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3. Quasicircles

3.1 Definition. A Jordan curve is the image of a circle under a homeo-

morphism of the plane. If the homeomorphism can be taken to be a K-

quasiconformal mapping, the Jordan curve is called a K-quasicircle.
For a later application, we need the following result.

Lemma 3.1. A K-quasicircle is the image of the real axis under a quasi-

conformai mapping of the plane which is conformai in the upper half-plane
and K2-quasiconformal in the lower half-plane.

Proof: Let C be a iGquasicircle. Then there is a X-quasiconformal
mapping w of the plane which carries the real axis onto C. Let p denote the

complex dilatation of w. By the existence theorem for Beltrami equations,
there is a quasiconformal self-mapping h of the upper half-plane with
complex dilatation p. If h is extended to the lower half-plane by reflection
in the real axis, we obtain a ^-quasiconformal mapping of the plane. Then
w o h~ 1 has the desired properties: by the uniqueness theorem for Beltrami
equations, it is conformai in the upper half-plane, and as a composition of
two AT-quasiconformal mappings it is ^2-quasiconformal in the lower half-
plane.

The notion of a quasicircle was introduced by Pfluger [15]; he arrived
at these curves, which he called "kreisähnlich", in connection with a sewing
problem for Riemann surfaces. Pfluger proved that a quasicircle, while
always of zero area, need not be rectifiable. Later, Gehring and Väisälä [4]
showed that the Hausdorff dimension of a quasicircle is always < 2 but
can take any value 2, 1 < X < 2.

3.2 Geometric characterization. The first systematic study of
quasicircles is Tienari's thesis [16]. His results were soon overshadowed by
Ahlfors [1], who gave an amazingly simple geometric characterization of
quasicircles: A Jordan curve passing through oo is a quasicircle if and only
if for any of its three successive finite points zu z2, z3, the ratio | z1 - z2 | :

I zx — z3 I is uniformly bounded.
The condition of Ahlfors can be modified in various ways. Let U (z, r)
{w\\w - z \ < r} and let clU denote the closure of U. A set E of the

extended plane is b-locally connected if the following two conditions hold
for every finite z and every r > 0 :
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1° Any two points of the set E n clU (z, r) can be joined by an arc lying
in E n c\U (z, br).

2° Any two points of the set E — U (z, r) can be joined by an arc lying
in E ~ U (z, r/b).

The following result has recently been proved by Gehring [2] :

Lemma 3.2. Let the set C contain at least two points and bound a simply
connected domain A. If A is b-locally connected, then C is a c (b)-quasi-
circle, where c (<b) depends only on b.

3.3 Quasiconformal reflection. Let C be a Jordan curve bounding the
domains A and B. A sense-reversing i^-quasiconformal mapping cp: A -> B
is a K-quasiconformal reflection in C if (p leaves every point of C invariant.

It is not difficult to prove that C admits a quasiconformal reflection if
and only if C is a quasicircle. It follows that a quasiconformal mapping

/: A -» B between domains A and B bounded by quasicircles can be extended

to a quasiconformal mapping of the plane. In fact, if cp and ij/ are
quasiconformal reflections in the boundaries dA and dB, such that cp is defined
outside A and \j/ in B, then \j/ of o cp extends/quasiconformally.

A quasicircle always admits quasiconformal reflections which are

continuously differentiable or even real-analytic. For a ^-quasicircle
passing through oo, a reflection cp exists such that | dcp (z) | / | dz | is bounded

by a constant depending only on K.
For more details of the properties of quasicircles we refer to [10].

4. Deviation of a domain from a disc

4.1 Schwarzian derivative. Let / be a locally injective meromorphic
function in a simply connected domain A. At finite points of A which are

not poles off the Schwarzian derivative Sf of/is defined by

Sf (/"//')'
and the definition is extended to oo and to the poles of / by means of
inversion.

The Schwarzian derivative is holomorphic in A. Conversely, every
function which is holomorphic in A is the Schwarzian of some / The

Schwarzian vanishes identically if and only if/is a Möbius transformation.
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