Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	24 (1978)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY
Autor:	Cartier, P. / Tate, J.
Kapitel:	4. Proof of theorem D
DOI:	https://doi.org/10.5169/seals-49707

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 21.12.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

(i) As a ring, A is generated by $A_0 \cup A_1$.

(ii) For any nonnegative integer d, A_d is a finitely generated module over A_0 .

Furthermore, let \mathfrak{S} be the ideal in A_0 consisting of all *a*'s such that $aA_d = 0$ for all sufficiently large *d*'s, i.e. the union of the annihilators of the A_0 -modules A_0, A_1, A_2, \dots .

THEOREM D. Let $A = \bigoplus_{d \ge 0} A_d$ be a graded commutative ring obeying hypotheses (i) and (ii) above. Let K be an algebraically closed field and $\varphi: A_0 \to K$ be a ring homomorphism. In order that φ extend to a ring homomorphism $\Psi: A \to K$ which does not annihilate the ideal $A^+ = \bigoplus_{d \ge 1} A_d$

in A, it is necessary and sufficient that φ annihilate the ideal \mathfrak{S} defined above.

We leave to the reader the simple proof of the necessity in theorem D as well as the derivation of theorem C from theorem D.

4. PROOF OF THEOREM D

Let \mathfrak{P} be the kernel of φ , a prime ideal in A_0 . Assume $\mathfrak{S} \subset \mathfrak{P}$. We subject the ring A to a number of transformations. At each step, the properties (i) and (ii) enunciated before the statement of theorem D will be preserved, as well as property $A_d \neq 0$ for every $d \ge 0$. We shall mention what has been achieved after each step.

a) Factor A through the following graded ideal J: an element a in A belongs to J if and only if there exists an element s in A_0 such $s \notin \mathfrak{P}$ and sa = 0. For every $d \ge 0$, the annihilator \mathfrak{S}_d of the A_0 -module A_d is contained in \mathfrak{S} hence in \mathfrak{P} and this implies $J \cap A_d \neq A_d$. Put A' = A/J, $\mathfrak{P}' = (\mathfrak{P}+J)/J$ and $\Sigma = A'_0 - \mathfrak{P}'$. Then any element in Σ is regular in A'.

b) Enlarge A' by replacing it by the subring A" of the total quotient ring of A' consisting of the fractions with denominators in Σ . Let $A_d^{"}$ be the set of fractions with numerator in $A_d^{'}$ and denominator in Σ ; then $A^{"}$ $= \bigoplus_{d \ge 0} A_d^{"}$. Then $A_0^{"}$ is a local ring with maximal ideal $\mathfrak{P}^{"} = \mathfrak{P}' \cdot A_0'$.

c) Factor A'' through the graded ideal $\mathfrak{P}'' \cdot A''$. Since A_d'' is a finitely generated module over the local ring A_0'' , one gets $A_d'' \neq \mathfrak{P}''A_d''$ by Naka-yama's lemma. Put $k = A_0'' \backslash \mathfrak{P}''$, and $R = A'' / \mathfrak{P}''A''$.

At this point, k is a field (the quotient field of A_0/\mathfrak{P}) and R is a graded algebra over the field k, so all assumptions of theorem B are fulfilled. Moreover let ε the composition of the natural maps

$$A \to A' \to A'' \to R$$
.

In degree 0, ε_0 is nothing else than the natural map from A_0 into k with kernel \mathfrak{P} . Since φ has the same kernel \mathfrak{P} , it factors through ε_0 , making K an algebraically closed extension of k.

We quote now theorem B. There exists a k-linear ring homomorphism $f: R \to K$ such that $f(R^+) \neq 0$. The composite map $\Psi = f \varepsilon$ has all the required properties.

5. Application to schemes

We keep the notation of theorem D. Recall that the spectrum $S = \operatorname{Spec} (A_0)$ of A_0 is the set of all prime ideals in A_0 ; the projective spectrum $X = \operatorname{Proj} (A)$ of A is the set of all graded prime ideals in A, which do not contain the ideal $A^+ = \bigoplus_{\substack{d \ge 1 \\ d \ge 1}} A_d$. We have a natural map $\pi : X \to S$ associating to every graded prime ideal \mathfrak{P} in A the prime ideal $\mathfrak{P} \cap A_0$ in A_0 .

Moreover S and X are endowed with their respective Zariski topologies. A set F in S (resp. X) is closed if and only if there exists an ideal \mathfrak{A} in A_0 (resp. A) such that F is the set of ideals \mathfrak{P} of S (resp. X) containing \mathfrak{A} . It is obvious that π is continuous.

The following theorem is Grothendieck's version of the elimination theorem. Using his language, it is the main step in the proof that $X = \operatorname{Proj}(A)$ is a proper scheme over $S = \operatorname{Spec}(A_0)$.

THEOREM E. The map $\pi : X \to S$ is closed, that is the image of a closed set is closed.

Let $F \subset X$ be closed and let \mathfrak{A} be an ideal in A such that F consists of the graded prime ideals \mathfrak{P} of X containing \mathfrak{A} . Replacing if necessary \mathfrak{A} by the ideal generated by the homogeneous components of its elements, we may and shall assume that \mathfrak{A} is a graded ideal. Let \mathfrak{B} be the set of elements a in A_0 such that $a \cdot A_d \subset \mathfrak{A}$ for large d, and let G be the set of prime ideals in A_0 containing \mathfrak{B} . It is obvious that π maps F into G.

Let \mathfrak{P}_0 be a prime ideal in G, hence $\mathfrak{P}_0 \supset \mathfrak{A}_0$ (where $\mathfrak{A}_0 = \mathfrak{A} \cap A_0$). Denote by k the quotient field of A_0/\mathfrak{P}_0 and by K an algebraically closed