

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 28.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MISCONCEPTIONS ABOUT K_X

by Steven L. KLEIMAN

There are three common misconceptions about the sheaf K_X of meromorphic functions on a ringed space $X: (1)$ that K_X can be defined as the sheaf associated to the presheaf of total fraction rings,

$$
U\mapsto \Gamma(U,O_X)_{tot},
$$

see [EGAIV4, 20.1.3, p. 227] and [1, (3.2), p. 137]; (2) that the stalks $K_{X,x}$ are equal to the total fraction rings $(O_{X,x})_{tot}$, see [EGAIV₄, 20.1.1] and 20.1.3, pp. 226-7]; and (3) that if X is a scheme and $U =$ Spec (A) is
an affine open subscheme, then Γ (U, K_X) is equal to A_{tot} , or in other words,
the presheaf (*) is a sheaf if U ranges exclusively over affi an affine open subscheme, then Γ (U, K_X) is equal to A_{tot} , or in other words, the presheaf (*) is a sheaf if U ranges exclusively over affines, see [3, Def., p. 140]. These misconceptions will be corrected below with some observations and examples.

The presheaf (*) may fail to exist! Some restriction maps may simply not be defined. For instance, there may be a nonzerodivisor t in $\Gamma(X, O_X)$ whose restriction is a zerodivisor in Γ (U, O_x) for some open subset U. Then the fraction $1/t$ in $\Gamma(X, O_X)_{tot}$ has no restriction in $\Gamma(U, O_X)_{tot}$.

For example, let A be a domain with nonzero maximal ideal M . Let P denote the projective line over A , and Y the (closed) fiber over M . Set

$$
X = \text{Spec} (O_P \oplus O_Y(-1)),
$$

where $O_Y(-1)$ is viewed as an ideal of square zero. We have

$$
\Gamma(X, O_X) = \Gamma(P, O_P) \oplus \Gamma(Y, O_Y(-1)) = A.
$$

where $O_Y(-1)$ is viewed as an ideal of square zero. We have
 $\Gamma(X, O_X) = \Gamma(P, O_P) \oplus \Gamma(Y, O_Y(-1)) = A$.

Hence any nonzero element t of M is a nonzerodivisor in $\Gamma(X, O_X)$. How-

ever, for any affine open subset U of X containing a Hence any nonzero element t of M is a nonzerodivisor in $\Gamma(X, O_X)$. However, for any affine open subset U of X containing a point of Y, the restriction of t in $\Gamma(U, O_X)$ is zerodivisor. Indeed, $O_Y(-1) | U$ is isomorphic to O_Y U. So $\Gamma(U, O_Y(-1))$ contains a nonzero element s, and obviously $\tau_s = 0$ holds. Note that if A is taken to be a finitely generated algebra over a field, then X is an algebraic scheme for which the presheaf $(*)$ is undefined.

The right way to define K_X is as the sheaf associated to the following presheaf of rings of fractions :

$$
(**)\qquad \qquad U\mapsto \Gamma(U,O_X)\left[S(U)^{-1}\right],
$$

where $S(U)$ denotes the set of elements of $\Gamma(U, O_X)$ whose restrictions are nonzerodivisors in the stalks $O_{X,x}$ for all $x \in X$. Note that $S(U)$ is contained in the set of nonzerodivisors in $\Gamma(U, O_X)$. Hence the presheaf (**) is separated; that is, the natural map from it to K_X is injective.

The natural map from O_X to K_X is injective because the one to the presheaf (**) is and the latter is separated (alternatively, and sheaving is exact). Now, let $f: X \to Y$ be a flat map, for example, an open embedding. Then f gives rise naturally to a map, $f^*: K_Y \to f^* K_X$. So K_X will work out
well in a theory of (Certian) divisors well in a theory of (Cartier) divisors.

If X is a scheme and $U = \text{Spec} (A)$ is an affine open subscheme, then $S(U)$ contains (and so consists of) all nonzerodivisors $t \in A$. Indeed, suppose $t (a/b) = 0$ holds in $O_{X,x}$ for some $x \in U$ with $a, b \in A$ and $b(x) \neq 0$. Then $tca = 0$ holds in A for some $c \in A$ with $c(x) \neq 0$. Since t is a nonzerodivisor, $ca = 0$ holds in A. Hence $a/b = 0$ holds in $O_{X,x}$, q.e.d. Therefore, when X is a scheme, the presheaf $(*)$ will be well-defined (and equal to the presheaf $(**)$) if U ranges exclusively over affines, and the associated sheaf is K_x .

Fix $x \in X$ and set $S_x = \lim_{x \to \infty} {S(U) | U \in x}$. We have

$$
K_{X,x} = S_x^{-1} O_{X,x} \subset (O_{X,x})_{tot}.
$$

The inclusion may be proper, even if X is an affine scheme. For example, let *B* be a domain with a nonzero and nonmaximal ideal p such that p is the intersection of all the maximal ideals M containing it. Set

$$
X = \text{Spec} (B \oplus (\oplus_{M \supset p} (B/M))) .
$$

Let $x \in X$ represent p. Then $K_{X,x}$ is equal to B_p , while $(O_{X,x})_{tot}$ is equal to the fraction field of B.

The presheaf (**) need not be a sheaf. In fact, there is an affine scheme $X =$ Spec (A) such that A_{tot} is a proper subring of $\Gamma(X, K_X)$. To construct X, fix an algebraically closed ground field k , and a smooth closed cubic E in ${\bf P}_k^2$. Let L be a line section of E, and $P \in E$ a k-point such that the divisor $(3P-L)$ has infinite order; for example, take a P whose coordinates are transcendental over the field of definition of E. Let C be a cone in A_k^3 projecting E, and denote by G the generator over P. Take planes H_1 and H_2 hrough the vertex with no generator in common and neither one taining G. Take a plane H_3 not containing the vertex, parallel to G, but not parallel to any generator on H_1 . Denote by U the set of closed points C off $(G\cup H_1) - H_3$. Set

$$
X = \operatorname{Spec} (O_C \oplus (\oplus_{Q \in U} k(Q))).
$$

Finally, let f be a function on E with a single pole of order 2 at P, and
Figure f.g.s. a global section of the sheaf $K_{\alpha} \oplus (\bigoplus k(\Omega))$ which contains K_{α} view f as a global section of the sheaf $K_c \oplus (\oplus k(Q))$, which contains K_x .

Then f is in $\Gamma(X, K_X)$ because X is covered by the three affine open
sets $K = Y - H$ and f is easily seen to be in each $\Gamma(V, Q_X)$. Howsubsets $V_i = X - H_i$ and f is easily seen to be in each $\Gamma(V_i, O_X)_{tot}$. However, f is not in $\Gamma(V, O_X)$ Indeed, suppose f is equal to r/s with f is not in $\Gamma(X, O_X)_{tot}$. Indeed, suppose f is equal to r/s with $\Gamma(Y, O)$. Write $s = t + \tau$ with $t \in \Gamma(X, O_s)$ and $\tau \in \Gamma(X, \bigoplus k(O))$. $r, s \in \Gamma(X, O_X)$. Write $s = t + \tau$ with $t \in \Gamma(X, O_C)$ and $\tau \in \Gamma(X, \bigoplus k(Q))$. Then t is the restriction to C of a polynomial function on A_k^3 . So the zero locus $Z(t)$ is a hypersurface section of C. Hence, by the choice of $P \in E$, there must be a component Z of $Z(t)$ different from G. By construction, U must contain a point Q of Z. Therefore t is a zerodivisor in $\Gamma(X, O_X)$, so *s* is also, q.e.d.

Lastly, consider two common cases: (a) X is a locally noetherian scheme, and (b) X is a reduced scheme whose set of irreducible components is locally finite. In both cases, Assertions (2) and (3) at the beginning are valid, and K_X is given by the formula,

$$
K_X = j_* (O_X | \text{ Ass } (X)),
$$

where Ass (X) denotes the set of points $x \in X$ where the maximal ideal of $O_{X,x}$ is associated to 0, and j denotes the inclusion map of Ass (X) into X. These statements are easily verified using the ideas in the proof of [EGA IV₄, 20.2.11, pp. 234-5]. (For a different slant on Case (a), see [4, Lecture 9, 1°, pp. 61-2].)

In Case (b), K_X is quasi-coherent. However, in Case (a) it need not be. For example, let $A = k$ [s, t] be the polynomial ring over a field k, and set

$$
X = \text{Spec} (A \oplus A/(s, t)).
$$

Though injective, the natural map from A_{tot} [1/s] into A [1/s]_{tot} is not. surjective; the image omits $1/t$. So K_x is not quasi-coherent.

REFERENCES

- [1] ALTMAN, A. and S. KLEIMAN. Introduction to Grothendieck duality theory. Springer lecture notes in math. 146, (1970).
- [EGA IV₄] GROTHENDIECK, A. Eléments de géométrie algébrique IV (Quatrième partie), rédigés avec la collaboration de J. Dieudonné, Puhl. Math. I.H.E.S. N° 32, Presses Univ. de France, Vendôme (1967).
- [3] Hartshorne, R. Algebraic Geometry .Graduate Texts in Math. 52, Springer (1977).
- [4] MUMFORD, D. Lectures on Curves on an Algebraic Surface. Annals of Math. Studies 59, Princeton U. Press (1966).

Reçu le 30 October 1978)

Steven L. Kleiman

Department of Mathematics M.I.T., 2-278 Cambridge, Mass. 02139