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is the free commutative algebra A (s, e), where deg s 1 and ds e.

As a F-module, it is free with basis 1 and s. A model for EG is just A ® A (xa).
As model for rG, we take R [e] ® A (xa, xa), where deg 3ca deg xa — 1,

the image of xa by s being 1 ® xa + ^ ® 3ca. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let h be the derivation of
degree — 1 of A (xa, xa) given by hxa 3ca and hxa 0. Then if d0 denotes
the differential in A (xj identified to a subalgebra of A (xa, xa), we have

de 0, dxa d0xa — e 5ca, dxa — — hd0xa

Remark. In the case where E is the bundle described in § 4, its minimal
model A ® A (xa) over MG is complicated, because there is an infinite
number of generators xa (except for n 1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. Sketch of the proof of the main theorem and applications

We represent the universal principal G-bundle as a limit of finite dimensional

bundles Pk and we denote by QP the inverse limit of algebras of
forms QPk.

First note that we can replace C* (LM; G) by the D(/-algebra C* (LM, QP)G

of (/-basic elements in C* (LM, QP) (compare with Cartan [5], exposé 20).

A model for EG will be the algebra (EM, QMxp)G [C*a{L Qm

0 Qp]g and a model for the evaluation map will be the inclusion of this

2)(/-algebra in C* (LM, QMxP)G.

In the construction of § 5, we choose B QBG as model for BG and,
instead of taking for A a finite dimensional module over B, we take the

2)(/-algebra QMq & [&MxP]G as model for MG. We have to build the model

for rG along the same lines as in § 5, but in more intrinsic terms like in [13].

The minimal model (or Postnikov decomposition of EG) will be of the form
A ® S* (V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for FG will be the algebra Sp (A ® V, B)
of continuous symmetric ^-multilinear forms on the graded ^-module
A ® V. One can construct a map of this model in C* (LM, Qm><p)g and

prove that it induces an isomorphism in cohomology.
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Similarly, one can prove that (A 0 V, B) is effectively a model for
the space of sections rG (cf. [14]).

Eventually for computations, one proves that one gets also a model

for rG by using instead of QMq a DG-algebra A as in § 5 which is a finite

dimensional free ^-module.

7. Example of a computation

Let us consider the case where M is the ^-sphere Sn, G the rotation
group SOn+1 and E the bundle described in § 3. A model for MG is the

.DG-algebra A defined by

A R [p1? pk, s] / (s2 —Pk) d 0 for n 2k

or A R [pl5 x] ® E (s) ds x f°r n 2/c — 1

where deg pt Ai and deg s n.

A model for EG is obtained by taking the tensor product of A with WUn,
the differential being defined by

dht ct — Pi/2 and dct 0

By the way, WSOn is also a model for EG.

We now consider the case n 2. The minimal model of EG is the .DG-

algebra which begins as

A 0 A(x1,X2,x3,X4,x5,X12,X13,x23,...)
where

degxt degx2 5,degx3 7, degx4 degx5 8,
degx12 9, degx13 degx23 11,

etc.

(there is an infinite number of generators).
The differential is defined by

dxi dx2 0, dx$ Pi, dx4 — Pi%i> dx$ p^x2
dx±2 x^x2, dx±3 a^x2 P1A4, dx23 — x2x3 — P1X5

etc.

According to the construction of § 5, a minimal model for the bundle
Fg Bg begins as

RlPl] ® A(XU X2, X1? X2, X3, X4, X5, X3, X^2, X4, x5,
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