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which are models for the maps rM -» r'M and rfM N r'M. The first one
is obvious and the second one is completely characterized by the map
wun -+ wuthp.

Now we get the differential on A (xJa, yJ\) by considering this algebra as

the tensor product over A (z\) of A (;xf, zJ\) with A (yJ\).
One can make a similar construction using for A and B the Z>G-algebras

Qm and Qn of differential forms on M and N. Of course one has to work
again in more intrisic terms and use the C°°-topology on QM and QN (compare

with [13]). In this way one gets a Z>G-algebra which is also a model for
Fm,n G11 fact one proves directly that it is a model for the DG-algebra
constructed above), with a map in C* (LM N) inducing an isomorphism in
cohomology.

Summing up, we get the following result.

Theorem. Assume that the inclusion of N in M has a model which

is a surjection offinite dimensional DG-algebras. One can construct explicitely
a model for C* (LM N) which is finite dimensional in each degree.

Example. Suppose that M is the disk D2 and N its boundary ô D2 S1.

As the inclusion of F2tl in F2 is homotopically trivial (equivalently the mor-
phism WU2 WU2,i is homotopic to zero), the bundle rM N r'M N

is trivial. WrU2 is a model for S5 v S5 \/ S1 v S8 v S8andW2>3Lfor
S3 V s3 V S3 V S* V 54.

Hence C* (LD2, dD2) is a model for the space which is the product of the

space of maps of S1 in S3 v S3 v S3 v S4 v S4 with the second

loop space of S5 \j S5 v S7 v S8 v S8.

One can write down quite explicitely the minimal model for that space,
but it is harder to compute the cohomology of the first factor. It has an

infinite number of multiplicative generators.

10. Some other problems

1. As coefficient for the Gelfand-Fuks cochains, one might consider,

instead of the field R with the trivial action of LM, a topological LM-algebra
A. The problem is to find a model for the DG-algebra C* (LM, A) of
continuous multilinear alternate forms on LM with values in A. The differential
is defined by the usual formula involving the action of LM on A.



— 159 —

For that case, results similar to the one mentionned in this report have

been obtained by Fuks-Segal (unpublished) and by T. Tsujishita [21].

For instance, when A is the algebra of smooth functions on M on

which Lm acts by Lie derivative, their result is as follows. As it is described

in § 3, the bundle E over M has a fiber Fn which is itself a principal Un-

bundle. Let us fix a fiber F°n œ Un of this bundle; as it is invariant by the

structural group On cz Un of E, we get a subbundle E0 of E with typical
fiber F°n. Then C* (LM, A) will be a model for the inverse image of E0

by the evaluation map M x r -» E.

2. One of the most interesting problems is to know when, for a given
class a in H* (LM), there is a space Xand a foliation Ton X x M transverse

to the fibers such that the image of a in FT* (X) by the characteristic homo
morphism (cf. 2) is non zero.

Very recent and remarkable results of Fuchs [23] show that this is the

case for all classes coming from WSOn. (For earlier partial results, see [4].)
One might expect that his method will apply in general and show that the

answer is affirmative for all classes in FT* (Lu) (and also for the similar
problem with //* (LM ; G)).

There is also the problem of the possible continuous variations of
characteristic classes for flat bundles which would be interesting to study
(cf. [23]).
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