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nd2f
of Y —=- 0 and V x\ is the basic invariant for the orthogonal

i 1
Ô Xi z 1

group O (n) ([23] p. 53). We use Steinberg's result to describe the solution

space Sy of continuous functions on M satisfying the mean value property

2) f(x) £ f(x + tay), xel
I G I aeG

and 0 < t < sx, y denoting a fixed vector ^ 0. Observe that 2) is again an

analog of the familiar mean value property characterizing harmonic
functions ([15] p. 224). Flatto and Wiener [10] have shown that the solution

spaces to 1) and 2) are identical, provided the degrees dt are distinct and y
does not belong to a certain algebraic manifold Jt. M can be described by

equations, the latter yielding an explicit integrity basis for the invariants of G.

I have tried to keep the present paper self-contained, defining and

explaining most of the notions and results needed in it. Occasionally,
I quote some well known results of algebra, most of which can be found
in [22]. In Chapter IV we require some standard results on harmonic
functions, which may be found in [15]. In Chapter III, we require Coxeter's
classification of the irreducible finite reflection groups acting on Rn. It
would have taken us too far afield to present this matter in detail. I present
a brief exposition, without proof, of the main points of this theory which
are required in the present paper. For a quick and readable account of the

details, the reader is referred to [1].

CHAPTER I

GENERAL THEORY

1. The Main Theorem of Invariant Theory

We present in this chapter some basic notions and results of invariant
theory. We assume throughout that G is a finite group of linear transformations

acting on the finite dimensional vector space V over a given field k
of characteristic 0. n designates the dimension of V.

Definition 1.1. Let P (y) be a polynomial function on V. P (v) is
invariant of G o P (av) P (v) for a e G, v e V.

Let xu xn be a coordinate system for V. Then P (v) becomes a
polynomial which we designate by P (x). a is represented by a matrix which we
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again designate by a. For this coordinate system, the above definition takes
m

the form P (ax) P (x), a e G and x arbitrary. Let P (x) Y Pt (x),
i o

where m deg P and Pt (x) is homogeneous of degree i. Then P (ax)
m

Y (ax)- Since Pt (ax) is also homogeneous of degree i, we conclude
i=0

that P (x) is invariant under G iff Pt (x) is invariant under G for 1 < i < m.
Hence the determination of the invariants of G reduces to the determination
of its homogeneous invariants.

Definition 1.2. Let I\ (x),..., Ik (x) be invariants of G. f (x), Ik (x)
form an integrity basis for the invariants of G o any polynomial invariant
under G is a polynomial in Iu Ik.

As a concrete illustration of the above definitions, let G be the symmetric
group Sn consisting of the linear transformations x- xa(i), a being any
permutation of 1, n. The invariants of Sn are the symmetric polynomials
in x1? xn. It is well known ([22], Vol. I, p. 79) that the elementary
symmetric polynomials Ij (x) Yxh ••• xtj (1 <Ti<•••<(;<«), 1 < j < n,
form an integrity basis for all symmetric polynomials.

In the sequel, we shall use the term basis to mean integrity basis. The

following result, due to Hilbert, is the main theorem of invariant theory.

Theorem 1.1. The invariants of G have a finite basis.

We present two proofs of this theorem, due respectively to Hilbert [14]
and Noether [17].

Hilbert 's Proof : Let I denote the set of all homogeneous invariants of
positive degree. Let «/ be the ideal generated by I. By Hilbert's Basis

Theorem ([22], Vol. 2, p. 18), J> (71? Ik) where 7l5 Ik are

homogeneous invariants of positive degree. Since every invariant polynomial
is a sum of homogeneous invariants, it suffices to show that every
P in 7 is a polynomial in 7l5 Ik. Now P e I => P e «/, so that P (x)

m

I Qj <X> tj (*)•
j 1

Since P and the i/s are homogeneous, the Q- s may be chosen

homogeneous. We show that the Q- s may be chosen invariant by the following
group averaging processs. Since P (x) — P (ax) for all a e G, we have

1

(1.1) P(x) — E P(ax) E Mj (x) Ij (x),
I G I aeG j
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where

(1.2) Mj (x)1 (crx) •

I L I aeG

For cr1 e G

(1.3) Mj(alX) -2- S Ôj (crcTix) - I Ô, M, (x)
I L j aeG I ^ I creG

Thus Mj(x) is a homogeneous invariant, 1 < y < k. Since deg M.
+ deg Ij deg P and deg Ij > 0, we have deg Mj < deg P, 1 < j < k}
The proof of Theorem 1.1 now follows by induction. It obviously holds for
deg P 0 and suppose that it holds for deg P ^ m — 1. Let deg P m.

Mj is a polynomial in Iu Ik for 1 < j < k. It follows from (1.1) that P
is a polynomial in 7ls..., Ik.

Noether's Proof : We prove first a preliminary lemma. For any «-tuple

a an) of non-negative integers, let | a | ax + + an.

Lemma 1.1. Let

(xiU xin), xai x-l x°", 1 < I < TV, a «= (al5 a„)
N

being an arbitrary «-tuple of non-negative integers. £ x- is a poly-
N i= 1

nomial in the sums £ x", | a | < TV

i= 1 ;

N

Proof. For « 1, the above states the well known fact that - £ x- is
i=i

X N

a polynomial in J] xu £ x^ ([22], Vol. 1, p. 81). Suppose that the
i — 1 i 1

result holds for « - 1, « > 2. The case (<zl3 öw_l5 0) is identical with
(au an_ j). Hence the result holds for (a1? «„), 0. Suppose it
holds for {au an), where an < m (« > 2 and m > 1). We show that it
holds for an m and so, by induction, for all (au ûn). Increase an^1
by 1, decrease by 1, keeping the other a?s fixed, and call the new «-

N

tuple Z>. Let st be a denumeration of the sums £ v-, | « | < TV.

i 1

Then

j (1.4) £ x» F(si,...,Si)
j i 1

J where F F(wt,..., u.) is a polynomial in the u?s. Differentiate both
j

sides of (1.4) with respect to xy>_ t and multiply by xjV We obtain

L'Enseignement mathém., t. XXIV, fasc. 3-4. 16
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(1.5) («„_1 + i)x; x 4^(Si,...,s,)- as"

*=t 8uk— dXjj-! J"

N

If *k Z *i> C (Cl> •••' C«)> then
i 1

^ 5fc rf

ä — Xjn Cn-i Xj, d (CU C„_ 2, C„__ t - 1, C„ + 1)
0 Xj,n -1

N

It follows by summing both sides of (1.5) over y, 1 <y < N, that £ x" is
i=i

a polynomial in st, st.
We can now provide Noether's proof. Let P (x) be a homogeneous

invariant of degree m. Thus P (x) ^ ca xa, the cfl's being elements
|a| m

of We have

(1.6) *(*) T- X P(«0 I 7^7^ (*)
I tJ I

|«| m
I I '

where /a (x) J] (ax)a
<teG

By Lemma 1.1, each Ja is a polynomial in the Ja's with | a | <|G|.
It follows from (1.6) that the Ja9s, | a | < | G |, form a basis for the
invariants of G.

Comparing the two methods of proof, Noether's has the advantage of
producing an explicit basis. It is however a proof of "finite type" which
can not be generalized to continuous groups. Hilbert's proof goes through
directly for continuous compact groups acting on the Euclidean space Rn,

as we then have the notion of Haar measure and the group averaging

process can be carried out.
We observe that the basis produced by Noether's method consists of

G I Tl\
I

«

elements of degree < G The main interest in these bounds is
n J

their universality. In individual cases, they may prove to be very poor.
Consider, for instance, the case G Sn. Noether's method yields a basis

/n\+n\
of J ~ (n l)n (as n -> oo) homogeneous invariants of degrees

V n J
< n\, while in actuality there are n basic homogeneous invariants of
degree < n.

We obtain the following lower bound for the number of elements in a

basis.
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Theorem 1.2. Let Iu It form a basis for the invariants of G. We

may choose from the f s n elements which are algebraically independent

over k. Thus I > n.

Proof Let k(xu xn) be the field of rational functions in the inde-

terminates x1? xn with coefficients in k, a similar meaning being attached

to k (/l5 If We show that k (x1? x„) is a finite extension of
k (/l5 /,). Let x,- (x) xt and set

(1.7) !>,(*•)= II (X-xi(aX))=X^+
<7 EG

+ a1 X 'G' 1 + + U|G|

It is readily checked that the coefficients aj are polynomials which are

invariant under G. Thus each aj e k (/1? f). Since pt (xf) 0, we
conclude that Xj, xn are algebraic over k (/l5 /^). Hence k (xl5 x„)
is a finite extension of k /^).

Let k (<xu as) be the field obtained by adjoining al5..., as to k.
We may define the transcendence degree of ^ over k to be the maximum
number of a/s which are algebraically independent over k ([22], Vol. 1,

p. 201). We denote this degree by Tr.deg. Kjk. If we have three fields
k œ K cz L, then it is known that

(1.8) Tr.deg. Ljk Tr.deg. L/K + Tr.deg. Kjk ([22], Vol. 1, p. 202).

Apply (1.8) with L k (xl5 x„), K k (Il9 If Then
Tr.deg. Ljk n and the finiteness of L over K means that Tr.deg. L/K 0.

Hence Tr.deg. Kjk n, which means that we may choose n l/s which are
algebraically independent over k.

2. Molien's Formula

For each integer m > 0, the homogeneous invariants of degree m form
a finite dimensional vector space over k of dimension dm. We derive an
interesting and useful formula for the <5m's.

Theorem 1.3. (Molien's Formula [16]). Let co1 (<r), con (a) be the
eigenvalues of o. Then

00 1 1

(i.9) y ômtm — y
m=o \G \
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Remark. (1.9) is to be interpreted as an identity between two formal
power series. I.e. if the right side is expanded as a formal power series, then
its coefficients are identical with the <5m's.

We require the following

Lemma 1.2. Let W be the subspace fixed by G.

Then dim W V Tr (cr).\G\ito
Proof. Let [vu vr) be a basis for W and augment this to a basis

vn} for V. For g1 e G and v e V, we have

ai(£ av)Z' Z <rv,
aeG aeG aeG

so that Y g v eW.lt follows that
aeG

V GV: V:, 1 < / < r
|G| Pg,and

1

77^- Z aviZ au1 <i
I G I aeG j 1

the a if s e k. Hence

V Tr g TR Y g\ r dim W.
I gi „c \i G I ffrG y

Proof of Theorem 1.3. Let k algebraic closure of k. For any g e G,

we can find a matrix t with entries in k so that r cr t" 1 J, being diagonal

and the diagonal entries being the eigenvalues of g. Let Rm, Rm denote

respectively the space of homogeneous polynomials with coefficients

from k, k. Let (Tr cr)m trace of cr as a transformation on Rm trace

of g as a tranformation on Rm. Let (Tr d)m — trace of d as a transformation

on Rm. We have c/ (P (x)) P(c/_1x) for any polynomial P(x). In
particular, for any monomial xa, we have d (xa) coa((j_1), where œ (cr)

(cOi (cr),..., (<j)). The monomials form a basis for and Rm.

We conclude that

(1.10) (Tr a)m (Tr d)m£ ft/Or"1).
I a J m
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(1.10) and Lemma 1.2 yield

(1.11) ôm
—L X (Tra)m=j^r £ £ a/».

I G I atGIG I |„| m

Multiply both sides of (1.11) by tm and sum over m from 0 to oo. We get

00 ï 00

S S.f -TT. 1»*(")'"
m 0 I ^ I w 0 creG |a| m

-j 00 00

T7q Z (I <(*>*" - I <(*)'"}
j L I oeq m= o m — 0

_L y
1

G I ffrc(l-®i(<T)t) ...(l-®»0

CHAPTER II

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. Chevalley's Theorem

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where n dim V. We show that
this lower bound is attained only for the finite reflection groups. We first
define these groups.

Definition 2.1. Let a be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <=> a fixes an n — 1 dimensional
hyperplane n and a is of finite order > 1. % is called the reflecting hyper-
plane (r.h.) of a.

Remark. Choose v$n. and let a v £ v + /?, p e n. If £ 1, then
amv v + mp, contradicting that a is of finite order. Hence £ # 1.

Let v' v + (£-l)_1/> and choose ...,pn_1 as a basis for 7c. Then
& Pi Pb 1 < *< w ~~ 1, g f'. £ is a root of 1 in & which is distinct
from 1, as a is of finite order > 1. Thus a is a reflection iff relative to some
basis, the matrix for a is diagonal, n — 1 of the diagonal entries equalling 1

and the remaining one equalling a root of 1 in k distinct from 1.
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