
CHAPTER II  INVARIANT THEORETIC
CHARACTERIZATION OF FINITE REFLECTION
GROUPS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 24 (1978)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



— 245 —

(1.10) and Lemma 1.2 yield

(1.11) ôm
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Multiply both sides of (1.11) by tm and sum over m from 0 to oo. We get
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CHAPTER II

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. Chevalley's Theorem

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where n dim V. We show that
this lower bound is attained only for the finite reflection groups. We first
define these groups.

Definition 2.1. Let a be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <=> a fixes an n — 1 dimensional
hyperplane n and a is of finite order > 1. % is called the reflecting hyper-
plane (r.h.) of a.

Remark. Choose v$n. and let a v £ v + /?, p e n. If £ 1, then
amv v + mp, contradicting that a is of finite order. Hence £ # 1.

Let v' v + (£-l)_1/> and choose ...,pn_1 as a basis for 7c. Then
& Pi Pb 1 < *< w ~~ 1, g f'. £ is a root of 1 in & which is distinct
from 1, as a is of finite order > 1. Thus a is a reflection iff relative to some
basis, the matrix for a is diagonal, n — 1 of the diagonal entries equalling 1

and the remaining one equalling a root of 1 in k distinct from 1.
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Definition 2.2. G is a finite reflection group acting on V o G is a

finite group generated by reflections on V.

As an example of a finite reflection group, let G Sn. It is well known
that Sn is generated by transpositions. The transposition of the variables

xh Xj (i^j) fixes the hyperplane xt — Xj 0, so that it is a reflection.
We have the following result

Theorem 2.1 (Chevalley [4]). Let G be a finite reflection group acting
on the n-dimensional vector space V. The invariants of G have a basis

consisting of n homogeneous elements which are algebraically independent

over k.

Let k [x] denote the ring of polynomials in xu
in k. We prove the following.

x„ with coefficients

Lemma 2.1. Let Iu Im be invariant polynomials of G, f $ (/2, Im)

the ideal in k [x] generated by /2, Im. Suppose that Px J\ +
+ Pm Im 0, the P^s being polynomials with P1 homogeneous. Then

Px e J, where «/ is the ideal in k [x] generated by the homogeneous
invariants of positive degree.

Proof of Lemma 2.1. The proof proceeds by induction on degiV
Suppose deg/^ 0, so that Pt c e k. If c A 0, then f e (/2, Im),

contrary to assumption. Hence c 0 =^> P1 e J. Let deg P1 n > 0.

Let a be a reflection in G and L 0 the equation of its r.h. (L is a linear

homogeneous polynomial). We have P± (x) II (x) + + Pm (x) Im (x) 0,

Pi {ox) /, (x) + + Pm {ax)4(x) 0. Hence [P, {ox)-Pl (ar)] h (x)
+... + \Pm{ax)-Pm{x)~\Im{x).ForL (x) 0, a (x) x, so that

Pi (ox) — Pt (x) 0 whenever L (x) 0, I < / < m. Since L {x) is

irreducible it follows that
Pj (ox) - P, (x)

L{x

is a polynomial, 1 < < We have

'Pi {ox) - Pi (x)

L{x)

deg

W + • • • +

Pi {ox) - P

so that by the induction hypothesis

iO)~j

Pm (ox) ~ Pm

L (x)

< deg Pi (x)

4 (X) 0
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Pi (ax)— Pi (x)
— s 0 (mod J).

L(x)
Hence P1 (ax) P1(x) (modSince the a's generate G, this con-

gruence holds for a eG. We conclude that

pi (*) ~fr,Z pi O7*) (mod
I G I geG

The polynomial £ Px (ax) is invariant and homogeneous of
\G\ tr zG

~ '

degree n > 1. Hence it e «/, so that Pxe J.
Proof of Theorem 2.1. We choose 7l5 Ir to be homogeneous

invariants of positive degree forming a minimal basis for J>. Hilbert's proof
of Theorem 1.1 shows that 71? Ir form a basis for the invariants of G.

We show that 7ls Ir are algebraically independent, so that r n.

Suppose, to the contrary, that 7l5 7r are algebraically dependent.
Choose 77 (yl9 yr) to be a polynomial of minimal positive degree so

that 77(7X (x), Ir (x)) 0. Let x-degree of any monomial yl1 yarr be

d1 a 1 + + dran where dt deg It. We may assume that all x-degrees
of the monomials appearing in 77 are the same. Let

Hi(x) ^—(1tW ^W)' 1 <r-5 yt

The 77/s are invariant homogeneous polynomials, as all monomials in 77

have equal x-degree. Since H(y1,...,yn) is of positive degree, some
ô H
-— # 0, It follows that the corresponding Ht (x) # 0, as 77 was chosen
a J;
to be of minimal degree; i.e. not all 77/s 0. We relabel indices so that
771} 77s, 1 < s < r, are ideally independent (i.e. none of the 77/s is in
the ideal generated by the others) and Hs+je (771?..., Hs). 1 <j<r-s.

S

Thus Hs+j £ Vjt Hh 1 < j < r - s, where each Vn is a homo-
/= l

geneous polynomial of degree dt ~ ds+j (VJt is interpreted to be 0 if this
degree is negative). Differentiating the relation 77(7t (x), 7r (x)) 0
with respect to xk, we obtain

(2.1) £ H, 8f£ Ht + if Hs+;^i=l V xk i= 1 dxfc i 1
<3 Xfc

i-1 1=1 ^Xfc
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Since

di, dis+l- + I vir
Sxk l=1 ôxk

is homogeneous of degree dL — 1, we conclude from Lemma 2.1 that

r) T r~s r

(2.2) V,. 1 <i < s
d xk i i d xk j i

where the i?/s are homogeneous and each term in (2.2) is homogeneous of
degree dt — 1. This forces i?; 0. Multiply both sides of (2.2) by xk and

sum over k. We conclude, by Euler's identity for homogeneous polynomials,
y — s r

(2.3) diIi+ £ Vnda+lIs+l £ Ajlj
y=i

the >4/s being homogeneous with At 0.

(2.3) shows that 7f e (/l5 /£_ l5 /i+15 7r), contradicting the
minimality of the basis 7l5 7r. Hence 7l5 7r are algebraically independent
and r n.

2. The Theorem of Shephard and Todd

We obtain in this section a converse to Chevalley's Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection

groups. We first prove several preliminary results.

Lemma 2.2. Let H be a finite group of linear transformations acting on
the ^-dimensional space V and fixing the n — 1 dimensional hyperplane n.
The elements of 77 have a common eigenvector v e V — n. Let o (v)
£ (er) f, cr e 77 £ is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that 77 is a cyclic group.

Remark. The above lemma is a consequence of Maschke's Theorem

proven in section 2.3. We provide another proof below.

Proof. Let er x e 77, er x ^ e (the identity of 77). By the remark following
Definition 2.1, there exists v e V ~ n such that g]t (v) (1 v, £x being a

root of unity # 1. For ere 77, let cr (v) £ (cr) v + p (cr), £ (<r) g k and

p (cr) e 7t. Let <7* cr1
~1 n"1 cr. Then <7* (v) v + (1 ~Ci)p (o)- Since

(7* is of finite order, (1 ~Ci)P (o) 0 => p (a) 0. Hence <7 (v) £ (n) v.

£ (a) is clearly an isomorphism from 77 into £7, the multiplicative group of
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the roots of unity in k. U is known to be cyclic ([22], Vol. 1, p. 112). It
follows that C (H), a subgroup of U, is cyclic and so H is cyclic.

Theorem 2.2. Let G be a finite group acting on the n-dimensional

space V. Let /l5 /n be homogeneous polynomials forming a basis for
the invariants of G. Let du dn be the respective degrees of Iu
Then

n n

(2.4) n dt =\G\,y{dt- r
i= 1 i=1

where r number of reflections in G.

Proof By Theorem 1.2, Iu In are algebraically independent. Let

/ (x) be a homogeneous invariant of degree m. Then / is a linear combination
of the monomials 7"1 Iann where a1d1 + andn m. Furthermore,
these monomials are linearly independent over k, as Iu In are algebraically
independent over k. It follows that the dimension 3m of homogeneous
invariants of degree m number of non-negative integer solutions to
a1 dt + + an dn m. Hence

(2.5) E Smtm=
1

m~0 (l-/1)... (1

(1.9) and (2.5) yield

(2-6) -k E
I GI

aeG(1-coj (ö-)/) (1 -con{a)t)(l-/1)...(1-
Expand both sides of (2.6) in powers of (1-t). Let set of

reflections in G and (a) eigenvalue of the reflection a which # 1. We have

1 1

(2-7) 7777 I \G\ atG(1 -<j)y)(o)t) ...(1 -oj„(a)

11 11 1

I G I (1 -0"
+

I G I WW (l-0B_l +

1 " 1^ „ Jn\ n(l-t0 (i-t"") ,4Î d((i-0 -GOtt-O2 + ± (l-o'
n

y2 E w-i)11 i i 1

« n + •••

n^d-o" n (l-o-
i= 1 i=1
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Equating coefficients of (2.7), (2.8), we get

(2.9) n d, I G I £ (d,-l) 2 ^ —...
i — 1 i 1 ~ C(ff)

We evaluate the sum

X
1

:

Let 7i be any r.h. Let Hn {o | a e G and a fixes n}. Thus H% is the

subgroup of G consisting of the identity and those reflections in G with r.h. n.

Applying Lemma 2.2 to H%, we conclude that there exists v n such that
(7 (v) C (<x) v for (7 6 Hn. Let H'n H% - { e }. Since £ (<j" (£ (a))' \
we obtain

(2-10) y —1— y —ri - cm i - r '--1i-C(<7) ^,1-Utf-1)<T eH aeH
it it

L ~ i_r(ff))= ~ Li-CW; '

aeH aeH
it it

Hence

(2ii) y
1 ' H

—.
71

Summing both sides of (2.11) over all r.h. n, we get

(2.9), (2.12) yield Theorem 2.2.

Theorem 2.3. fu polynomials in the variables xl9 x„.
fl9 are algebraically independent over k o

HA>•••»/„)
# 0

d(xu

Proof. Suppose that fu ...,/„ are algebraically independent. Then
G (fx, ...9fn) 0 for some polynomial G G (yu yn). Assume that
G {yu yn) is of minimal positive degree. Differentiating this relation
with respect to xp we get
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f, 8G8f.
(2.13) £ — ...,/„) —^ 0, 1 <j <n

i=i 8yt dxj
(2.13) is a system of linear equations (with coefficients in k (x1? x„))

dG d G
in the unknowns Ht (x) (/1? 1 < f < «. -r—- # 0 for some z,

^ G
as G is not constant, and deg < deg G. It follows that the corresponding

(x) # 0. Thus the linear system (2.13) has a non-zero solution, so that
its determinant

S (A, .,/„) 0
a(xi,...,xn)

Conversely, let /l5 ...,/, be algebraically independent. For each z,

X/, /i, •••,/„ are algebraically dependent. Hence there exists a polynomial

G; (xf, yi, y„) of minimal positive degree in xt such that
Gt (xf,/l5 ...,/„) 0. Differentiating these relations with respect to xfc, we get

^ S Gi Ô f:
(2-14) £ '(.v,

j i dx^

+ 5 (*i,/l, •••,/„) 1 <fe < II
3 xt

<5i/c denoting the Kronecker symbol. (2.14) may be rewritten in matrix
notation as

($($»
where the entries of D are

8G,
~ 8;J"x,,J Ô.

d G
det D=* 0, as xf - degree of — degree of Gh 1 < < «.

d xt-

It follows from (2.15) that
d (/i>

^ ^
0(Xi,...,X„)

Theorem 2.4. (Shephard and Todd [19]). Let G be a finite group
acting on the n-dimensionalspaceV. Suppose there exists a basis of n
homogeneous polynomials for the invariants of G. Then G is a finite
reflection group.
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Proof. Let H be the subgroup of G generated by the reflections in G.

By assumption G has n basic homogeneous invariants which, by Theorem 1.2,

are algebraically independent. Since H is a finite reflection group, we
conclude from Chevalley's Theorem that H has n basic homogeneous
invariants Ju Jn which are algebraically independent. Each 4 is

invariant under H so that It It (Ju /„), the latter quantity denoting a

polynomial in the JIs. We may assume that 4 (Ju Jn) is a linear
combination of monomials Jaf Jn°n whose x-degree deg f. We have

d(h,= d(!u ...,/„)
5(x1;...,x„) d(«/j,.• • Jn)

By Theorem 2.3,
r>(T. M / 0dih,. -, h)
d(xu -, x

and (2.16) then shows that

u.
d(J1,. ;Jn)

It follows that there is a rearrangement k

dlkl dlkKn

ô J1
'

JTn

# o,

Hence Ik. (Ju Jn) is of positive degree in J\ and deg Ik. > deg /j,
1 </</?. Applying Theorem 2.2 both to G and H, we obtain

n n

(2.17) n deg JiI H|, n deg/; |G|
i= 1 i= 1

n n

(2.18) y (deg — 1) y (deg /; - 1) r
i= 1 i= 1

where r number of reflections in G number of reflections in H.
Since deg 4. > deg 4, 1 < i < n% we conclude from (2.18) that

n n

deg Ik. deg 4, 1 < i < n. Hence ]~[ deg It deg Jh and we
i =1 7 1

conclude from (2.17) that | G | | H \ Thus G H and G is a finite
reflection group.
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À T7
0(1^ In)

3. A Formula for
ô (xl5 xn)

We obtain a formula which shall be used in Chapter III.

n-Theorem 2.5. Let G be a finite reflection group acting on the

dimensional space V. Let /x, In be a basic set of homogeneous invariants

for G. Let x be a coordinate system for V and Lt (x) 0, 1 < ir,
the r.h. 's for G, each Lt being linear and homogeneous. Then

(2-19) c " Li(x)
O {X1, xn) i= 1

c being a constant ^ 0.

Proof Let J the left hand side of (2.19). We observe that / is a non-zero
n

homogeneous polynomial of degree (dt-1). By Theorem 2.2,
i 1

n

£ (dt- 1) — r, so that deg / r. If k is the real field R, we have the
i 1

following simple proof of (2.19). I( It (x1? x„), 1 < I < n, is a mapping
from x-space to /-space. This mapping is not 1 — 1 in any neighborhood
of a point x lying in the r.h. Lt (x) 0, as any point and its reflection get

mapped into the same point I. It follows from the Implicit Function
Theorem that J (x) 0. whenever Lt (x) 0. Thus Lt | /, 1 < i < r,

r r

and so ]^J Z,£ | J. Since J, Lt have the same degree r, we have
i=l i 1

r

J C Lh C 0.
i 1

For an arbitrary field k, the theorem is proven as follows. Let n be

an r.h. with equation L (x) 0 and H the subgroup of h elements in G

fixing 7i. Thus there are h — 1 reflections in G with r.h. n. We show that
Lh~l I J. By Lemma 2.2, H is a cyclic group generated by an element u.
Furthermore there exists v $n and a primitive /z-th root of 1 such that
cr (v) £ v. Choose a coordinate system y {yu yn) in V so that %

has the equation yn 0 and v (0, 0, 1) o then becomes the
transformation (yu yn_l9 yn) -*(yu l5 £yn). Let x ry and Jt(y)

It (ty), 1 < i < n. We have

(2.20) >~,yn-i,yn)> 1 <i <w
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Let Ji the Am's being polynomials in yï,...,y„-1.
(2.20) implies that Am 0 whenever hm,sothat A0,0 <m <A- 1.

Since

we conclude

Hence

(2.21)

Since

dJi
\ — Y A vm~

/.-1

rf-1

d J,
1 < i < n

8 y„

d (Ju J„)

3(yi, .-.,y„) '

3 (Jl5...,/„)
J (x) - det t8(yi, ,y„)(2.21) is equivalent to Lh~l(x)| J(x).Itfollows that if L,- (x) 0,

r r
1 < / < r, are the r.h.'s for G, then Yl | J. But /, Yl Li have the

same degree r, so that J c ]~[ Ltc ^ 0.
i= 1

4. Decomposition of Finite Reflection Groups

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

Definition 2.3. Let the group G act on V. G is said to be reducible

iff there exists a proper subspace W invariant under G; i.e. a w e W for
g e G, w e W. G is said to be completely reducible iff V Vl © V2$

V1 and V2 being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

Theorem 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof Let V1 be a proper invariant subspace of V. Let V2 be a

complementary subspace. Thus for v e V, we have a unique decomposition
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v vt + v2,vieVi(i=1,2). Let >/v i>2 and set t —— E 1 *•

IM <tsG

z satisfies the following:

i) z g & a z, a 6 G. For a z —— £ o* o"i (crcr J"1 cr z a
I G I a^G

ii) t vt « 0, g Ft. For (j-1^ e f1? (Tg(j, so that ^cr"1^1=0
=> t 0

iii) (1 -t) v g Kla v g F, 1 denoting the identity of G. For (1 -rj) v e Vu so

that (1 — rj) <7~1 v e V\ ==> g (1 — q) cr~1 v e Vl9 o e G. It follows that

(1-1)« —!- E a(i-i)«7"1 ve vi-
I G I aeG

Let V2 — t V. V'2 is invariant under G as a (zv) — z (ov). For any v,

v zv + (1 — z)v. It follows from iii) that V V1 + V2. ii), iii) imply

t (1 —t) — 0 o z — t2. Hence zv2 v2 for v2 e V2. Let v1 + v2 0,

where v1 e Vl9 v2 e V2. Applying z to both sides, we get v2 0 and so

v1 0. Hence V =* Vx © V2.

Repeated application of Maschke's Theorem yields the

Corollary. Let G be a finite group acting on the finite-dimensional
vector space V. Then V - Vx © © Vs, the V-s being invariant sub-

spaces of V and G acting irreducibly on each Vt.

For finite reflection groups, we have

Theorem 2.7. Let G be a finite reflection group acting on V. There

exists a decomposition V V1 © © Vs into invariant subspaces such

that :

1) Let Gt G\v. group of restrictions of elements of G to Vt. Then G

is isomorphic to Gt x x Gs

2) Each Gh 1 < i < y, is a reflection group acting irreducibly on Vt.

Proof By the corollary to Theorem 2.6, there exists a decomposition
V V1 © © Vs, the Vi s being invariant subspaces and Gt irreducible
for 1 < I < s. We label the V/s so that Vu Vr are 1-dimensional and
G \ v. identity.

By the remark following Definition 2.1, for each reflection cr there exists

an eigenvector v e V - n, n being the r.h. for a. Call v a root of G. We have

(2.22) dim (Vi + n) + dim (Vinn) dim Vt + dim n
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If Vi 4= 7i, then Vt + n V and we conclude from (2.22) that dim Vt
dim (Vinn) + 1. I.e. V{ n n is a hyperplane in V{ and o \v. a reflection

on Vt. Choose u e Vt — n so that u is an eigenvector of a. u is a multiple of
the root v, so that v e VThus a \v. is a reflection of V{ if v e Vb and the

identity if v $ Vt Furthermore, each root v is in some Vh r + 1 < i < s,

otherwise the corresponding reflection a would have been the identity.

Let Gt =*= subgroup generated by those reflections whose roots are in

Vh 1 < z < s. It is readily checked that G G1 x x Gs, Gt Gf |K..

If cr g G; and a |K. identity then a identity. The mapping a -> a \v. is

thus an isomorphism from Gt onto Gt.

Theorem 2.8. Let G be a finite reflection group acting on V and

decompose V as in Theorem 2.7. Every polynomial invariant under G is a

polynomial in the invariant polynomials of G1? Gs.

Proof. For each v e V, write v v% + + vs, vt e Vt. By Theorem 2.7,
for each a e G, we may write o v v1 + + os vs, cr^ e Gt. For any

N

polynomial function p (v) on V, we have p (v) £ (^) pis (vs)
i 1

where ptj (vfi is a polynomial function on Fy. If p (v) is invariant under G,

then

(2.23) P(v)=f£ p{av)y IM-IMI G I j=1
where

(2-24) £ ,>,,.(<7/',.)
I I ff/eGy

is an invariant of Gj.

CHAPTER III

THE DEGREES OF THE BASIC INVARIANTS

We determine the degrees of the basic homogeneous invariants in case

G is a finite reflection group. We present two different methods. The first
one (Theorem 3.8), restricts itself to the case where k is the real field and
has the advantage of providing an effective method for computing the
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