ldots, X_{N} on \mathbf{P}^{N} and a 1-PS

$$
\lambda(t)=\left[\begin{array}{lll}
t^{\rho_{0}} & & 0 \\
& \cdot & \\
& \cdot & \\
& & \cdot \\
0 & & t^{\rho_{N}}
\end{array}\right], \rho_{0} \geq \rho_{1} \geq \ldots \geq \rho_{N}=0
$$

Let \mathscr{I} be the associated ideal on $\mathcal{O}_{C \times \mathbf{A}^{1}}$ and let $\mathscr{I}_{k} \subset \mathcal{O}_{C}$ be the ideal defined by $\mathscr{I}_{k}, L=\left[\right.$ sheaf generated by $\left.X_{k}, \ldots, X_{N}\right]$; thus $\mathscr{I}=\sum_{k=0}^{N} t^{\rho_{k}} \mathscr{I}_{k}$. The linear stability of X implies (cf. 2.16), $e\left(\mathscr{I}_{k}\right)<\frac{\operatorname{deg} C}{N} . \operatorname{codim}<X_{k}, \ldots, X_{N}>$ $=\frac{\operatorname{deg} C \cdot k}{N}$. So using Corollary 4.11,

$$
\begin{aligned}
e_{L}(\mathscr{I}) & \leqslant \min _{0=s_{0}<\ldots<s_{k}=N}\left[\sum\left(\rho_{s_{k}}-\rho_{s_{k+1}}\right)\left(e_{L}\left(\mathscr{I}_{s_{k}}\right)+e_{L}\left(\mathscr{I}_{s_{k+1}}\right)\right)\right] \\
& <\min _{0=s_{0}<\ldots<s_{k}=N}\left[\sum\left(\rho_{s_{k}}-\rho_{s_{k+1}}\right)\left(s_{k}+s_{k+1}\right) \frac{\operatorname{deg} C}{N}\right]
\end{aligned}
$$

In view of the Lemma below this implies $e_{L}(\mathscr{I})<\frac{2 \operatorname{deg} C}{N+1} \sum_{i=0}^{N} \rho_{i}$ which in turn implies C is stable by Theorem 2.9.

Lemma 4.13. If $\rho_{0} \geq \ldots \geq \rho_{n}=0$, then

$$
\min _{0=s_{0}<\ldots<s_{l}=n}\left[\sum\left(\rho_{s_{k}}-\rho_{s_{k+1}}\right) \cdot\left(\frac{s_{k}+s_{k+1}}{2}\right)\right] \leq \frac{n}{n+1} \sum_{k=0}^{n} \rho_{k}
$$

Proof. Draw the Newton polygon of the points $\left(k, \rho_{k}\right)$ as shown below

The left hand side is just the area under this polygon so moving the points above the polygon down onto it as shown, does not affect this expression. Since this can only decrease the right hand side we may assume all the ρ_{i} are on this polygon. Then the left hand expression can be calculated with $s_{k}=k$ and it becomes

$$
\begin{aligned}
\frac{1}{2} \rho_{0}+\rho_{1}+\ldots+\rho_{n-1}+\frac{1}{2} \rho_{n} & =\rho_{0}+\ldots+\rho_{n}-\frac{1}{2}\left(\rho_{0}+\rho_{n}\right) \\
& \leq \rho_{0}+\ldots+\rho_{n}-\frac{1}{n+1}\left(\rho_{0}+\ldots+\rho_{n}\right)
\end{aligned}
$$

since the Newton polygon is convex. But the last expression is just $\frac{n}{n+1}\left(\rho_{0}+\ldots+\rho_{n}\right)$, hence the lemma.

Theorem 4.14. If $C \subset \mathbf{P}^{N}$ is a smooth curve embedded by $\Gamma(C, L)$ where L is a line bundle of degree d, then
i) $d>2 g>0 \Rightarrow C$ linearly stable,
ii) $d \geq 2 g \geq 0 \Rightarrow C$ linearly semi-stable.

Combining this result with Theorem 4.13 gives the main theorem of this section:

Theorem 4.15. If C is a smooth curve of genus $g \geqslant 1$ embedded by a complete linear system of degree $d>2 g$ then C is Chow-stable.

Proof of 4.14. Consider all morphisms $\varphi: C \rightarrow \mathbf{P}^{n}$ for all n, where $\varphi(C) \notin$ hyperplane. Let us plot the locus of pairs $(\operatorname{deg} \varphi(C), n)$, where $\varphi(C)$ is counted with multiplicity if φ is not birational. Note that, if $\varphi * \mathcal{O}$ (1) is non-special, then by Riemann-Roch on C :

$$
\begin{aligned}
n & =\operatorname{dim} H^{0}\left(\mathcal{O}_{\mathbf{P}^{n}}(1)\right)-1 \leq \operatorname{dim} H^{0}\left(\varphi^{*} \mathcal{O}(1)\right)-1 \\
& =\operatorname{deg} \varphi^{*} \mathcal{O}(1)-g=\operatorname{deg} \varphi(C)-g
\end{aligned}
$$

while if $\varphi^{*} \mathcal{O}(1)$ is special, then by Clifford's Theorem on C :

$$
\begin{aligned}
n & \leq \operatorname{dim} H^{0}\left(\varphi^{*} \mathcal{O}(1)\right)-1 \\
& \leq \frac{\operatorname{deg} \varphi^{*}(\mathcal{O}(1))}{2}=\frac{\operatorname{deg} \varphi(C)}{2}
\end{aligned}
$$

This gives us the diagram

The reduced degree of $\varphi(C)$ is just d / n, the inverse of the slope of the joining $(0,0)$ to the plotted point (n, d). In case (i), by assumption, the given curve $C^{1} \subset \mathbf{P}^{N}$ corresponds to a point on the upper bounding segment, such as * in our picture. Any projection of C corresponds to a point (n^{\prime}, d^{\prime}) in the shaded area with $d^{\prime} \leq d, n^{\prime}<n$. From the diagram it is clear that the slope decreases, or the reduced degree increases: this is exactly what linear stability means. In case (ii), we allow the given curve C to correspond to the vertex $(2 g, g)$ of the boundary, or allow $g=0$, when the boundary line is just $n=d$. In these cases, the slope at least cannot increase, or the reduced degree cannot decrease under projection.

Remark. Curves with ordinary double points are not, in general, linearly stable since projecting from a double point lowers the degree by 2 , but decreases the dimension of the ambient space by only 1 . In fact, linear stability is somewhat too strong a condition for most moduli problems: Chow stability for varieties of dimension r apparently allows points of multiplicity up to $(r+1)$! while linear stability allows only points of multiplicity up to r !

