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At this point, k is a field (the quotient field of 4,/B) and R is a graded
algebra over the field k, so all assumptions of theorem B are fulfilled.
Moreover let ¢ the composition of the natural maps

A—->A4A"-> A" > R.

In degree 0, ¢, is nothing else than the natural map from A, into k& with
kernel . Since ¢ has the same kernel B3, it factors through ¢,, making K
an algebraically closed extension of k.

We quote now theorem B. There exists a k-linear ring homomorphism
f: R — K such that f(R") # 0. The composite map ¥ = f¢ has all the
required properties.

5. APPLICATION TO SCHEMES

We keep the notation of theorem D. Recall that the spectrum S
= Spec (A4,) of A, is the set of all prime ideals in A, ; the projective spectrum
X = Proj (A4) of A is the set of all graded prime ideals in A4, which do not

contain the ideal 4™ = @ 4, We have a natural map n: X —» S
d>1

associating to every graded prime ideal 8 in A4 the prime ideal B N 4,
in A,.

Moreover S and X are endowed with their respective Zariski topologies.
A set Fin S (resp. X) is closed if and only if there exists an ideal U in A4,
(resp. A) such that F is the set of ideals o of S (resp. X) containing .
It is obvious that = is continuous.

The following theorem is Grothendieck’s version of the elimination
theorem. Using his language, it is the main step in the proof that X = Proj (4)
is a proper scheme over S = Spec (4,).

THEOREM E. Themap © : X — S is closed, that is the image of a closed
set is closed.

Let F « X be closed and let U be an ideal in 4 such that F consists
of the graded prime ideals B of X containing A. Replacing if necessary
A by the ideal generated by the homogeneous components of its elements,
we may and shall assume that 9l is a graded ideal. Let B be the set of ele-
ments a in A, such that a. A; = A for large d, and let G be the set of
prime ideals in 4, containing B. It is obvious that = maps F into G.

Let B, be a prime ideal in G, hence Ly > A, (where Ay = A N A4).
Denote by k the quotient field of 4,/%B, and by K an algebraically closed
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overfield of k. Let ¢ be the natural composite map A,/A, = Ay/ Ly = £
— K. We are now in a position to apply theorem D to the graded ring A4/,
and we get a ring homomorphism ¥ : 4/ — K extending ¢ and such that
Y (AT +AW)/A) # 0. Let P, (for 4 >1) be the set of elements « in A,
such that ¥ (a+A) = 0. Then P = @ P, is a graded prime ideal in 4

d=0
containing A with P » 47 and P n 4, = P,. That is, P belongs to F
and © maps B onto [,.

( Re¢u le 18 mars 1978)
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