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UNIVALENT FUNCTIONS, SCHWARZIAN DERIVATIVES
AND QUASICONFORMAL MAPPINGS1

by Olli Lehto

1. Introduction

Univalent functions have been a popular topic in complex analysis

for over sixty years. It has also been known for a long time that there are

interesting connections between univalence and the Schwarzian derivative.
More recently, one has discovered in this interplay the important role of
quasiconformal mappings which not only provide a tool but, somewhat

surprisingly, are intrinsic in the problem of deducing univalence from the

behavior of the Schwarzian. In this survey, we shall describe some recent

developments in this area.

After defining plane quasiconformal mappings, we briefly discuss

quasicircles in Section 3. These curves, introduced by Pfluger [15] in 1960,

play a central role in this survey. Section 4 deals with the problem of
measuring the deviation of a simply connected domain A from a disc D by
means of the Schwarzian derivative of the conformai mapping function

/: A -» D. The starting point in Section 5 is the remarkable result that in a

simply connected domain, a small Schwarzian derivative implies univalence

if and only if the boundary of the domain is a quasicircle. The sufficiency
of this condition is due to Ahlfors [1], the necessity to Gehring [2]. This
result gives rise to considering the universal Teichmüller space, and in this

way various explicit estimations for certain domain constants can be

derived ([9]).

2. Quasiconformal mappings

2.1 Module of a curve family. Roughly speaking, quasiconformal
mappings are homeomorphisms under which conformai invariants remain
quasi-invariant. A precise definition can be given, for instance, in terms of
the module of curve families. Let A be a domain in the plane and F a family

x) Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Zürich, 1978.
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of Jordan arcs or curves lying in A. Consider non-negative Borel functions p
in A and denote by P (T) the family of all such functions with the property
J p I dz I > 1 for every locally rectifiable y e T. The greatest lower bound

M CO inf
peP(r)

p2

is called the module of the family T,
A sense-preserving homeomorphism/ of A onto another domain of the

plane is a K-quasiconformal mapping if

(2.1) M(r)l K< M(f(D) <KM(r)
for every family r whose elements lie in A. The smallest possible K in (2.1)
is called the maximal dilatation of /. A sense-preserving homeomorphism
is conformai if and only if it is 1-quasiconformal.

2.2 Beltrami equation. Another way to characterize quasiconformality
is as follows: A sense-preserving diffeomorphism is /T-quasiconformal if
it takes infinitesimal circles onto infinitesimal ellipses with a ratio of axes

</2 A sense-preserving homeomorphism is TCquasiconformal if it is the
limit of /T-quasiconformal diffeomorphisms in the topology of locally
uniform convergence.

A variant of this definition is based on the notion of //-derivatives. A
continuous function is said to have //-derivatives in A if it is absolutely
continuous on lines in A and if its partials, which then exist a.e. in A, are
locally square integrable. By use of complex derivatives ô and d, one more
equivalent definition of quasiconformity is the following: A function / is

a ZT-quasiconformal mapping of A if and only if/ has //-derivatives in A
and satisfies a Beltrami equation Bf= pdf a.e. in A, where the function p,
the complex dilatation off is bounded in absolute value by (K— I) / (K+ 1).

The existence theorem for Beltrami equations says that every function p
which is measurable in A and for which || ^ IU < 1 agrees a.e. with the

complex dilatation of a quasiconformal mapping of A. By the uniqueness
theorem, complex dilatation determines a quasiconformal mapping up to
conformai transformations.

For more details about the properties of quasiconformal mappings in
the plane we refer to [11].
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3. Quasicircles

3.1 Definition. A Jordan curve is the image of a circle under a homeo-

morphism of the plane. If the homeomorphism can be taken to be a K-

quasiconformal mapping, the Jordan curve is called a K-quasicircle.
For a later application, we need the following result.

Lemma 3.1. A K-quasicircle is the image of the real axis under a quasi-

conformai mapping of the plane which is conformai in the upper half-plane
and K2-quasiconformal in the lower half-plane.

Proof: Let C be a iGquasicircle. Then there is a X-quasiconformal
mapping w of the plane which carries the real axis onto C. Let p denote the

complex dilatation of w. By the existence theorem for Beltrami equations,
there is a quasiconformal self-mapping h of the upper half-plane with
complex dilatation p. If h is extended to the lower half-plane by reflection
in the real axis, we obtain a ^-quasiconformal mapping of the plane. Then
w o h~ 1 has the desired properties: by the uniqueness theorem for Beltrami
equations, it is conformai in the upper half-plane, and as a composition of
two AT-quasiconformal mappings it is ^2-quasiconformal in the lower half-
plane.

The notion of a quasicircle was introduced by Pfluger [15]; he arrived
at these curves, which he called "kreisähnlich", in connection with a sewing
problem for Riemann surfaces. Pfluger proved that a quasicircle, while
always of zero area, need not be rectifiable. Later, Gehring and Väisälä [4]
showed that the Hausdorff dimension of a quasicircle is always < 2 but
can take any value 2, 1 < X < 2.

3.2 Geometric characterization. The first systematic study of
quasicircles is Tienari's thesis [16]. His results were soon overshadowed by
Ahlfors [1], who gave an amazingly simple geometric characterization of
quasicircles: A Jordan curve passing through oo is a quasicircle if and only
if for any of its three successive finite points zu z2, z3, the ratio | z1 - z2 | :

I zx — z3 I is uniformly bounded.
The condition of Ahlfors can be modified in various ways. Let U (z, r)
{w\\w - z \ < r} and let clU denote the closure of U. A set E of the

extended plane is b-locally connected if the following two conditions hold
for every finite z and every r > 0 :
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1° Any two points of the set E n clU (z, r) can be joined by an arc lying
in E n c\U (z, br).

2° Any two points of the set E — U (z, r) can be joined by an arc lying
in E ~ U (z, r/b).

The following result has recently been proved by Gehring [2] :

Lemma 3.2. Let the set C contain at least two points and bound a simply
connected domain A. If A is b-locally connected, then C is a c (b)-quasi-
circle, where c (<b) depends only on b.

3.3 Quasiconformal reflection. Let C be a Jordan curve bounding the
domains A and B. A sense-reversing i^-quasiconformal mapping cp: A -> B
is a K-quasiconformal reflection in C if (p leaves every point of C invariant.

It is not difficult to prove that C admits a quasiconformal reflection if
and only if C is a quasicircle. It follows that a quasiconformal mapping

/: A -» B between domains A and B bounded by quasicircles can be extended

to a quasiconformal mapping of the plane. In fact, if cp and ij/ are
quasiconformal reflections in the boundaries dA and dB, such that cp is defined
outside A and \j/ in B, then \j/ of o cp extends/quasiconformally.

A quasicircle always admits quasiconformal reflections which are

continuously differentiable or even real-analytic. For a ^-quasicircle
passing through oo, a reflection cp exists such that | dcp (z) | / | dz | is bounded

by a constant depending only on K.
For more details of the properties of quasicircles we refer to [10].

4. Deviation of a domain from a disc

4.1 Schwarzian derivative. Let / be a locally injective meromorphic
function in a simply connected domain A. At finite points of A which are

not poles off the Schwarzian derivative Sf of/is defined by

Sf (/"//')'
and the definition is extended to oo and to the poles of / by means of
inversion.

The Schwarzian derivative is holomorphic in A. Conversely, every
function which is holomorphic in A is the Schwarzian of some / The

Schwarzian vanishes identically if and only if/is a Möbius transformation.
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More generally, the Schwarzian determines a function up to a Möbius

transformation.
Suppose the boundary of A consists of more than one point; then a

conformai mapping h of A onto the unit disc exists. Through h a conformally
invariant metric p (z) \dz\ is defined in A, by the rule p (z) | dz |

(l — Iw|2)—
1 \dw\9 w h (z). For functions (p holomorphic in A we

introduce the norm
|U|L sup \

zeA

The Schwarzian obeys the composition rule Sfog (Sfog)f2 + Sg.

We note certain of its immediate consequences. First, let /be meromorphic
in A and h : A -» B a conformai mapping. Then

(4.1) I Sf (z) — Sh (z) I pA (z)~2 I Sfoh-i(0 \ Pb(0~2 »
C A(z).

It follows that ]| - Sh \\A || Sfoh-1 ||B. In particular,

(4>2) II Sh || A || Sh~1 II* *

Secondly, let / and p be meromorphic in ^4 and h: G A a conformai

mapping. Then

(4-3) || S/o/î — Sgoh || G || Sf — Sg || A

Finally, we remark that the norm of the Schwarzian is completely invariant
under Möbius transformations: If/is meromorphic in A and g and h are

Möbius transformations, then || Shofog ||ö_i (Ä) || Sf ||A.

4.2 Constant a1. We associate with the domain A the constant cr1

|j Sj-1|^4, where/is a conformai map of A onto a disc. Here a disc means
an ordinary disc or a half-plane. The number a1 is well defined, and equal
to 0 if and only if A itself is a disc. It can be regarded as a measure of how
much the domain A differs from a disc.

It is well known that < 6 (Theorem of Kraus [6]). For the domain
A (z I 0 < arg z < kn}, 1 < k < 2, we have a1 2 (k2 — 1). If follows
that can take any value in the closed interval [0, 6].

4.3 Domains bounded by a quasicircle. In some cases, information about
the boundary of A makes it possible to improve the estimate a 1 < 6.

Theorem 4.1. For a domain A bounded by a K-quasicircle,

K2 — 1

(4.4) g, < 6 —K + 1
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Proof: By Lemma 3.1, there exists a i£2-quasiconformal mapping w of
the plane whose restriction to the upper half-plane H maps H conformally
onto A. For the function w | H the Krauss estimate can be improved:

Rl ~ 1

II SW\H Htf < 6 ——
K2 + 1

for the proof we refer to Kühnau [7], or to [8]. Hence (4.4) follows from (4.2).

4.4 Domains with bounded boundary rotation. Let A be a domain
bounded by a continuously differentiable Jordan curve. The total variation
of the direction angle of the boundary tangent under a complete circuit is

called the boundary rotation of A. If the boundary is not so regular,
boundary rotation is defined by means of approximations from inside.

Let / be a conformai mapping of the unit disc D onto a domain A with
boundary rotation kn, 2 < k < oo. A real-valued function xj/ with the

properties

I 2, k

can be associated with /, such that
2 ft

(4.5) /'(z) =/'(0)exp(- log (1 -ze ie) d\j/(0)).
0

The domain A is convex if and only if k 2. This is equivalent to \j/ being

an increasing function. A function / whose derivative admits the
representation (4.5) is always univalent if the total variation of i// is < 4.

Domains with bounded boundary rotation were introduced by Löwner
and their basic properties established by Paatero [14].

Theorem 4.2. For a domain A with boundary rotation < kn, 2 < k < 4,

The bound is sharp.

Proof : Let /: D - A be a conformai mapping, z0 an arbitrary point
of D, and h a conformai self-mapping of D, such that h (0) z0. Since

Pd (0) ^ follows from (4.1) that
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(4.7) \Sf(z0)\pD(z0)~2 \Sfoh(0)r\'b.

Hence, (4.6) follows if we prove that | Sf (0) | < (2k + 4) / (6 — k). Since we

may replace / by the function z -> cf (zel(p), c complex, cp real, there is no
loss of generality in assuming that Sf (0) > 0 and that f '

(0) 1. From
the representation formula (4.5) we then deduce that

2?r 27t

(4.8) S/(0) J cos 2 9 d if/ (6) — - ^ cosOdijj (0)

o o
:

27t

smQdil/(6) )2.
1

+
2

If k 2, we have <7^ (0) > 0. In this case we get the inequality
o1 < 2 for convex domains from (4.8) quite easily, just by use of Schwarz's

inequality. Extremal functions can also be determined. These computations
have been carried out in [9]. Nehari [13] proved the result cr1 < 2 by means
of variational methods.

If 2 < k < 4, establishing (4.6) requires a more careful handling of
formula (4.8). These computations will be published in a joint paper with
O. Tammi.

Matti Lehtinen has let me know that for functions / whose derivative
satisfies (4.5) with a xj/ whose total variation is < /:, Â: > 4, the sharp
upper bound for | Sf || is equal to (k2 - 4)/2. The extremal functions are
not univalent.

4.5 Constant cr2. The domain constant

g2 sup {]| Sf \\A I / univalent in A)

is in simple relation with o1 ([9]):

Theorem 4.3. In every domain A, a2 g1 + 6.

Proof : Let / be univalent in A and h: D -> A conformai. By (4.3),

|| Sf || A I Sfoh — Sf Hjj < 6 + || Sh || D 6 + crx

In order to derive an estimate in the opposite direction, let an s > 0 be
given. In view of formula (4.7), we can choose h: D -> A so that | Sh (0) |

L'Enseignement mathém., t. XXIV, fasc. 3-4. J4
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> a1 — s. If w is defined by w (z) z + eld / z and f wo h t, then / is

univalent in A and

Il Sf||^|| s„ -Sh|jD> I Sw(0) - (0) I I 6ew + 0) |

By choosing cp suitably we obtain ||*S,/||i4>6 + (71 — e.

5. SCHWARZIAN DERIVATIVE AND UNIVALENCE

5.1 Constant cr3. Let A again be a simply connected domain with more
than one boundary point. As a kind of opposite to the constant cr2 we define

0*3 sup { I I || < a implies/univalent in A).

Note that the number a 0 is always in the above set. In this definition,
sup can be replaced by max, as can be shown by a standard normal family
argument.

Nehari [12] proved that in a disc, the condition || Sf || <2 implies the
univalence of /, and Hille [5] showed that the bound 2 is best possible. In
other words, o3 2 for a disc.

A closer study of cr3 leads to the universal Teichmüller space and reveals

an intrinsic significance of quasiconformal mappings in the theory of
univalent functions. The gist is the following result.

Theorem 5.1. The constant cr3 is positive if and only if A is bounded

by a quasicircle.

Proof : The sufficiency of the condition was established by Ahlfors [1]

who actually proved more : If A is bounded by a X-quasicircle, there is an
e > 0 depending only on K, such that whenever || Sf \\A < s, then / is

univalent and can be continued to a quasiconformal mapping of the plane.
In the proof, the extension of the given meromorphic / is explicitly
constructed by means of a continuously differentiable quasiconformal reflection

cp in ÔA with bounded | dcp | / | dz | (cf. 3.3).

The necessity was proved by Gehring [2]. His proof was in two steps.

It was first shown, by aid of an example, that if A is not 6-locally connected

for any b, then <r3 0. After this, the desired conclusion was drawn from
the result we stated above as Lemma 3.2.

5.2 Universal Teichmüller space. Henceforth, we assume that the

domain A is bounded by a quasicircle. Let Q (A) be the Banach space
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consisting of all holomorphic functions (p of A with finite norm. We introduce

the subsets

U (A) {(p Sf\f univalent in A},

T (A) {SfeU (A) I / can be extended to a quasiconformal mapping
of the plane}.

Both sets are well defined. The set T(A) is called the universal Teichmüller

space of A.

Theorem 5.2. The sets T (A) and U (A) are connected by the relation

T (A) interior of U (A).

Proof : We first show that T (A) is open. Choose SfeT (A), She Q (A),
and set g h of~1. Then g is meromorphic in the domain f(A). Since

dA is a quasicircle, df (A) is also a quasicircle. By the theorem of Ahlfors
cited in the proof of Theorem 5.1, there is an s > 0 such that if

(5.1) || Sg ||/(i4) < e

then SgeT(f(A)). Now, choose h so that || Sf — Sh \\A < s. Then (5.1)
holds, and it follows that Sh Sgof e T(A).

After this it suffices to prove that int U (A) a T (A). Choose

Sf g int U (A) and then an s > 0, so that the ball B {(p e Q (A) | || cp

— Sf\\ < e} is contained in U (A). Let g be an arbitrary meromorphic
function in / (A) for which || Sg ||/(A) < 8. If h g of then || Sf — Sh \\A

1 Sg \\f (A) < £- Thus Sh g U (A). But then also g h of~1 is univalent,
and we have proved that <r3 is positive for the domain/(A). By Theorem 5.1,
the boundary df(A) is a quasicircle. Hence, by the remark in 3.3,

SfeT (A).

Corollary 5.1. If f is univalent in A and || Sf\\A < <r3, then f can
be extended to a quasiconformal mapping of the plane.

Proof : This follows immediately from Theorem 5.2, in view of our
previous remark that the closed ball e ß (^4) | || ^ ||^ < cr3} is contained
in U(A).

By this Corollary, we have for A,

<j3 sup {a I J Sf m < a implies that / is univalent and can be
extended to a quasiconformal mapping of the plane}.
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5.3 New characterizationfor o3. Theorem 5.2 was proved by Gehring [2]
in the case where A is a half-plane. As is seen from the above proof, the
generalization for an arbitrary A is immediate. In fact, the sets Q (A),
U (A) and T (A) corresponding to different domains are isomorphic:

Lemma 5.1. Let h be a conformai mapping of the upper half-plane H
onto A. Then the mapping h* : Q (A) -» Q (//), defined by h* (Sf) Sfoh,
is a bijective isometry. It maps U (A) and T (A) onto U (H) and T (77),

respectively.

Proof : Clearly h* is well defined and a bijection of Q (A), U (A) and
T (A) onto <2 (77), U (77) and T (77), respectively. That h* is an isometry
follows from formula (4.3).

The function A* maps the origin of Q (A) onto the point SheT(H),
which has the distance a 1 from the origin of Q (77). If B {cp e Q (A) |

II <P I \a<0-3}y then

h*(B) {iMÖ(H)|||tfr - < <r3} •

From this and the definition of o3 we infer that o3 is equal to the distance
from the point Sh to the boundary of U (77). The following characterization
seems to be more useful:

Lemma 5.2. The constant o3 of A is equal to the distance of the point
Sh to the boundary of 7'(77).

Proof: Let d denote the distance function in Q. Since T (77) c: U (77)

we conclude from what we just said above that o3 > d({ SJ, 7/(77)
— T (77)). On the other hand, it follows from Theorem 5.2 that int B c T {A)
and hence int A* (B) c= F (77). Therefore, cr3 <d({Sh}, U (77) - T (77)).

A standard normal family argument shows that U {A) is a closed subset

of Q (A). Therefore, the closure of T (A) is contained in U (A). Gehring
[3] showed recently that this inclusion is proper, thus disproving a famous

conjecture of Bers.

However, it is true that on every sphere || cp (| r of Q (77), 2 < r < 6,

there are points of U (77) — T (77) which belong to the closure of T (77)

([9]).

5.4 Estimates for cr3. Lemma 5.2 can be used to deriving estimates for
er3 in terms of <j1 ([9]). Suppose first that 0 < cr1 < 2. Then Sh lies in the

ball {(p g Q (77) I || cp || < 2} which is a subset of T (77). Since || Sh || olf
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we conclude that d({Sh}, U(H)-T(H)) > 2 - at. Consequently, by

Lemma 5.2,

(5.2) u3>2-(T1.,.

In order to prove that this inequality is sharp, we consider the point

Sw, where wisthe restriction to Hof a branch of the logarithm. Since the

boundary of w(H)is not a quasicircle, - T (77). From Sw(z)

z_2/2 it follows that || SH, || H 2. Let be determined by the condition

Sh r Sw, 0 < r< 1, and set Ah(From j S„ || H < 2 it follows that

She T(H), and so 8A is a quasicircle. Now

<r3 d({Sh}, U(H)-T(H))I Sw - 2(1 2 - a,

showing that (5.2) is sharp.

Suppose that 2 <cr1 < 6. We then conclude from the remark at the

end of 5.3 that, even though a3 > 0 for each A, we have inf <r3 0 for

every a1.
Similarly, Lemma 5.2 can be used to deriving the upper estimate

cr3 < min (2, 6 —c^).

(For the details we refer to [9].)
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