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4. NON-EUCLIDEAN MOTIONS

The euclidean case was dealt with in [3]. In the present paper we under-
take a more detailed study of the hyperbolic case. The unit ball in R” is
denoted by B, and G is the full group of M&bius transformations mapping B
on itself. The Poincaré metric ds = (I1—|x|>)™"|dx| and the non-
euclidean volume element p dx = (1—|x|2)’" dx are invariant under G.

For A e G we prefer to denote the Jacobian by A4’ (x) rather than
DA (x). We use |A’ (x)| for the linear rate of change, the same in all
directions. This notation has the advantage of leading to formulas which
are easily recognizable generalizations of the familiar formulas for n = 2
in complex notation. [ A" (x) ' is also the square norm of the matrix A" (x),
and |det A" (x) | = | 4" (x) |

Reflection in the unit sphere is denoted by x* = x/ [ X lz. Its Jacobian
is Dx* = |x|7%(1,-20(x)) with Q(x);; = xx;/| x|*; note that
(1,—20(x)* = 1,

For every ye B there is a unique 7, G such that 7,y = 0 and
T,(») =|T,(»] 1, The most general 4€ G is of the form 4 = UT,
with y = 471 (0) and Ue O (n).

For n = 2, in complex notation,

Tx =

- 1 —jx
1 -]yl
1= gy

The first formula can be rewritten as

_G=na=1yP) = Ix=yly

T x
[y P lx —y*|?

y

In this form it makes sense for arbitrary n and is in fact the correct formula.
The denominator |y |*|x — y*|* corresponds to |1 — yx|?, and it is
equal to 1 — 2(xy) + |x|*|»|? where (xy) is the inner product. To
emphasize the symmetry we shall use the notation |y| |x — y*| =
[x]|y—x*[=Ixl |

The expression for T, (x) is

, 1
Ty(x) =
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with
A(x,y) = (1=20()) (1 =20 (x—y*) = (1-20(y—x%)(1 -20 () .

Observe that A4 (x, y) = '4 (y, x) and 4 (x, y)* = 1, so that 4 (x, y) € O (n).
The matrix 4 (x, y) generalizes the angle arg (1 —Xy)/(1— yx).

It is useful to note that | Ax — Ay|* = |4 ()| |4 (W] |x =¥ E
for any Mébius transformation 4, and [dx, Ay]> = | 4" (x)| | 4" ()]
[x, y]> if A€ G. There is an important relation between 7T ,x and T,y
expressed by '

(4) Tyx = —A(xay) Txy

We refer to [2, 3, 4, 5] for the elementary proofs of these formulas.

5. FUNDAMENTAL SOLUTIONS

A continuous mapping f : B — R" will be called a deformation. In this
paper we shall assume, mainly for simplicity, that f is continuous on the
boundary S (1), and that x - f(x) = 0 on S (1); this means that f maps B
on itself when regarded as an infinitesimal mapping.

A deformation is trivial if Sf = 0. There are very few trivial defor-
mations: a complete list is given in [3].

It is customary to say that f is a quasiconformal deformation if || Sf||
e L* (B); here || Sf|| is the function whose value at x is the square norm
of the matrix Sf'(x). More generally, we shall also consider functions with
|| Sf|| € L? (B); we abbreviate to Sfe L?, and we denote the LP-norm of
the square norm by || Sf||,. The same convention will prevail for all
matrix-valued functions.

We shall say that f is harmonic if S*p Sf =0, p = (1—|x]»)™"
Because of the invariance, if f is harmonic and 4 € G, then 4* f is also
harmonic. Harmonicity in this sense is not the same as requiring the com-
ponents to be harmonic with respect to the Poincaré metric.

There are n linearly independent solutions of the equation S*y = 0
which are homogeneous of degree 1 — n. We denote them by y

= 1, ..., n, the elements being

Viga () =[x |7 (0uX; 4+ 6 jux; — 65%,) + (n—2) | x| 7772 xpx %, .

There is a unique vector-valued function g, (x) with components
gir (x) such that g, (x) =0 for |x| =1 and pSg, =y, so that
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