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THE GELFAND-NAIMARK THEOREMS FOR C*-ALGEBRAS

by Robert S. Doran and Josef Wichmann

1. Introduction

Many of the Banach spaces which attract attention are at the same time

algebras under some multiplication. In spite of this fact their study from
this richer point of view was taken up only after the publication in 1932 of
Banach's book [6]. One of the early fundamental results in the general

theory of Banach algebras was a generalization of the classical theorem of
Frobenius that any finite dimensional division algebra over the complex
field is isomorphic to the field of complex numbers. S. Mazur [35] announced
in 1938 that every complex normed division algebra is isomorphic to the
field of complex numbers. Since the first published proof was given by
I. M. Gelfand [22] this result is often called the Mazur-Gelfand theorem
[43], [55]. As an immediate consequence one obtains the following beautiful
characterization of the complex field among normed algebras : any normed
algebra satisfying the norm condition || xy || || x || • || y || for all elements x
and y is isometrically isomorphic to the field of complex numbers.

Many important Banach algebras carry a natural involution. In the
case of an algebra of functions the involution is the operation of taking the

complex-conjugate and in the case of an algebra of operators on a Hilbert
space it is the operation of taking the adjoint operator. Motivated by these
observations the Soviet mathematicians Israel M. Gelfand and Mark
A. Naimark [23] proved, under some additional assumptions, the following
two theorems:

Theorem I. Let A be a commutative Banach algebra with involution
satisfying || x*x || || x* || • || x || for all x in A. Then A is isometrically
*-isomorphic to C0 (X), the algebra of all continuous complex-valued functions

which vanish at infinity on some locally compact Hausdorff space X.

Theorem II. Let A be a Banach algebra with involution satisfying
|| xvx I I x* || * I x || for all x in A. Then A is isometrically *-iso-
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morphic to a norm-closed *-subalgebra of bounded linear operators on some
Hilbert space.

The purpose of this paper is to present a thorough discussion of these

two representation theorems. We shall trace, as carefully as we have been

able, the interesting and rather tangled history which led to their present
form. Then proofs of the theorems will be given. Finally, we shall survey
some recent developments inspired by the theorems.

2. Definitions and motivation

A *-algebra is a complex associative linear algebra A with a mapping
x x* of A into itself such that for all x, y e A and complex X: (a) x**

x; (b) (2x)* 2x*; (c) (x + y)* x* + y*; and (d) (xy)* y*x*.
The map x -> x* is called an involution ; because of (a) it is clearly bijective.
A subalgebra B of A is called a *-subalgebra if x e B implies x* e B.

An algebra which is also a Banach space satisfying || xy II <1*1 -lb!
for all x and y is called a Banach algebra. A Banach algebra which is also

a *-algebra is called a Banach *-algebra. The involution in a Banach *-algebra
is said to be continuous if there is a constant M such that || x* || < M || x ||

for all x; the involution is isometric if || x* || || x || for all x.
A norm on a *-algebra is said to satisfy the B^-condition if || x*x ||

|| x* || • || x || for all x; a B*-algebra is a Banach *-algebra whose norm
satisfies the B*-condition. A B*-algebra with isometric involution clearly
satisfies the condition || x*x || || x ||2. On the other hand, if A is a Banach

*-algebra satisfying || x ||2 < || x*x || (in particular if equality holds), then
A is easily seen to be a B*-algebra with isometric involution.

The Banach space C (X) of continuous complex-valued functions on
a compact Hausdorff space is a commutative B*-algebra under point-wise
multiplication fg) (t) f(t) g (t), involution /* (t) /(t), and sup-
norm. Similarly, the algebra C0 (X) of continuous complex-valued functions
which vanish at infinity on a locally compact Hausdorff space is a commutative

B*-algebra.
Examples of noncommutative B*-algebras are provided by the algebra

B (.H) of bounded linear operators on a Hilbert space H. Multiplication
in B (H) is operator composition, the involution T -> T* is the usual adjoint
operation, and the norm is the operator norm || T || sup { || T £ || : || £ ||

< 1, £ e H }. A norm-closed *-subalgebra of B (.H) is called a C*-algebra;
clearly, every C*-algebra is a B*-algebra.
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Are there examples of B*-algebras other than the above? Numerous

mathematical papers have been devoted to answering this question. In

the remainder of this article we shall be occupied not only with its history

and solution, but also with recent developments which have been stimulated

by it.

3. Historical development

In 1943 the Soviet mathematicians Gelfand and Naimark published (in

English!) a ground-breaking paper [23] in which they proved that a Banach

*-algebra with an identity element e is isometricallv *-isomorphic to a

C*-algebra if it satisfies the following three conditions:

1° || x*x || || x* I • 1 x || (the B*-condition);
2° || v* || H a || (isometric involution) ;

3° e + x*x is invertible (symmetry)

for all x. They immediately asked in a footnote if conditions 2° and 3° could
be deleted—apparently recognizing that they were of a different character

than condition 1° and were needed primarily because of their method of
proof. This indeed turned out to be true after considerable work. To trace
the resulting history in detail it is convenient to look at the commutative and

noncommutative cases separately.

Commutative algebras : In their paper Gelfand and Naimark first proved
that every commutative B*-algebra with identity is a C (X) for some compact
Hausdorff space X. In the presence of commutativity they were able to show

quite simply that the B*-condition implies the involution is isometric.

Utilizing a delicate argument depending on the notion of "Shilov boundary"
they proved that every commutative B*-algebra is symmetric. Thus in the
commutative case they were able to show that conditions 2° and 3° follow
from condition 1°.

A much simpler proof for the symmetry of a commutative B*-algebra
was published in 1946 by Richard Arens [3]. It may be of some historical
interest to mention that Professor Arens—as he pointed out to the first
named author during a conversation—had not seen Gelfand-Naimark's
proof when he found his. In 1952, utilizing the exponential function for
elements of a Banach algebra, the Japanese mathematician Masanori
Fukamiya published [21] yet another beautiful proof of symmetry. These

arguments of Arens and Fukamiya will be given in full in the next section.
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Noncommutative algebras : The 1952 paper of Fukamiya [21] implicitly
contained the key lemma needed to eliminate condition 3° for noncommutative

algebras. In essence this lemma states that if x and y are "positive"
elements in a B*-algebra with identity and isometric involution, then x + y
is also positive. Independently and nearly simultaneously this lemma was
discovered by John L. Kelley and Robert L, Vaught [31]. The Kelley-
Yaught argument is extremely brief and elegant, and is the one that we shall

give in Section 5.

The nontrivial observation that this lemma was the key to eliminating
condition 3° was due to Irving Kaplansky. His ingenious argument was
recorded in Joseph A. Schatz's review [45] of Fukamiya's paper, making
it an amusing instance where a theorem was first "proved" in the Mathematical

Reviews.

In marked contrast to the commutative case, the redundancy of condition

2° for noncommutative algebras did not follow easily; in fact, the

question remained open until 1960 when a solution for B*-algebras with
identity was published by James G. Glimm and Richard V. Kadison [25].

Their proof was based on a deep "«-fold transitivity" theorem for unitary
operators in an irreducible C*-algebra. A beautiful theorem of Bernard
Russo and Henry A. Dye [44] made it possible to by-pass the Glimm-
Kadison transitivity theorem ; an elementary proof of their result was given
recently by Lawrence A. Harris [28]. We mention that another paper
concerning the elimination of 2° (and also 3°) was published by the Japanese
mathematician Tamio Ono [39] in 1959. However this paper appeared to
have errors in the arguments of both the main theorems (see the review of
[39]). Ten years later Ono [40] acknowledged these mistakes and corrected
them from the viewpoint of 1959.

The original conjecture of Gelfand and Naimark was, at this time,
completely solved for algebras with identity. What about algebras without
identity? This question is of considerable importance since most C*-
algebras which occur in applications do not possess an identity. An answer

was provided in 1967 by B. J. Yowden [54]. He was able to utilize the notion
of "approximate identity" and several arguments from Ono [39] to embed

a B*-algebra without identity in a B*-algebra with an identity. He then

applied the case for algebras with identity to complete the proof. Hence

after nearly twenty five years of work the mathematical community had

the theorems as we have stated them in the introduction.
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4. The Gelfand-Naimark representation theorem
FOR COMMUTATIVE B*-ALGEBRAS

Let us briefly recall the Gelfand theory of commutative Banach algebras

(for proofs of this preliminary material see [29, pp. 470-479]).
A

If A is a commutative Banach algebra denote by A the set of all nonzero

complex-valued linear functional (j) on A satisfying </> (xy) ** </> (x) </> (y)
A

for all x, ye A. If 0 e A, then || </> || < 1. For each x in define a complex-
A A A A A

valued function x: A C by x (</>) (j) (x) for <peA; x is called the

Gelfand transform of x. A A

The Gelfand topology on is defined to be the weakest topology on A
A

under which all the functions x are continuous; it is the relative topology
A

which A inherits as a subset of the dual space Ä with the weak*-topology.
A

The set A endowed with the Gelfand topology is called the structure space

of A.

If the algebra A has no identity element it is often convenient to adjoin
one. This can be done by considering the algebra Ae of ordered pairs (x, A)

with x e A, Ae C. The product in Ae is defined by (x, A) (y, fi) (xy + Ay
+ px, Ap) and the involution by (x, 2)* (x*, A) if A is a ^-algebra. Identifying

x in A with (x, 0) in A
e we see that A is a maximal two-sided ideal in

Ae with e (0, 1) as identity. If A is actually a Banach algebra Ae can also
be made into a Banach algebra by extending the norm on A to Ae\ for
example by defining || (x, A) || j| x || + | A |. Every multiplicative linear
functional 0 on a commutative Banach algebra A can be extended uniquely
to a multiplicative linear functional <pe on Ae by setting 4>e ((x, 2)) </> (x)
+ 2 for (x, 2) g Ae.

It follows from the Alaoglu theorem [29, p. 458] that the structure
A

space A of a commutative Banach algebra A is a locally compact Hausdorff
space which is compact if A has an identity. Furthermore the functions
A A

xon2 vanish at infinity.
A

The mapping x x, called the Gelfand representation, is an algebra
A

homomorphism of A into C0 {A). Moreover, if fl • ||x denotes the sup-norm
A A A

on C0 (A), then [ x ^ < || x ||, and so x x is continuous. In general, the
Gelfand representation is neither injective, surjective nor norm-preserving.
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But in the case of a commutative B*-algebra it will be seen to be an isometric
A

*-isomorphism of A onto C0 (A).
For this purpose we introduce the spectrum of an element x in an

algebra A with identity as the set oA (x) of all complex X such that x — X

is not invertible in A; if A has no identity define oA (x) <rAe(x). The

spectrum of an element x in a Banach algebra A is a compact subset of the

complex plane and furthermore the following basic Beurling-Gelfand
formula holds:

I x |ff lim || xn ||1/n < || x ||

n->oo

where | x |ff sup { | X | : X e oA (x) } is called the spectral radius of x.
The multiplicative linear functional on a commutative Banach algebra A

are related to the points in the spectrum of elements of A. If X ^ 0, then
A

X e oA (x) if and only if there exists (j> e A such that (j) (x) X. Hence
A A A

x (A) u { 0 } oA (x) u { 0 } and so || x || ^ | x < || x ||. Now we

are ready to prove the Gelfand-Naimark representation theorem for
commutative B*-algebras.

A
Theorem I. If A is a commutative B*-algebra, then x —> x is an

A
isometric *-isomorphism of A onto C0 (A).

A A

Proof We have seen that x -> x is a homomorphism of A into C0 (A).
The isometry of the involution in A is proved quite simply by the following
argument of Gelfand and Naimark [23]. For every he A with h* h the

B*-condition gives || h2 || || h ||2; by iteration || h2" || || h ||2" or || h ||

|| h2" ||1/2" and so || h || | h |ff. Tn particular || x*x || | x*x 1^. Since

o (x*) cr (x) we see that | x* |ff | x |ff. Hence using the submultipli-
cativity of the spectral radius on commuting elements || x* || • || x || || x*x||
« I x*x \a < I X* |ff I X \a I X |2 < || x ||2 and soj x* || < || x ||. Replacing

x by x* we also have || x || < || x* || ; Thus || x* || || x ||.
A

If A has an identity element we can now show that x -> x is a *-map.
We first show by two different arguments that (j) (h) is real for he A with

A
h* h and 4> e A.

Aren 's argument [3] : Set z h + ite for real t. If <fi (h) a + iß

with a and ß real then </> (z) a + i (ß +1) and z*z {h - ite) (h + ite)
h2 + t2e so that

a2 + (ß + t)2 \(ß{z) |2 < I z 12 || z*z|| < || fi2|| + t2
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or a2 + ß2 + 2ßt < I] A2 || for all real t. Thus ß 0 and 0 (A)

is real.

Fukamiya's argument [21]: Recall that in a Banach algebra exp (x)

Z^=0xn/nl. Set u exp (z'A). Then u* exp (-/A) and so u*u e

uu*. Since 1 || u*u || || u ||2 we see that || u || 1 || w-1 |[.
A A A

Hence | u (</>) | <1 and | u~x (</>) | <1 which implies | w (<£) | 1. Since 1

A
I u (</>) I I 4> (u) I I exp (/</> (A)) |, it follows that <£ (A) is real.

Now, if x e A, then x h + z'A with A (x + x^/2 and k (x — x*)/2i.
A

Since IF A, A* A, and x* h - ik we have for every (j) e A,

(x*) A
(</>) <j) (x*) — (f) (h — ik) (p (A + ik) <ß (x) — x (0).

Thus (x*) x; i.e. the Gelfand representation is a *-map. A
Next assume that A has no identity element. Since every <fi e A can be

extended to A
e it suffices to show that the norm on A can be extended to a

B*-norm on Ae. Suppose A is a (not necessarily commutative) B*-algebra
with isometric involution. Observe that for every x e A, || x || sup { || xy || :

y e A, || y || < 1 } Extend the norm on A to Ae by

II X + le II sup { Il (x + le) y || : ye A|| || < 1}
Then Ae is a Banach *-algebra in which A is isometrically embedded as

a closed ideal of codimension one. Since the involution in A is isometric
we have

I (x + Ae) y ||2 || y* (x + le)* (x + Ae) y J < || (x + le)* (x + Ae) || • || y ||2

Therefore || x + Ae ||2 < || (x + Ae)* (x + Àe) || ; hence Ae is a B*-algebra
with isometric involution.

A
This shows that x x is a î!<-map even if A has no identity. It is now

A
easily seen that x -> x is an isometry. Indeed :

||x||2 » fix** If \x*x\a ||(x*x) ||00=||(x*) *1(0« 1**11«,

\\x\ll,orI xf llxll«,.

Summarizing, we have shown that the Gelfand representation is an
A

isometric *-isomorphism of A into C0 (A). Let B denote the range of
^ A

x -> x. Then B is clearly a norm-closed subalgebra of C0 (A) which separates
A A

the points of A, vanishes identically at no point of and is closed under
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complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we
A A

conclude that B C0 (A) and hence that x -> x is onto. Thus the proof
of the representation theorem for commutative B*-algebras is complete.

The reader who is interested in an unconventional proof of the preceding
theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the

Gelfand-Naimark theorem in the special case of function algebras have

been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275]
and Karl E. Aubert [5].

5. The Gelfand-Naimark theorem for arbitrary B*-algebras

The proof of the representation theorem for an arbitrary B*-algebra is

much more involved than the commutative case and it will be divided into
several steps. After having established that the involution is continuous we

will introduce a new equivalent B*-norm with isometric involution. An
investigation of the unitary elements will show that the original norm on the

algebra coincides with this new norm. The representation of B*-algebras will
then easily be effected by the well known Gelfand-Naimark-Segal construction.

General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B*-algebra A is continuous.

Proof [39, Lemma 1.3]. First we show that the set H (A) {he A : A*

h } of hermitian elements in A is closed. Let { hn } be a convergent sequence
in H {A) whose limit is A + ik, with A, k e H {A). Since hn - h -> ik we

may assume (by putting hn for hn — h) that hn converges to ik. The spectral

mapping theorem for polynomials [43, p. 32] gives aA {hi — h4) { X2

— A4 : Ae aA (A„) }; since | h || — | h\a and oA (A) is real (see the first part
of the proof of Theorem I, the Aren's-Fukamiya arguments and recall

A A

ga (A) A {A) u { 0 }) we have

I! hl - hlI sup { A2 - A4 : A e }

< sup { X2 :XeaA()} j fl

Letting n -> oo we obtain || — k2 — k4 || < || k2 ||. Hence

sup {A2 + A4 : A g <7A(k)} < sup [A2 : A e aA (k) }

Choose lie oA {k) such that fi2 sup [A2 : A e aA (A) }. Then jli2 + ju4

< ju2, so j! 0. It follows that || k || | A 0 and hence k 0.

This shows that H (A) is closed.
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Now it is easy to prove that the graph of the map x -> x* of A onto A

is closed. For suppose xn x and x* -> y. Then xn + x* -> x + y and

(x„-x*)/i -> (x- y)fi. Since #04) is closed, x + y and (x — y)/i are her-

mitian and so x + y x* + y* and x — y y* — x*, whence jy x*.
Thus by the closed graph theorem, valid for conjugate linear maps, the

involution in A is continuous.

Step 2. Let A be a B*-algebra. Then || x ||0 — || x*x ||1/2 is an equivalent

B*-norm on A such that || x* ||0 || x ||0 for all x e A, and || h ||0

I h I for all hermitian he A.

Proof. [2], [53]. By Step 1 there exists M > 1 such that || x* ||

< M I x || for all x e A. Then

M ~1/2 || x || < || x* |P2 || x ||1/2 J] x ||0 < M1/2 J] x ||

so that || • || 0 and || • || are equivalent. Clearly || • ||0 is homogeneous and

submultiplicative. To prove the triangle inequality, let x, ye A. Then

1 * + y||o 1 (x + y)* (x + y) || < I x*x || + || y*y || + || + y*x |j

so it is enough to prove that || x*y + y*x || < 2 [| x ||0 || y ||0. For any
positive integer n

I (x*y)2"
1

+
1

||2

|| (x'*y)2"+ (y*x)2" + {x*y)2"
1 1

+ (y*x)2"
1

(x*y)2"_1 ||

< || (x*y~)2" +(y*x)2"I+2(||x*xJ-|^j;||)2"-1.

For every s > 0 there is an integer n such that

1 (x*y)2"I< (|x*y|2 + s)2"~1 and ||(y*x)2"|| < (|y*x|2+e)2"_1

Then

I (**y)2"|| < (|x*yMy*x|,+e)2"-1 < (||x*y||-||y*;c| ^-e)2""1

< (||***||+£)2"-1
and similarly

Il (y*x)2"I<(||**x||-||>'V| + c)2""1
so that

(x*y)2"+ (y*x)2"||2 < 2(||x*x||-|| y*y||+e)2"~1

Combining these results we recursively obtain
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II 0c*y)lk
1

+ (y*x)2k
1

II2 < 4(||x*x|j-||y*y\\ Fe)2*
1

for any k, 1 </:<«. Thus

I x*y + y*x ||2 ^ 4(||x*x||-||y*y|| +e)

for arbitrary s > 0. Hence || x*y + y*x || < 2 j| x ||0 || y ||0. So we have

seen that || • ||0 is an equivalent algebra norm on A. Further, || h ||0

|| h*h ||1/2 I A I for all hermitian he A and so || x |io — || x*x ||

x*x !0; i.e., || • ||0 is a B*-norm on A with || x* ||0 || x ||0 for all

x e A.

Step 3. Positive elements and symmetry. Let A be a B*-algebra with
identity e. Then every hermitian he A lies in a maximal commutative B*-
algebra B with identity e. Observe that aB (x) aA (x) for all x e B [43,

p. 35]. By the characterization of commutative B*-algebras B is isometri-
A

cally ^'-isomorphic to C (B). Hence every hermitian element he A has real

spectrum.
A hermitian element xe A is called positive, and we write x > 0, if the

spectrum of x in A is a subset of the nonnegative reals.

Clearly x — h2 is positive for every hermitian he A. The set P =* {x e A:
x > 0 } of all positive elements in A is called the positive cone. Indeed, P is

a cone. For X > 0 and x > 0 then Xx > 0 since aA (2x) XoA (x). That
x > 0 and y > 0 implies x + y > 0 may be seen by the following Kelley-
Vaught argument [31]:

Set a || x I, ß || y ||, z x + y, and y oc + ß. Since | x |ff

|| x I the assumption x > 0 implies oA (x) c= [0, a], so that aA (ae — x)
a [0, a] and therefore || ae - x || | ae — x \a < a. For the same reason
|| ße — y [I < ß. Hence

II ye - z I » II (ae -x) -f (ße - y) | < a + ß y

Since z* z, aA (ye~z) is real so that aA(ye-z) a [ — y,y] which implies
that oA (z) e [0, 2y]. Thus x + y z > 0.

The symmetry of the involution in A now follows readily by Kaplansky 's

argument [45]:
We intend to show x*x >0 for all xeA. By observing that a real-

valued continuous function is the difference of two nonnegative real-
valued continuous functions whose product is zero, we can write the
hermitian element x*x in the form

x*x u — v u > 0 v > 0, uv 0 vu
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Now (xv)* (xv) v*x*xv vx*xv v (u — v)v — — v3 so that (xu)* (xv)

< 0. Since (xv)* (xv) and (xv) (xv)* have the same nonzero spectrum, also

(xv) (xv)* < 0. Write xv h + & with h and k hermitian. Then

0 > (xï/)* (xv) + (xv) (xv)* 2 (h2 +k2) > 0

Thus h 0 k or xv 0. But then 0 (xv)* (xt>) —1>3 and so

v 0. Hence x*x u >0; in particular, e + x*x is invertible for all

x e A.

Step 4. Let A be a B*-algebra with isometric involution. Then there

exists a net { ea } of hermitian elements in A, bounded by one, such that

lim eax x lim xea for all x e A. The net {ea} is called an approximate
identity.

Proof. The following construction is due to Irving E. Segal [50].

If A has no identity, we may embed A in a B*-algebra Ae with identity e

(see the proof of Theorem I). Thus in any case we can use the preceding
results about positive elements.

For any a { x%, xn} in the class of all finite subsets of A, ordered by
inclusion, set h x*x1 + + x*xn. Then h >0and so ea nh (e + nh)_1
is a well defined element in A. Viewing h as a non-negative function on the

structure space of some maximal commutative B*-subalgebra we see that
I ea || I ea < 1. It remains to show that lim eax x lim xea.
Observe that

n

O; (e -O] * [Xi(e-ej] < ^ (e -O] * I>y (e - c«)]
7 1

< (e

< h (e+nh)" 2 < e/4n

where the last inequality follows from the fact that the real function
t -> t (1 +nt)^2 (£>0) has maximum value 1/4«. Thus

II X« 0 -OII2 =11 Oi (e -ej] * [X; (e - ea)~] | <1/4
Now for arbitrary xe A and s > 0 choose a finite set a0 of n elements
in A such that xea0 and n > s~~2. Then for all a > a0 we have | x - xea ||

I x(e-ea) || < e. Hence lim xea x for every xe A; and by the
continuity of the involution also lim eax (lim x*ej* (x*)* x.

Step 5. Every B*-algebra without identity can be isometrically embedded
in a B*-algebra with identity.
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Proof. Let A be a B*-algebra without identity. By Step 2, A is a B*-
algebra with isometric involution with respect to the equivalent norm
II X || o || X*X 11,2. Hence, by Step 4, A has an approximate identity { ea }

consisting of hermitian elements such that || ea || ||ea||0<l. Now
observe that for every x e A,

II X 1 sup {\\xy\\: y e A || y||< 1} sup {|| || : | || < 1}

and extend the norm on A to Ae by

j x + Ae || sup { I (x +Ae)y || : y e A,|||| < 1}

sup { I y (x + Ae) || : ye A|| || < 1 }

Then Ae is a Banach ^-algebra with identity in which A is isometrically
embedded as a closed ideal of codimension one. To see that the B*-condition
holds in A e we first prove that

|j x + Ae || lima || (x + Ae) ea || lima || ea (x + Ae) |j

Given any & > 0 there exists y e A with || y || <1 such that

I (x + Ae) y I > || x -{- Ae || — s

Since lima (x + Ae) eay (x + Ae) y, there exists a0 such that for all a > a0,
I (x + Ae) eay || > || x + Ae || - 8. Since J (x + Ae) eay || < || (x + Ae) ea ||

<||x + 2e||, it follows that lima || (x + Ae) ea || exists and is equal to
|| x + Ae I. Similarly lima || ea (x + Ae) || || x + Ae ||. Thus

|| (x + Ae)* || • || (x + Ae) || lima || ea (x + Ae)* || • lima || (x + Ae) ea ||

lima || (x + Ae)* (x + Ae) ea ||

IJ (x T Ae)* (x + Ae) ||

Therefore || (x + Ae)* (x + Ae) || || (x + Ae)* || • || x + Ae ||, and so Ae
is a B*-algebra.

Step 6. Let A be a B*-algebra with identity e and isometric involution.

Denote by U {u e A : u*u e uu* } the group of unitary elements

in A. Then every element x in A is a linear combination of unitary elements

and || x || || x ||u, where

N N

II x||.. =* inf{ Z I A„ I : x Z Xnu„, Xne C une U }
n — 1 n 1

Proof. To prove that every xeA is a linear combination of unitary
elements it clearly suffices to show that every hermitian he A with || h || < 1
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can be written as a linear combination of unitary elements. If |[ A || < 1,

then I h2 || < || h ||2 < 1 and so
00

k z ci2){-h2r
n 0

is a well-defined element in A. Clearly, k is a hermitian element commuting

with h such that k2 — e — h2. Thus u— h + ik is unitary and

1 1

- ii + - u* •

2 2

It now follows that || x ||M (as given in Step 6) is well-defined for each

x e A; further, it is clear from the definition that || • ||u is a seminorm on A.

We shall call it the unitary seminorm. Since the unitary elements form a

group under multiplication || • \\u is submultiplicative.
Let us compare the unitary seminorm with the B*-norm on A. Observe

that || h ||M < || h 1 for every hermitian he A. Indeed, if || h || < 1, then

h ^ u -h - u* for some unitary ueA and so || h ||„ < 1. Thus || h ||t<

< I h || for every hermitian he A. Further || x |ft < 2 || x j for every xe A.

For if x h + ik with hermitian h and k, then || x ||M < || h ||M + || k ||M

< 2 || x ||. On the other hand || x || < || x j|w for all xe A. Indeed, if x
Z"=lXttu„, ke C, un e U, then

NN N

II * II II Z kunI< Z I I • II II Z I I

n 1 /i=l n 1

since || u ||2 || u*u || 1 for every unitary ueA. Thus || x || < || x ||M.

Hence the unitary seminorm and the B*-norm on A are equivalent norms
with I x || < I] x ||

M < 2 || x || for all xe A. To see that these two norms are

actually equal we need the following result of Russo and Dye [44] about the
closure of the convex hull of the unitary elements in A.

Russo-Dye Theorem. Let A be a B*-algebra with identity e and
isometric involution. Then then open unit ball of A is contained in the closed

convex hull of the unitary elements of A ; that is, for each x in A with
|| x || < 1 and each s > 0 there exists a positive integer m and unitary

1

elements uk such that Z/c
m

< s.

The equality of the unitary seminorm and the B*-norm on A is an
immediate consequence of this result. Indeed, let x e A with || x || < 1.
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Then for every e > 0 there is a positive integer m and unitary elements uk

such that
1

V — YmX 1

m

!*».<
m

< Z kkk i m

< £ and so

m j
Z 2«, +

k=i m u

Z -uki m

+ 2 - Z
* i m

< 1 + 2 e ;

and sosince e > 0 was arbitrary, |j x ||M < 1. This proves || x ||M < ||

|| x I I x ||M for all x e A.
For completeness we will now prove the Russo-Dye Theorem The

following elementary proof, valid for arbitrary Banach *-algebras with
isometric involution, is based on ideas of Harris [28].

Proof of the Russo-Dye Theorem : Let x e A with < 1. Then
XX'" < 1. Hence the hermitian element e xx*

is invertible and has the invertible hermitian square root (e — xx*)1/2
In=o Ci2) (~~xx*)71. Similarly e — x*x has invertible hermitian square

root (a —x*x)1/2 Z=0 Ci2) (-x*x)n. For complex 2 with |2| 1 define

ux — (a — xx*) ~1 /2 (x — Xe) (a — Xx*)~1 (a — x*x)1 /2

We intend to show that ux is unitary. Since XX 1,

u\ (fi— X*x)1/2(a — Ix)"1 (x* — 2a)(a — xx*)~1/2

(a — x*x)1/2 (2a — x)-1 (2x* — a) (a — xx*)~1/2
Observe that

(2a — x)"1 (Ax* — a) (2a — x)_1 [(2a — x) x* — (a—xx*)]
x* — (2a — x)-1 (a —xx*),

(a —2x*)(x —2a)_1 [x*(2a— x) — (a — x*x)] (2a — x)"1

x* — (a — x*x) (2a — x)_1

and

Z (Zk (-***)" Z Cn)(-XX*)nX
w 0 ti — 0

x (a —x*x)1/2

(a —xx*)1/2x

which may be conjugated to give the related equality

(a— x*x)1/2x* x* (a — xx*)1/2

Utilizing these relations it follows easily that zy* u]} so ux is unitary.



Let uk/m denote the unitary element ux with X exp 2 ni — where
V mJ

k, m are positive integers. We will show that x lim I=i 0/m) uk/m-

With X as above, let xkjm denote the element

X; (x — Xe)(e — Ax*)-1
Then

m I i m

X - Z — "k/m * Z (e-xx*y1/
k=i « mk=l

(e-xx*)~1/2
1

z
/c =1

*k/m (£ —X*X)1/2

and so

(1) * - z — »
1 m

1

k/w 1

^ II (e —XX*)1/21 • II X X **/rn|| -|(e-x*x)1/2 II

m k 1

Observe that

and so

Xa Z (x-AeXAx*)" £ <*"*<x*)" - E ^"+I (**)"

-x;. X An+1(x*)" - £ A"x(x*)"

X ^[(x*)""1 — x (x*)"]
n 1

oo

(e—xx*) A"(x*)"_1.

Summing over k, 1 < k<m,anddividing by m we have

I m j m

^ *fc/m ~~ X! (* ~ Xk/ni)
!k 1 k=l

oo <t m

m

(e-xx*) E — E
n 1 m 1

exp 271/

oo 1 m

(e — xx*)
n 1 m fc=1

exp 27i/

*Y1- 1(x *)'

(x*)" 1

Now, if 1 < « < m, then exp 2ni — j #1 and so by the sum formula for
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a finite geometric sum

exp 2niZ
k =1

hence we have

m

ft \ ft (m +1)
k exp [ 2 71/ — J — exp [ 2ni

m m

1 — exp 2ni
n

m

0 ;

j m oo j m

x Z xk/m (e-xx*) Z ~ Z
m k =1 ri- m ft^ /c — 1

exp 27i/
m

(x*)'*\n- 1

Then

- — Z X*/« !J < J e - XX* I Z II (x*)" II

m k l

< || C — XX* I X
n m — 1

< £ — XX*
1

Since the right hand side converges to 0 as m -> oo, the theorem now follows
immediately from relation (1) above.

Step 7. The involution in a B*-algebra A is isometric.

Proof. Since every B*-algebra without identity can be isometrically
embedded in a B*-algebra with identity we may assume A has an identity.
By Step 2 || x ||0 || •x** ||1/2 is an equivalent B*-norm on A such that
II x* IIo II x ||o f°r xe A. Hence, by Step 6, || x ||0 — J x ||M where
|| • ||M is the unitary seminorm on A.

Observe that || u || 1 for every unitary he A. Indeed, since u and w*

commute, by the argument given in the first step of the proof of Theorem I,
we have || u* || || u || and so || u || 1.

Now, if x %n=i Kuw K e ^ un e U, then

I x I || Z Ku„I< Z I I • I «„ j) Z IK I
•

n 1 n 1 7i l
Thus || x || < || x ||„ I x ||o || x*x ||1/2 and so | x* || || x ||.

Step 8. The Gelfand-Naimark-Segal Construction. We have seen that
the involution in a B*-algebra A is isometric. Further, if A has no identity
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we can embed A isometrically as a closed ideal of codimension one in the

B*-algebra Ae with identity e. Thus we can and will assume without loss of
generality that A has an identity e.

The representation of such an algebra A as a norm-closed *-subalgebra
of bounded linear operators on a Hilbert space is effected by means of
positive functionals on A and a construction due to Gelfand-Naimark [23]

and Segal [49].

A positive functional on A is a linear functional p such that p (x*x)
>0 for all x e A. For x, y e A set (x, y) p(y*x). This scalar product
on A is linear in x, conjugate linear in y and (x, x) is nonnegative for all x.
Thus in particular p (y*x) p (x*y) and | p {y*x) \2 </? (x*x)(y*y)
(Schwarz inequality). Setting y e we get p (x*) p (x) and | p (x) \2

<P (e)p{x*x).
In general the scalar product on A is degenerate so that a reduction is

necessary to obtain nondegeracy. To this end we define the associated null
ideal 1 { x e A : p (x*x) 0 }. Since by the above properties of positive
functionals

I {x g A: p(y*x) 0 for all y e A)
the null ideal is clearly a left ideal in A. Then the quotient space X A\I
is a pre-Hilbert space with respect to the induced scalar product

(x+I,y+I) p(y*x)

and, further, for each a e A we can define a linear operator Ta on X by
Ta (x + 7) ax + /. The map a -> Ta has the following easily verified
properties: Ta+b Ta + Tb, Tka - XTa, Tab TaTb. and Tc is the identity
operator; also

(Ta(x+I), y +1)

so that a Ta is a *-representation of A on the pre-Hilbert space X.
Let H be the Hilbert space completion of X. We want to show that

every operator Ta on X can be extended to a bounded operator on H. We
claim that |ra|<|a||. Note that ||

p(x*a*ax). For any a > | a*a|||| there exists a hermitian
he A such that h2 ae - a*a. Hence

ap(x*x) -p(x*a*ax)p(x*(ae-a*a)p((hx)* > 0

and so p (x*a*ax)<|| a \2 p(x*x). Thus || Ta || < || ||. Denote the ex-
tended operator on H also by Ta.

L'Enseignement mathém., t. XXIII, fasc. 3-4. 12
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The preceding discussion has shown that for every positive functional
on A there is associated a ^-representation of A as a *-subalgebra of bounded
linear operators on a Hilbert space H such that || Ta || < || a ||. In general
this representation is neither injective nor norm-preserving. By constructing
appropriate positive functional in the next step we will, however, be able to
build a representation with these properties.

Step 9. Construction of positive functionals. We will construct for
every fixed z e A a positive functional p on A such that p (e) 1 and

p (z*z) || z ||2. Clearly the associated ^-representation has the property
1 Tz|| | zj|. Indeed,

||z||2 p(z*z) (Tz(e +1),(e +/)) || Tz(e+/)||2

<|| 7; ||2 || e +7 I2 I ||

which together with || Tz || < || z || gives || Tz || || z ||.

The following construction of the desired positive functional is a special
case of an extension theorem for positive functionals due to M. Krein
[32].

Construction : Let H (A) be the real vector space of hermitian elements

in A and P the positive cone of all positive elements in A. On the subspace
Re + Rz*z of H (A) generated by e and z*z define p by

p(ae+ßz*z) a + ß || z*z j

Note that p is well-defined on Re + Rz*z even if e and z*z are linearly
dependent. Since || z*z || | z*z \a e oA (z*z) we have that a + ß || z*z ||

lies in oA(oce + ßz*z). In other words, p(x)eoA(x) if xeRe + Rz*z

so that p (x) > 0 for all xe P n (Re+ Rz*z).
Assume p has been extended to a real-linear functional on a subspace W

of H (A) such that p (x) > 0 for all xeP n W and assume that there is a

y e H (A) with y $ W. Set

a inf { p ('v): y < v e W} and b sup { p (u): y > u e W}

Since y < || y || e and y > - || y || e the infimum and supremum are taken

over nonempty sets, and are therefore finite numbers, clearly satisfying

a > b. Define p on the subspace of H (A) generated by W and y by

p(x+ay) p(x) + ac (xeW, oceR),

where c is any fixed number such that a > c > b.
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Suppose that x + ay 0 (xeW, aeR). We shall show that p(x + y)

> 0. If a 0, then p (x + ay) p (x) > 0 by assumption.
x / x\

If a > 0, then x + ay > 0 implies > > - - e IF, so that ^ — - 1 < c,
a V °V

or p (x + oty) > 0.

If a < 0, then x + a y > 0 implies 7 < - - e W, so that
a \ aj

or p (x + ay) > 0.

By Zorn's Lemma we conclude that p can be extended to a real linear
functional p on H (A) such that p (x) > 0 for all x e P.

Finally set p (x) p (h) + ip (k) if x h + ik with h, k e H (A).
Then p is a positive functional on A such that p (e) 1 and /? (z*z) || z*z ||

I! z II2. This completes the construction.

Step 10. 77ze isometric *-representation. In the preceding step we
constructed for every ze Asl positive functional on A such that the associated

*-representation T(z) of A on the Hilbert space i/(z) is norm-decreasing and
1 T*z) II lb II-

Let H be the direct sum of the Hilbert spaces H^z\ The direct sum of the
family H(z), z e A, is defined as the set of all mappings / on A with/(z)
e H(z) such that £ (/(z),/(z)) < 00. The algebraic operations in FT

zeA

are pointwise and the scalar product is given by (/, g) ^ (/(z), f (z)).
zeA

The reader may easily verify that all Hilbert space axioms are satisfied by H
(see [14]).

Define the '^-representation T of A on H by

rX'C/Cz)).
Note that the inequality

E ((Ta/)(z) (Tfl/)(z)) < 1 a ||2 £ (/(z) /(z))
zeA zeA

shows that with / also Tafbelongsto H. Then Ta is a bounded operator
on H such that

II 7; 1 sup I TqZ)II 1 a i
zeA

Hence the map a-»•Taisa norm-preserving ^representation of ^4 on //.
This completes the proof of Theorem II as stated in the introduction.
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6. Geometrical characterizations of B*-algebras

The first step to a geometrical characterization of B*-algebras among
complex Banach algebras was taken in 1956 by Ivan Vidav [52]. To state his
result in an appropriate form let us collect some basic ideas and results. For
details the reader is referred to the well-written monographs of Frank
F. Bonsall and John Duncan [10], [11] on numerical ranges.

Let A be a unital Banach algebra, i.e., a Banach algebra with an identity 1

of norm one. A continuous linear functional / on A is called a state if
||/|| =/(!)• This definition exploits an earlier involution-independent
geometrical characterization of the positive functional on a C*-algebra due

to H. Frederic Bohnenblust and Samuel Karlin [9]: a continuous linear
functional / on a unital C*-algebra is positive if and only if ||/|| /( 1).

Gunter Lumer [34] made strikingly successful use of the generalization of
this to define hermitian elements in an arbitrary unital Banach algebra. An
element x of a unital Banach algebra A is called hermitian if/(x) is real for
every state / on A. Clearly, in the special case where A is a C*-algebra,
an element x e A is hermitian if and only if x* x. Further it turned out
that the following conditions for an element x of a unital Banach algebra are

equivalent :

1. f{x) is real for every state /on A;
2. || 1 + iocx || l+o (a) (a real) ;

3. I exp (zax) || 1 (a real).

In fact, Vidav [52] used the second condition to define hermitian elements

in unital Banach algebras. Obviously in the algebra of complex numbers we
have

I 1 + iocx I 1 + o (a) (a real)

if and only if x is a real number. In the C*-algebra of all bounded operators
on a Hilbert space the self-adjoint operators (the operators x with x* x)
play the same role as the real numbers in the algebra of complex numbers.

Motivated by this observation, Vidav—as he pointed out in a letter to the

second named author—asked if the self-adjoint operators could be characterized

in a similar way. And, indeed, he was able to show quite easily that
an element x in a C*-algebra is self-adjoint if and only if

|| 1 + iocx || 1 + o (a) (a real).
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Here is his short argument. Let x be any bounded operator on a Hilbert

space and write x h+ ik,where h and k are self-adjoint. For all real oc

we have: | 1 + iax ||2 sup || £ + z'ocx£ ||2, where the supremum is taken

over all vectors Ç of norm one. We can write:

Il É + iax£||2 (LO-2am, 0 + a2[|NI|2+NI
-im,ico]Hence if j| J 1, then

I £ + ioocÇ ||2 1 - 2a (H, 0 + 0(a2).

Thus || 1 + iax || 1 + o (a) only if (k£, <!;) 0 for every vector This

implies k 0; i.e., x is self-adjoint.
Conversely, if x h is self-adjoint, then

Il Ç + iuhl;||2+ 0(21 hÇ ||2

and so || 1 + iah ||2 1 + a2 || h ||2, which implies j| 1 + iah || 1 + o (a).

Thus an element x in a unital C*-algebra is self-adjoint if and only if
J 1 + iax || 1 + o(a) (a real).

Further investigations of the set H (A) of hermitian elements in a unital
Banach algebra A led Vidav [52] to a rather deep geometrical characterization

of B*-algebras.

Theorem. Let A be a unital Banach algebra such that :

i) A H (A) + iff (A);

ii) if he H {A) then h2 ~ a + ib for some a, b e H (A) with ab ba.

Then the algebra A has the following properties.

1. The decomposition x h + ik with h, k e H (A) is unique.

2. Setting x* h — ik ifx h + ik the map x —> x* is an involution

on A. Furthermore for he H {A) we have j| h2 || || h ||2.

3. || x I o
3=1 || x*x ||1/2 defines a B*-norm on A which is equivalent

to the original norm.

Nearly ten years later Barnett W. Glickfeld [24] and Earl Berkson [8]

showed independently that A is actually a B*-algebra under its original
norm. Their proofs in the commutative case are quite different. Berkson
utilized the notion of a semi-inner-product space introduced by Lumer [34]
and the theory of scalar type operators as developed by Nelson Dunford [14],
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[15], [16]. Glickfeld recognized the importance of the exponential function
and obtained the commutative theorem via the hermiticity condition
|| exp (iccx) || 1 (a real) for x e A. A simplification of his proof was pointed
out by Robert B. Burckel [12]. The extension to arbitrary (possibly non-
commutative) unital Banach algebras is an immediate consequence of a
result of Russo and Dye [44] on unitary operators in C*-algebras (see also

Step 6 of the preceding section).
Based on a refinement of the Russo-Dye Theorem, Theodore W. Palmer

[41] finally showed that condition ii) in Vidav's theorem is unnecessary and
also gave the simplest proof that A is already a B*-algebra under its original
norm. Thus the following elegant characterization of B*-algebras was
established.

Theorem. A unital Banach algebra A admits an involution with respect
to which it is a B*-algebra if and only if A H (A) + iH (A).

Recently Robert T. Moore [36] gave deep duality characterizations of
B*-algebras. He defines hermitian functionals on an arbitrary unital Banach

algebra A to be those in the real span H (A') of the states on A. It is shown
that every functional/ in the dual A' of A can be decomposed as/ h + ik,
where h and k are hermitian functionals. Moore's proof of this uses the
usual decomposition of measures. Independently Allan M. Sinclair [51]

has given an interesting direct proof in which the measure theory is replaced

by convexity and Hahn-Banach separation arguments. Their result is a

useful strengthening of the Bohnenblust-Karlin vertex theorem [9] which
asserts that the states on a unital Banach algebra separate points in A.
Substantial simplifications of the proofs of Moore and Sinclair have been

given by L. A. Asimow and A. J. Ellis [4].

Clearly, in the special case where A is a C*-algebra, a continuous linear
functional / on A is hermitian if and only if /(x*) f(x) for all xeA.
Moreover, every hermitian functional on a C*-algebra is the difference of
two positive functionals (see Corollary 2.6.4 of [13]). We have seen that
B*~algebras are characterized among unital Banach algebras as those for
which there are enough hermitian elements. Moore's duality characterization

shows that they may also be characterized as those for which there are

too many hermitian functionals.

Theorem. A unital Banach algebra A admits an involution with respect

to which it is a B*-algebra if and only if the dual A' decomposes as a real
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direct sum A' H {A') 4- iH(A'); or, equivalently, iff the hermitian

elements in A separate points in A'.

This result reduces an important property of a Banach algebra to

properties of its dual space and may play a crucial role in further investigations.

7. Further weakening of the B*-axioms

The result of Russo and Dye on the closed convex hull of the unitaries

had an immediate consequence for the further weakening of the B*-axioms.
Based on Vidav's theorem [52] or on Glimm-Kadison's proof in [25],

as Jacob Feldman [19] observed, the following conclusion results (see [8],

[24]).

Theorem. A Banach *-algebra A with identity is a B*-algebra if and

only if I x*x || || x* || • || x || whenever x and x* commute.

The assumption of an identity was removed in 1970 by George A. Elliott
[17]. A result of Johan F. Aarnes and R. V. Kadison [1] on the existence of an

approximate identity in a C*-algebra commuting with a given strictly
positive element enabled him to extend the norm on A to Ae so that the

algebra Ae still satisfied the B*-condition for normal elements.

In 1972 Ylastimil Ptâk [42] presented in an excellent forty-five page
survey article a simplified treatment of the theory of hermitian Banach

^-algebras (that is, Banach ^'-algebras in which all self-adjoint elements
have real spectrum) based on the fundamental spectral inequality

I X \l<I A-*.Y

Investigating their connections with C*-algebras, he derived several
characterizations of B*-algebras in an elegant way. His article circumvented many
difficulties by assuming throughout that the algebras possess an identity
element.

In an informal conversation during an ergodic theory conference at
Texas Christian University in the summer of 1972 the first named author
asked Husihiro Araki if the submultiplicativity condition || xy || < || x ||

• I y I was actually necessary in the axioms of a B*-algebra. Some months
later Araki and Elliott [2] proved the following two results.
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Theorem 1. Let A be a *-algebra with a complete linear space norm
suchthat ||***|| || * ||2 for all xeA. Then A is a fB*-algebra.

Theorem 2. Let A be a *-algebra with a complete linear space norm
such that || x*x | || x* | • || x || for all x e A. Suppose that the involution
is continuous. Then A is a B*-algebra.

Actually the assertion of Theorem 1 was already implicit under some
additional assumptions in a 1961 paper of Vidav [53]. Without knowledge
of this interesting paper Araki and Elliott were able to give a rather simple

proof of it. On the other hand, Theorem 2 was only established after very
long and tedious arguments involving the second dual of a C*-algebra and it
would be desirable to have a more elegant proof of it.

Araki and Elliott asked at once if in Theorem 1 or 2 it is enough to
assume || x*x || || * ||2, respectively || x*x || || x* || • || * ||, only for all
normal x (all x with x*x xx*). Apparently they were not aware of the

following well known counterexample [47]. Let B (H) be the *-algebra of all
bounded operators on a Hilbert space H of dimension > 2. The numerical
radius of an operator x on H is defined by

|| x I j sup { I (x£, 0 |: f eH [J £ I 1 }

It is easily seen that || * j %
is a complete linear space norm on B (H) with

r- j x || < I * 11 < || * || for all x e B (H) and ]| x ||
1

|| x || for all normal

x g B (H), where || • || is the usual operator norm (see Chapter 17 of [27]).
The norm || • has the following properties:

||x*j[t || x ||i for all xeB(H),
I x*x I > I * ||i !| x* ||i || * ||i f°r aU x £B(H) ;

and

llx*xlli Ilx Hi lx*llillxlli
for all normal x e B (H) but not for all xe B (H). For another counterexample

see the addenda to [2].

In [46] Zoltân Sebestyén proved the following general characterization

of B*-algebras.

Theorem. Let A be a *-algebra with complete linear space norm such

that
I x*x || < || x ||2 for all x e A
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and

I I J x II2 for all normal x e A

Then A is a B*-algebra.

In a later paper [48] Sebestyén claimed to prove that continuity of the

involution can be dropped from Theorem 2 above. However, G. A. Elliott
has pointed out an error in [48]; indeed, on line four of page 212 the series

displayed, although convergent, is not shown to converge to the quasi-

inverse of X~1x. The paper does reduce the problem to the commutative

case; but in this case it remains an interesting open question.

8. Applications

Numerous applications of the Gelfand-Naimark theorems appear in the

literature. Indeed, utilizing the representation theorem for commutative

algebras important theorems in abstract harmonic analysis can be

established. For example both the Plancherel theorem and the Pontryagin duality
theorem are proved in [33] via the commutative theorem. Further applications

to harmonic analysis can be found in [15], [30], [33] and [37]. The

representation theorem for commutative algebras can be used to establish

important results on compactifications of topological spaces and locally
compact abelian groups (see [15], [30] and [33]); it also provides the most
elegant method of proof of the spectral theorem for normal operators on a

Hilbert space ([15], [30], [33]).

Applications to group representations and von Neumann algebras can
be found in [13] and [37]. For applications to numerical ranges of operators
see [7], [9], [10], [11] and [34].

In recent years the theory of C*-algebras has entered into the study of
statistical mechanics and quantum theory. The basic principle of the

algebraic approach is to avoid starting with a specific Hilbert space scheme
and rather to emphasize that the primary objects of the theory are the fields

(or observables) considered as purely algebraic quantities, together with
their linear combinations, products, and limits in an appropriate topology.
The representations of these algebraic objects as operators acting on a
suitable Hilbert space can then be obtained in a way that depends essentially
only on the states of the physical system under investigation. The principal
tool needed to build the required Hilbert space and associated représenta-
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tion is the Gelfand-Naimark-Segal construction discussed earlier in this
article.

A substantial literature has now emerged from this new algebraic point
of view and a recent book by G. Emch [18] has been written with the express

purpose of offering a systematic introduction to the ideas and techniques of
the C*-algebra approach to physical problems. The authors recommend
this book to the reader who would like to pursue this subject further. The
book contains a bibliography of more than four hundred items which
should aid the interested reader in his study of this new and interesting
application of operator algebras.
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