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INVARIANTS OF FINITE REFLECTION GROUPS Cat.

by Leopold Flatto

Introduction

Let G be a group of linear transformations acting on a finite dimensional

vector space V over a given field k. Let S be the ring of polynomial functions

on V, i.e. those functions which become polynomials for any given
coordinate system on V. G is made to act on S by defining

(os)(y) GEG, seS,VEV

The elements of S fixed by G, i.e. g s s for all a e G, are called the

invariants of G. The subject of invariant theory deals with the determination
of all invariants of a given group G. For finite groups, Hilbert proved in
1890 [14] the main theorem of invariant theory stating that the algebra of
invariants is finitely generated. These finite sets of generators are said to
form an integrity basis for the invariants of G. Later on, Noether [17]

produced an explicit set of basic invariants for finite groups. However, this
number is usually much more than necessary (we elaborate on this point
in chapter I) and there lacks a systematic method for producing a basis

which is in some sense minimal.
As we show in this expository paper, such a systematic method exists

for the class of groups known as the finite reflection groups. In this case, a

very detailed and beautiful theory has been worked out in the last twenty five

years, bringing together various concepts from algebra, geometry, and
analysis. The subject matter is closely related to other mathematical
theories, such as the topology of Lie groups and the study of the Chevalley
groups. For these connections, the interested reader is referred to the books
of Bourbaki and Carter [2, 3], where further references are supplied.

We give here a brief description of the subject treated in this paper.
A linear transformation g acting on the «-dimensional vector space V is
said to be a reflection if it fixes an n - 1 dimensional hyperplane n, which
is then called the reflecting hyperplane (r.h.) of g. G is a reflection group if
it is generated by reflections. For finite reflection groups G acting on an
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«-dimensional vector space V over a field k of characteristic 0, we have the
fundamental result of Chevalley [4], stating that there are « algebraically
independent homogeneous polynomials forming an integrity basis for the
invariants of G. Conversely, we will show that if G is a finite group of linear
transformations acting on V which is not a reflection group, than any basic
set of homogeneous invariants must contain more than « elements which
are algebraically dependent. Thus we may say that the finite reflection

groups are distinguished to be those with the simplest possible type of
invariant theory.

Let du dn be the respective degrees of the basic homogeneous
invariants Iu /„, where dx < < dn. It can readily be shown that the
d- s are independent of the particular basis Iu In. We present in
chapter III two methods for computing the d- s. The first one is due to
Coxeter and Coleman [7, 8] and is restricted to the case where the underlying

field k is real. Coxeter has classified all real finite irreducible reflection

groups [6]. If such a group G acts on the «-dimensional Euclidean space
Rn, then its r.h.'s divide Rn into | G | components, called the chambers

of G. Each chamber is bounded by « r.h.'s called its walls. The reflections
in these walls generate G. Coxeter has found a remarkable relation between

the di s and the eigenvalues of the product of these generators. This relation,
first checked individually for each of the groups listed in [7], has

subsequently been proved by Coleman [8]. Coleman's Theorem (Theorem 3.8

of chapter III) may be used effectively to compute the dt's in the real case.

We also present another method due to Solomon [18] who has obtained
formula 3.27) for the d- s. Solomon's method works for all fields of characteristic

0, but cannot be used as effectively as the method of Coxeter and

Coleman in the real case.

In Chapter IV, we apply the invariant theory developed in the earlier

chapters to study a certain system of partial differential equations and

related mean value properties. We assume that G is a finite orthogonal
reflection group acting on Rn. Let I denote the set of homogeneous
invariants of positive degree. For any polynomial p (x), let p (d) be the partial
differential operator obtained by replacing each variable xt by d/dx^
Steinberg [21] has described the solution space of C00 functions satisfying
the system

1) p (5)/ 0

on some given «-dimensional region We may interpret the solutions

of 1) to be an analog of the harmonic functions, as the latter are the solutions
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nd2f
of Y —=- 0 and V x\ is the basic invariant for the orthogonal

i 1
Ô Xi z 1

group O (n) ([23] p. 53). We use Steinberg's result to describe the solution

space Sy of continuous functions on M satisfying the mean value property

2) f(x) £ f(x + tay), xel
I G I aeG

and 0 < t < sx, y denoting a fixed vector ^ 0. Observe that 2) is again an

analog of the familiar mean value property characterizing harmonic
functions ([15] p. 224). Flatto and Wiener [10] have shown that the solution

spaces to 1) and 2) are identical, provided the degrees dt are distinct and y
does not belong to a certain algebraic manifold Jt. M can be described by

equations, the latter yielding an explicit integrity basis for the invariants of G.

I have tried to keep the present paper self-contained, defining and

explaining most of the notions and results needed in it. Occasionally,
I quote some well known results of algebra, most of which can be found
in [22]. In Chapter IV we require some standard results on harmonic
functions, which may be found in [15]. In Chapter III, we require Coxeter's
classification of the irreducible finite reflection groups acting on Rn. It
would have taken us too far afield to present this matter in detail. I present
a brief exposition, without proof, of the main points of this theory which
are required in the present paper. For a quick and readable account of the

details, the reader is referred to [1].

CHAPTER I

GENERAL THEORY

1. The Main Theorem of Invariant Theory

We present in this chapter some basic notions and results of invariant
theory. We assume throughout that G is a finite group of linear transformations

acting on the finite dimensional vector space V over a given field k
of characteristic 0. n designates the dimension of V.

Definition 1.1. Let P (y) be a polynomial function on V. P (v) is
invariant of G o P (av) P (v) for a e G, v e V.

Let xu xn be a coordinate system for V. Then P (v) becomes a
polynomial which we designate by P (x). a is represented by a matrix which we
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